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Extended MHD Equations:

—

nM;(2-+V - VV) +Vp = J X B=V - Hey+uV2V

E+V xB= nJ+ (J x B — Vpe) — A (Az)2V2T

3;— +V-GpV) = =pV - VL - [3Vpe = 35Vnl40)” = V- g + Qa
3B V- (3pV) = —piV - Pl VVP -V g — Qa

Ideal MHD

Resistive MHD
2-fluid Extended MHD

V=VUxX2+V,x+V.
B=Vi{ x 2+ 1%
8 scalar variables: ¢, I,U, x, V., n, pe, p;
Az is typical element size




Temporal variation

Spatial variation

Fluid Dynamics Closure

— Stiff numerical problem

Preconditioning techniques



{p— 0%t LIV" = {p— 92(5t)2L}V”+
ot{— Vp+ (V X B) X B}”+1/2
MHD operator

LV = AV X[V x(V x B)|} x B+

(VxB)xVx(VxB)+
(V-VervpV-V)

4313

Operated by

<4 N

to separate fast wave, shear Alfven wave, and slow
wave

corresponding to 3 sets of eigenvalues
= reduce condition number.

A= (po + skﬁBQW

)\ (,00 + Sk||p0)
A3 kﬁ(po + sk? B + sk vypo)



To be solved
e in full 3D

e 2D Planes with Fourier &
higher order finite difference decompositions

in ¢ direction.

Using PETSc as an interface to access other precondi-
tioners, such as Hypre, Superlu_dist, PDSLin, Mumps.
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Viu=f, (VL+Nu=f,
Viu=f* (V' +Mu= [}
Viu=f, (Vi +Nu=f]

with Dirichlet, Neumann boundary conditions, where

_ P
vi_8R2+18R§
Vi=V.i— 5o

VT:VL—F%%

Using Boomer AMG proconditioned CG through PETSc
interface

Since the stiffness matices are symmetric non-negative

defined.
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Lump higher order elements: 2nd & 3rd order

scales as well as linear elements:

e Mass matrix lumping capable;

¢ RCMK (Reverse Cuthill-McKee) reordering stiffness
matrices.

e Boomer AMG proconditioned CG through PETSc in-

terface
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Lagrange elements Lump elements
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3D finite element: Each ¢ plane has two Hermite cubic
functions associated with it

$i(x) = (Jo] = 1)°2fz| + 1) Pof) = (|2] — 1)*(2)

AN

U(R,Z,¢) = 312 vj(R, Z)] U}, ®1(6/h)+
U]%kq)2(¢/h>+
Ul ®i(¢/h — 1)+
U]%k+1q)2<¢/h o 1)]

On each plane, we use 5" order reduced quintic trian-
gular with C! continuity across elements.



The Reduced Quintic Triangular Finite Element

e All data is at nodes: function + first 5 derivatives (6
dofs)

(I)7 q)xa (Dya (Dxata q)xgﬂ q)yy
e Complete quintic polynomial has 21 coefficients

e 18 values come from the 3 nodes (3 x 6)

If we locally number the unknowns ¢, ¢,, ¢y, ®r.c, Puy, Oy
at P1 at @1—@6, at PQ at @7—@12, and at P3 at @13—(1318,

The general expression for the unknown function ¢:

o€, n) = 2‘7 1 v®
where O(R, ¢, 7Z) = Z 02y Ppgl@)RITPZY
e 3 values come from requirement that the normal deriva-

tive along each edge be only a (univariate) cubic,
Leads to C'! continuity

e Contains a complete Taylor series through 4" order
in space without introducing auxiliary variables

error ~ h°
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corresponding to projections of the operator equation

Also contains 2 non-trivial sub-systems (reduced MHD)
that conserve appropriate energy and are numerically
stable

[Sh] - U] = [Dyy] - [UT" + [RYy] - [Y]

and
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Leads to block triangular structure

[ B, O x1 Y1
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111 Conditioned,

Block-Jacobi preconditioned GMRES, SuperLU_Dist, Mumps,
PDSLin solves

The 3 sets of eigenvalues correspond to



Calculate the eigenvalues:
Use SLEPc, EPS (Eigenvalue Problem Solvers)

PETSc based Scalable Library for Eigenvalue Problem

Developed by Jose E Roman, Eloy Romero, Andres
Tomas

At www.grycap.upv.es/slepc



|Eigenvalue|

3D Nonlinear Scalable Solver
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e implicit time advance as physics preconditioning

e separate fast wave, shear alfven wave, compressive
alfven, slow wave to further reduce condition number

e Jacobi preconditioning to reduce the condition num-
ber by a factor of 3

Decomposition in ¢ direction




Scalability Studies

Decomposition in (R, Z) plane

ghost nodes communication optimization




Scalability Studies

Architecture: HOPPER at NERSC
NERSC'’s first peta-flop system
a Cray XE6, with 153,216 compute cores
217 TB of memory and 2PB of disk
5 on the November 2010 Top500 Supercomputer list.

Compute Node Configuration

6384 nodes

2 twelve-core AMD "MagnyCours’ 2.1 GHz processors
per node

24 cores per node (153,216 total cores)

FEach core has their own L1 and L2 caches

6 MB L3 cache shared between 6 cores on the Magny-
Cours processor

H

GMB L3 GMB L3
Cache Cachia




Grid MPI COMM Configuration

Case# A B C D E F
1 168 84 170 2 5 5

2 192 96 190 2 6 8

3 216 108 203 2 7 11
4 240 120 213 2 8 14
5 272 136 220 2 9 17
6 296 148 225 2 10 20
7 320 160 229 2 11 23
8 344 172 233 2 12 26
9 368 184 236 2 13 29
10 416 208 241 2 15 35
11 440 220 242 2 16 38
12 464 232 244 2 17 41
13 512 256 247 2 19 47

A. Total number of planes in toroidal direction.

B. Number of CPUs in toroidal direction (Bj=A).

C. Number of grids in minor radial direction.

D. Number of CPUs in radial direction.

E. Number of mesh partitions in theta direction (E;=3).
F. Number of CPUs in theta direction.



Scalability Studies

Total number of nodes:

(1+ _3(32_1) x A

Total number of CPUs:
D>1:BxE x D?
D=1:BxF
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Scalable Linear & Nonlinear Solver on multicore &
GPU clusters

e Physics based preconditioning for the whole MHD
system

e Spatial Discretization related preconditioning
e Scalable higher order element (Lump elements)

e Separate spectrum with different spatial scales

e Matrix related preconditioning

e Scalable parallel I/0
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