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Extended MHD Equations:

∂n
∂t +∇ · (n~V ) = 0
∂~(B)
∂t = −∇× ~E ~J = ∇× ~B

nMi(
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∂t + ~V · ∇~V ) +∇p = ~J × ~B−∇ · ΠGV+µ∇2~V

~E + ~V × ~B = η ~J+ 1
ne(

~J × ~B −∇pe)− λH(∆x)2∇2 ~J
3
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∂pe
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2pe
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∂pi
∂t +∇ · (3

2pi
~V ) = −pi∇ · ~V +µ|∇V |2 −∇ · qi −Q∆

Ideal MHD

Resistive MHD

2-fluid Extended MHD

~V = ∇U × ẑ +∇⊥χ + Vz
~B = ∇ψ × ẑ + Iẑ

8 scalar variables: ψ, I, U, χ, Vz, n, pe, pi
∆x is typical element size



Stiffness and Singularity

Temporal variation

Spatial variation

Fluid Dynamics Closure

→ Stiff numerical problem

Preconditioning techniques



Implicit & Split Implicit Velocity Time-Advance

{ρ− θ2(δt)2L}V n+1 = {ρ− θ2(δt)2L}V n+

δt{−∇p + 1
µ0

(∇×B)×B}n+1/2

MHD operator

LV ≡ 1
µ0
{∇ × [∇× (V ×B)]} ×B+

1
µ0

(∇×B)×∇× (V ×B)+

∇(V · ∇p + γp∇ · V )

Operated by  ∇×
~Z

∇·



to separate fast wave, shear Alfven wave, and slow

wave

corresponding to 3 sets of eigenvalues

⇒ reduce condition number.

λ1 = (ρ0 + sk2
‖B

2
0)k

2
⊥

λ2 = (ρ0 + sk2
‖p0)

λ3 = −k2
‖(ρ0 + sk2B2

0 + sk2
⊥γp0)



Spatial Discretization

To be solved

• in full 3D

• 2D Planes with Fourier &

higher order finite difference decompositions

in φ direction.

Using PETSc as an interface to access other precondi-

tioners, such as Hypre, Superlu dist, PDSLin, Mumps.



M3D, Solve as 2D Planes & Scalable Linear Solver

∇⊥u = f,

∇?u = f ?,

∇†u = f †,

(∇⊥ + λ)u = fλ
(∇? + λ)u = f ?λ
(∇† + λ)u = f †λ

with Dirichlet, Neumann boundary conditions, where

∇⊥ = ∂2

∂R2 + ∂2

∂R2

∇? = ∇⊥ − 1
R

∂
∂R

∇† = ∇⊥ + 1
R

∂
∂R

Using BoomerAMG proconditioned CG through PETSc

interface

Since the stiffness matices are symmetric non-negative

defined.



Higher Order Elements & Scalable Linear Solver

Lump higher order elements: 2nd & 3rd order

scales as well as linear elements:

• Mass matrix lumping capable;

• RCMK (Reverse Cuthill-McKee) reordering stiffness

matrices.

• BoomerAMG proconditioned CG through PETSc in-

terface

Lagrange elements Lump elements



Higher Order Elements & Scalable Linear Solver



M3D, Solve as Full 3D & Scalable Linear Solver

3D finite element: Each φ plane has two Hermite cubic

functions associated with it

Φ1(x) = (|x| − 1)2(2|x| + 1) Φ2(x) = (|x| − 1)2(x)

U(R,Z, φ) =
∑18

j=1 vj(R,Z)[ U 1
j,kΦ1(φ/h)+

U 2
j,kΦ2(φ/h)+

U 1
j,k+1Φ1(φ/h− 1)+

U 2
j,k+1Φ2(φ/h− 1)]

On each plane, we use 5th order reduced quintic trian-

gular with C1 continuity across elements.



The Reduced Quintic Triangular Finite Element

• All data is at nodes: function + first 5 derivatives (6

dofs)

Φ,Φx,Φy,Φxx,Φxy,Φyy

• Complete quintic polynomial has 21 coefficients

• 18 values come from the 3 nodes (3 x 6)

If we locally number the unknowns φ, φx, φy, φxx, φxy, φyy
at P1 at Φ1−Φ6, at P2 at Φ7−Φ12, and at P3 at Φ13−Φ18,

The general expression for the unknown function φ:

φ(ξ, η) =
∑j=18

j=1 vjΦj

where Φ(R, φ, Z) =
∑5

q=0

∑q
p=0 Φp.q(φ)Rq−pZp

• 3 values come from requirement that the normal deriva-

tive along each edge be only a (univariate) cubic,

Leads to C1 continuity

• Contains a complete Taylor series through 4th order

in space without introducing auxiliary variables

error ∼ h5



The Sparse Linear System for Velocity Variables

 Sv11 Sv12 Sv13
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corresponding to projections of the operator equation

Also contains 2 non-trivial sub-systems (reduced MHD)

that conserve appropriate energy and are numerically

stable

[Sv11] · [U ]n+1 = [Dv
11] · [U ]n + [Rv

11] · [Ψ]
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3D Nonlinear Scalable Solver

Leads to block triangular structure


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· · ·
· · ·

Ai Bi C1

· · ·
· · ·

AN NN


·



x1

·
·
xi
·
·
xN


=



y1

·
·
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
[
S11

]
[
Sv11 Sv12
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]
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Sv21 Sv22 Sv23

Sv31 Sv32 Sv33


Ill Conditioned,

Block-Jacobi preconditioned GMRES, SuperLU Dist, Mumps,

PDSLin solves

The 3 sets of eigenvalues correspond to



3D Nonlinear Scalable Solver

Calculate the eigenvalues:

Use SLEPc, EPS (Eigenvalue Problem Solvers)

PETSc based Scalable Library for Eigenvalue Problem

Developed by Jose E Roman, Eloy Romero, Andres

Tomas

At www.grycap.upv.es/slepc



3D Nonlinear Scalable Solver

Number of velocity variables
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Scalability Studies

• implicit time advance as physics preconditioning

• separate fast wave, shear alfven wave, compressive

alfven, slow wave to further reduce condition number

• Jacobi preconditioning to reduce the condition num-

ber by a factor of 3

Decomposition in φ direction



Scalability Studies

Decomposition in (R,Z) plane

ghost nodes communication optimization



Scalability Studies

Architecture: HOPPER at NERSC

NERSC’s first peta-flop system

a Cray XE6, with 153,216 compute cores

217 TB of memory and 2PB of disk

5 on the November 2010 Top500 Supercomputer list.

Compute Node Configuration

6384 nodes

2 twelve-core AMD ’MagnyCours’ 2.1 GHz processors

per node

24 cores per node (153,216 total cores)

Each core has their own L1 and L2 caches

6 MB L3 cache shared between 6 cores on the Magny-

Cours processor



Scalability Studies

Grid MPI COMM Configuration

Case# A B C D E F

1 168 84 170 2 5 5

2 192 96 190 2 6 8

3 216 108 203 2 7 11

4 240 120 213 2 8 14

5 272 136 220 2 9 17

6 296 148 225 2 10 20

7 320 160 229 2 11 23

8 344 172 233 2 12 26

9 368 184 236 2 13 29

10 4l6 208 241 2 15 35

11 440 220 242 2 16 38

12 464 232 244 2 17 41

13 512 256 247 2 19 47

A. Total number of planes in toroidal direction.

B. Number of CPUs in toroidal direction (B¡=A).

C. Number of grids in minor radial direction.

D. Number of CPUs in radial direction.

E. Number of mesh partitions in theta direction (E¿=3).

F. Number of CPUs in theta direction.



Scalability Studies

Total number of nodes:

(1 + B(B−1)
2 × A

Total number of CPUs:

D > 1 : B × E ×D2

D = 1 : B × F



Summary & Future Development

Scalable Linear & Nonlinear Solver on multicore &

GPU clusters

• Physics based preconditioning for the whole MHD

system

• Spatial Discretization related preconditioning

• Scalable higher order element (Lump elements)

• Separate spectrum with different spatial scales

• Matrix related preconditioning

• Scalable parallel I/O



Acknowledge

X. Li

SuperLU group, Lawrence Berkeley National Labora-

tory

H. Zhang

PETSc Group, Argonne National Laboratory


	Cover Page
	Table of Contents
	 Extended MHD Equations 
	 Stiffness and Singularity 
	 Implicit & Split-Implicit Velocity Time-Advance 
	 Spatial Discretization 
	 M3D, Solve as 2D Planes & Scalable Linear Solver 
	 Higher Order Elements & Scalable Linear Solver 
	 M3D, Solve as Full 3D & Scalable Linear Solver 
	 The Reduced Quintic Triangular Finite Element 
	 The Sparse Linear System for Velocity Variables 
	 3D Nonlinear Scalable Solver 
	 Scalability Studies 
	 Summary & Future Development 
	 Acknowledge 

