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Observations of Enhanced Aurora
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Observations of Enhanced Aurora

[Hallinan et al., 1985]
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Properties of Enhanced Aurora
• Altitude

– 90-130km

• Thickness
– typical 1km
– range up to 5-15km

• Intensity
– Up to 5:1

• Multiple Layers
• Profile not consistent

with collisional
electron precipitation
models [Hallinan et al., 1985]
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Dynamics of Enhanced Aurora

• Stable
– Remain 1-2 hours

• Active Times
– Layer remains at fixed

altitude even when
precipitation extends
to lower altitude

– E.g. lower border ⇒
enhanced layer [Hallinan et al., 1985]
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Optical Emissions and
Energetic Electrons

• All luminosity bands
enhanced

• 4278Å N2
+ band

⇒electrons must have
energies above
ionization energy

    of N2 (17 eV)
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N2 Ionization Cross Section

• Ionization energy
for molecular
nitrogen around
17eV.

• Peak ionization
around 100eV
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Optical Emissions and
Energetic Electrons

• O, N2 bands are
significantly
enhanced

• N2
+ emissions

suppressed
– indicates that at times

the electron energy
does not exceed the
N2

+ ionization energy

• e- energy ~ 10-20 eV
with sharp cutoff
above 20 eV
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Two Conclusions

• The atmosphere in the auroral zone
contains one or more very thin stable layers
that may interact with precipitating
electrons and auroral currents.

• Because collisional models for electron
precipitation cannot produce such thin
layers, it is likely that a collective plasma
process energizes electrons in the layers.
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Thin Ionization Layers Observed

• Incoherent-scatter radar
detects thin layers of
electrons

• Layer around 110 km
during 2105-2120 UT on
7/27/1991

• Layer remained for two
hours 2000-2200 UT

• Thickness between 1.5
and 2.5 km

• Density peak between 105

and 106 cm-3
Bristow and Watkins, 1993
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Formation of Layers

• Neutral Winds (at low latitude)

• Electric Fields (at high latitudes)
[Nygren, 1984]
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Formation of Thin Layers

• Metallic ions originate
from meteor ablation,
[Kelley, 1989]

• Fe+ and Mg+ have been
observed in abundance by
rocket and incoherent
scatter radar

     [Narcisi et al., 1968,
Turunen et al., 1988]

• Ion accumulation occurs
for different electric field
orientations

     [Nygren et al., 1984]
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Possible Mechanisms

• Beam Plasma Discharge
– Electron beam source
– Emission spectra similar to enhanced aurora spectrum
– Discharge does not result from a special gas layer
– Location depends on beam current
– Does not explain the aurora below the enhanced layer
[Bernstein et al., 1978; Hallinan et al., 1988]

• Ionization Instability
– Would be confined to the lower edge
[D’Angelo, 1991]
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Possible Mechanisms

• Upper Hybrid and Electron Cyclotron Instability
– Layers could be localized by maxima in the growth

rate at cyclotron harmonics

– Localization depends on electron energy and may be
variable during precipitation

[Basu et al., 1982; Chang and Jasperse, 1992]

• DC electric field
[Shepherd and Falthammer, 1980]
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Modified Two-Stream Instability

• Cross Field Current
– In E/F region νin > Ωi

   but  νen,ei < Ωe

• Hence a cross field current

   can be produced by an ionospheric

   electric field
• Dispersion Relation in electron frame (U » ExB)

B

Eionosphere

Ve¼ ExB
 Vi ¼ ExB/(1 +ν2/Ωi

2)
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Modified Two-Stream Instability

• vthi = T / mi

• VFe+ < VN2+,NO+ <U
• increased instability in

thin layer

• electron Landau damping

stabilizes plasma

[McBride et al., 1972]
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Growth Rate Enhanced in the
Thin, Dense, Heavy Ion Layer
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Global Eigenmode Analysis
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Global Eigenmode Analysis
• Growth rates are discrete versions of the continuous dispersion relation with

                                             kk » (n+½)π/Λ

• The thin layer introduces new modes with larger growth rate

• The heavy ion modes are localized in the heavy ion layer

High harmonicLow Harmonic
  Less Landau Damping
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Effect of Collisions
n0=105cm-3

n0=1010cm-3 n0=3x1012cm-3

n0=6x1011cm-3
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Reasons to Expect Mode Even
More Unstable in Thin Layer

• Threshold drift speed is smaller in the layer
because vti is smaller

• Maximum growth rate is larger in the layer where
vti is smaller

• Electron thermal effects stabilize the instability
for large kk .  Maximum stability occurs where
q = tan-1(kk / k?) » (me/mi)1/2 ) heavy ions
instability is less oblique and suffers less electron
Landau damping at the same k?
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Simulation Method
• 2 ½ D Simulation

Code [Okuda and
Lee, 1978]

• Guiding center
electrons

• Fe+ ions ACTUAL
mi/ me = 102,827

• U = 10 vthi
ExB 1V/m E field

• BC: Dirichlet x, Periodic y

• Run for  ωpet=24000

B

x

y

n(x) U

Note: for prelimary simulation
density does not vary along B.
This would require collisions 
to stabilize the simulation.  This 
simulation demonstrates:
(a) Heavy ion layer is more unstable
(b)       Electrons can be significantly heated
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Electron-Neutral Collisions

• Electron neutral collisions [Lummerzheim, 1987]
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Electron-Neutral Collisions

• Assume elastic collisions that preserve
energy with σ~10-15 cm2

• The collision frequency is given by
νe = n0 σe/O ve

νeo

νei
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Ion Collisions

• Assume hard sphere collisions with cross
section σα/0~5x1015 cm-2.

• Collsion frequency να = n0 σα/0 vα for
collisions of species (α) with neutral species (0)
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Collisional Method

• At each time step compute probability for a
collision to occur for a particle with velocity v
and apply randomly according to a Poisson
distribution.

• For electrons, conserve energy, but randomize
pitch angle.

• For ions, replace an ion that collides with a new
particle from the thermal background (0.3 eV)
used to intialize the simulation.
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Comparison of Electron and Ion
Collisions

• For perpendicular dynamics:
–  κ~1/[(ω + i νj)2 - Ωj

2]
• For electrons: ω << νe<< Ωe

• For ions: νI ~ ω ~Ωi

• For parallel dynamics
–  κ~ω pj 

2
 / (ω + i νj )~4πnje2/(nO σ2 Tj )

– All species are important
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Electrostatic Particle Simulation
• Initial Conditions

Ion Density ni(x) Electron Parallel Distribution
                 fe(vk)

x /ρe vk / vte
vy / vti

ρe = c/ωpe ; ρi = 64 ρe = 15m 

750m

O2
+ O2

+

Fe

Ion Perpendicular Distribution
                 fi(v?)



30

Electrostatic Particle Simulation

Ion Density ni(x) Electron Parallel Distribution
                 fe(vk)

x /ρe vk / vte
vy / vti

ρe = c/ωpe ; ρi = 64 ρe = 15m 

750m

• Simulation at ωpet = 24000, ωpFet = 74

Initial Initial5-10vte

Ion Perpendicular Distribution
                 fi(v?)
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Electrostatic Particle Simulation
• Wave Field at ωpet = 24000, ωpFet = 74

x /ρe x /ρe x /ρe

Ion Density ni(x) Electron Density ne(x) Electrostatic Potential f (x,y)

Mode localized in heavy ion layer

y /ρe
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Consequences for Aurora

• Electrons are heated symmetrically
• High energy electron tail forms with thermal

speed  5-10 times larger than the initial
distribution

1 eV ⇒25-100 eV

• Result suggests that modified two-stream
instability could energize electrons to energies
required for enhanced auroral emissions
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