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Abstract. Understanding magnetospheric dynamics and predicting future
behavior of the magnetosphere is of great practical interest because it could
potentially help to avert catastrophic loss of power and communications. In
order to build good predictive models it is necessary to understand the most
critical nonlinear dependencies among observed plasma and electromagnetic
field variables in the coupled solar wind/magnetosphere system. In this work,
we apply a cumulant-based information dynamical measure to characterize
the nonlinear dynamics underlying the time evolution of the Dst and Kp

geomagnetic indices, given solar wind magnetic field and plasma input. We
examine the underlying dynamics of the system, the temporal statistical
dependencies, the degree of nonlinearity, and the rate of information loss. We
find a significant solar cycle dependence in the underlying dynamics of the
system with greater nonlinearity for solar minimum. The cumulant-based
approach also has the advantage that it is reliable even in the case of small
data sets and therefore it is possible to avoid the assumption of stationarity,
which allows for a measure of predictability even when the underlying
system dynamics may change character. Evaluations of several leading Kp

prediction models indicate that their performances are sub-optimal during
active times. We discuss possible improvements of these models based on this
nonparametric approach.

1. Introduction

The problem of greatest practical importance in
the area of space physics is that of understanding
magnetospheric response to solar wind input. This
response is expected to be highly nonlinear because
magnetic energy is stored in the magnetotail and then
suddenly released during violent events termed sub-
storms. During these violent releases of energy, en-
ergetic MeV electrons, which can damage satellite
instrumentation, are injected into the ring current
region. Power service and communications on the
ground can also be interrupted due to induced cur-
rents generated during these massive events. It is

therefore extremely important to be able to predict
the magnetospheric response to solar wind input in
order to be able to make provision for the protection
of scientific, communication and defense satellite in-
strumentation as well as ground based power grids.

The most commonly used measure of magneto-
spheric activity are the geomagnetic indices obtained
by statistically averaging magnetometer readings from
ground-based stations located at various latitudes.
The magnetic indices include the planetary index, Kp;
the storm index, Dst; and the substorm indices AU,
AL, AE, and AO. It is of great interest to under-
stand and predict the behavior of these geomagnetic
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indices. Because currents induced in power grids and
killer electrons are commonly associated with inten-
sification of the ring current associated with storms,
they are also associated with the sharp dip in the Dst

index which occurs at the onset of the storm. Ac-
curate predictions of the Kp and Dst can be used as
input for the Magnetospheric Specification and Fore-
cast Models (MSFM) [Freeman et al., 1995] to pre-
dict magnetospheric particle fluxes and electromag-
netic fields in the ionosphere. Accurate knowledge of
energetic particle fluxes and ionospheric fields could
then be used to provide alerts so that precautionary
measures could be taken to avoid catastrophic dam-
age to power grids and satellites.

Satellites sitting between the sun and earth, e.g.
Geotail, WIND, can be used to monitor the input so-
lar wind parameters (density, velocity, magnetic field
strength and orientation, etc.). The recently launched
ACE satellite, which is located at the L1 Lagrangian
point, has been dedicated to provide solar wind pa-
rameters approximately up to one hour before their
arrival, allowing for short term forecasts of the magne-
tospheric activity based on these parameters. There-
fore, there is a high demand for models that can pre-
dict geomagnetic activity accurately based on solar
wind parameters as input, a demand that will likely
to increase even more with the nation’s increasing re-
liance on the space technologies. Predictability in this
context means: given (a) a time series of solar wind
parameters measured by a satellite sitting in the solar
wind and (b) a time series of magnetic index measure-
ments, can (A) the value of the geomagnetic index be
predicted accurately at a future time and (B) if so,
how far ahead can it be predicted?

Although progress has been made in recent years,
comprehensive evaluations of the leading Kp and Dst

models using 25 years of solar wind data still show
that much improvement is still needed, particularly
for Kp models, in order to obtain accurate forecasts
that can be trusted by the users. In Figure 1 we show
a comparison of predictions from the Costello Neu-
ral Network (http://www.sec.noaa.gov/rpc/costello/)
and the actual value of Kp. Predictions during dis-
turbed conditions, the periods of most interest to
users, tend to be inaccurate in general.

Understanding the behavior of the geomagnetic in-
dices also has important scientific merit because those
indices in a convoluted way are embedded with rich
information about the underlying dynamics of the
coupled solar wind/magnetospheric system. For ex-
ample, the Dst and AE indices are associated with the

Costello Kp NN predictions

Figure 1. Comparison of actual Kp values and Kp

forecasts using the Costello Neural Network over two
solar cycles. Actual values of Kp>5 lie outside the
standard deviation of predictions. This result illus-
trates that current Kp models can be significantly
improved.

ring current and auroral electrojet current systems re-
spectively which are intensified during times of storm
or substorm activity, and therefore may provide useful
information about the underlying physical processes
involved in storms and substorms. Because the mag-
netosphere is driven by the solar wind, the magnetic
indices have strong dependency on solar wind plasma
and field variables. Identifying those dependencies
is essential for understanding key physical processes
that contribute to the nonlinear response of the mag-
netosphere to external and internal conditions. These
dependencies lie at the heart of such questions as:
what causes substorms and what physical processes
relax the magnetosphere following storms?

Three basic approaches have commonly been ap-
plied to modeling the magnetospheric response to
the solar wind: (a) physics based, (b) parametrically
based, and (c) statistically based.

The physics based approach employs a set of phys-
ically derived equations describing the system. Ex-
amples of such models include global MHD simula-
tions [Raeder et al., 2001; Berchem et al., 1998] ) and
simplified nonlinear circuit equations with inductors,
capacitors, and voltage generators corresponding to
physical quantities [Horton and Doxas, 1998]). Un-
fortunately, global MHD simulations fail to describe
kinetic physics in boundary layers which determines
to a great extent the transfer of mass, energy, and
momentum to the magnetosphere while the nonlinear
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circuit models oversimplify the physics.
Parametric models assume the response of the

magnetosphere based on expected physical processes
(such as particle injection due to solar wind/magnetosphere
interaction and ring current decay due to charge ex-
change) which are modeled with parameters that are
chosen to minimize the variance between the mea-
surements and model predictions. Empirical fore-
casting models have been developed—some with a
modest number of parameters [e.g. Burton et al.,
1975; O’Brien and McPherron, 2000] and others with
a more extensive list of parameters [e.g. Li et al.,
2001; Temerin and Li, 2002]. This approach usually
yields plausible results during times of low magne-
tospheric activity. Neural network models also pro-
vide predictability by assuming an n-step Markovian
process which can be modeled based on past history.
The last n steps are mapped with a parametric nonlin-
ear function and then added with parametric weights.
The parameters are trained on historical data [Klimas
et al., 1997, 1998; Vassiliadis et al., 1995, 1999]. The
models can then be used to predict system behavior.

Statistical modeling of time series is generally ap-
plied to nonlinear time series to understand the un-
derlying statistical dependences of the data and to
guide in developing an algorithm for accurate predic-
tion. Progress has been made in magnetospheric sys-
tems by examining the dimensionality of the system
and various correlation measures [Vassiliadis et al.,
1990, 1991; Roberts et al., 1991; Sharma, 1995]. The
information-theoretic work developed by Prichard et al.
[1996] which demonstrated the predictability of the
substorm dynamics is an innovative approach that
has been widely recognized for its impact on informa-
tion technology research and has been widely cited
in recent work in the area of information-dynamics.
More recent work has focused on the substorm as be-
ing a “phase transition” and its possible connection
with the concept of “self-organized criticality” [Sit-
nov et al., 2000; Chang, 1999; Klimas et al., 2000;
Lui et al., 2000; Chapman and Watkins, 2001; Chang
et al., 2003]. However, to date the statistical approach
has not been used as the basis of a predictive model.

While physics based models are well suited to de-
scribe and predict long term behavior of a system
from physical principles, often the physics is too com-
plex to be described accurately by such models. For
example, some view that the ballooning instability
is responsible for the onset of substorms which are
a global phenomena [Roux et al., 1991; Cheng and
Lui, 1998]. Has this instability ever been identified

in a global MHD simulation? If there were sufficient
resolution, would it be possible to describe why mea-
surements of the plasma β [Lui et al., 1992] rise well
above the threshold of the ballooning instability us-
ing the global MHD framework? Such issues could be
important for threshold (onset/timing) of substorms
and the dynamical evolution of AE.

Empirical models tend to describe those dynam-
ics prescribed to be important by the author of
the model. Often they involve an extensive num-
ber of parameters—many of which may not really be
that important. If the system does not have high
dimensionality—and it is believed that the earth’s
magnetosphere exhibits low dimensionality [Roberts
et al., 1991; Sharma, 1995; Vassiliadis et al., 1990]—
then it should not require such an extensive number of
parameters. Extensive lists of parameters also makes
it difficult to extract the most important underlying
physics.

Statistical models presume no a priori underlying
dynamics and are therefore useful to flush out the crit-
ical nonlinear dependencies in the system. Moreover,
the information gained from such an analysis can be
invaluable for developing and constraining parametric
models.

2. An Information Dynamical Approach

Most data gathered by satellites and ground based
instruments are in the form of a time series. Ana-
lyzing these signals usually encompasses three funda-
mental tasks: characterization, forecasting, and mod-
eling. Characterization involves determining what
kind of system produced the signal. Forecasting in-
volves predicting what the system will do next given
its current state or past history. Modeling involves
determining a set of governing equations which de-
scribe the evolution of the system [Gershenfeld, 1998].

For complex systems, modeling can be physically
or computationally difficult. For some systems such
as the brain, physical equations describing neural in-
teractions are not well specified. For other systems,
such as the magnetosphere, the underlying physical
equations may be known at the most fundamental
level (particle simulation), but global computations
are beyond present and/or future computational ca-
pabilities without appropriate approximations. Em-
pirical models that employ intuition assume a priori
a dynamical framework that may or may not apply
to the system. However, there is some danger in that
it may be possible to fit the data by choosing enough
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free parameters at the expense of loosing physical un-
derstanding. Because the magnetospheric system is
complex and the nonlinear response of the magne-
tosphere during storms and substorms is not clearly
understood, it seems appropriate to apply statistical
techniques that are unbiased a priori.

The key to characterizing a system is to under-
stand the dependencies in a system. For example,
given data from the solar wind and a ground based
magnetometer, is it possible to determine the degree
to which the magnetometer data depends on the solar
wind data? The typical method of choice for discov-
ering such dependencies is the correlation function.
However, in a highly nonlinear system, correlation
functions are not very useful because nonlinear sys-
tems tend to have broadband power spectra and hence
featureless correlation structure.

It is well known that the magnetosphere responds
in a highly nonlinear way to solar wind input. Sub-
storms involve loading and sudden release of energy
which cannot be well described as a linear system.
Therefore, it is necessary to go beyond typical correla-
tion studies to understand the nonlinear dependencies
between the solar wind driver and the magnetospheric
response.

Information-theoretic quantities provide an elegant
alternative that captures the essential features of the
correlation function and more [Gershenfeld, 1998].
One commonly used information-theoretic quantity
is mutual information which provides a statistical
measure of dependency based on probability theory
[Prichard et al., 1996; Gershenfeld, 1998]. Although
useful, it has basic limitations because of the need to
compute a probability density which in many cases re-
quires a large database to achieve good statistics. The
cumulant-based significance and information flow are
alternative information-theoretic quantities that can
be used to detect dependencies in a system [Deco and
Schürmann, 2000]. These quantities provide a mea-
sure of the cumulants that would normally vanish in
the absence of dependencies. The significance and in-
formation flow are computed directly from the dataset
in comparison with surrogate data sets. These mea-
sures have an advantage of providing good statistics
for small data sets and reliable detection of depen-
dencies when data is corrupted by noise. In §3 we
define the cumulant-based information measures and
provide examples of their utility. In §4 we apply these
measures to geomagnetic indices and solar wind data
to detect the presence of nonlinearities in the solar
wind/magnetosphere system.

3. Cumulant-based measure of signifi-
cance and information flow

3.1. System Dynamics

The Cumulant-based significance is a useful quan-
tify for detecting nonlinearities in the underlying dy-
namics of a system. For purposes of explaining our
approach, let us assume that the underlying dynamics
of a system are described by the evolution of a state
variable x

dx
dt

= F(x) + ν (1)

where ν is additive noise. The system dynamics are
linear if

F(x) = a · x (2)

and nonlinear if F is not a linear function of x.
In a real system, often only a subset of the state

variables, y, may be observed. Given a limited data
set, it is often useful to consider an embedding vector
of the system

c(t) = {y(t), y(t − 1), ...,y(t− (m − 1)}
= {y1, y2, ...,ym}; (3)

The rationale for examining an embedding vector is
that the dynamics of the original system can be cap-
tured in the dynamical evolution of the embedding
vector [Takens, 1980; Sauer et al., 1991]. The appli-
cation of this concept to the magnetosphere should
be obvious. State vectors are generally not known
for the system as plasma and field measurements are
not available for the entire system as a function of
time (usually only a few single point measurements
are available). These few variables are often com-
bined into a single variable that is nonlinearly related
to appropriate state variables. However, the time evo-
lution of that single variable amazingly may contain
much information about the dynamical evolution of
the entire system.

3.2. Cost and Significance

To detect nonlinearities and understand the un-
derlying dynamics of a system, we will examine real-
izations of an embedding vector extracted from the
original data set (for example, the time history of
Dst). We are interested in understanding the pre-
dictability of the system, so it is useful to under-
stand the probability of finding system in a partic-
ular state given past history of the system. For pur-
poses of illustration, we construct an embedding vec-
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tor (y1, ..., ym) ≡ (yt, yt−τ , ..., yt−(m−1)τ) from a sin-
gle variable, y, in the system. A measure of the rel-
evance to the past history on a current/future value
of the system is captured addressed by the following
equation

P (y1, ..., ym) ?=P (y1)P (y2, ..., ym) (4)

where P are probabilities. Equation 4 asks whether
the probability of extracting the embedding vector
y = (y1, ..., ym) depends on the past history (y2, ..., ym).
If Equation 4 were true, then there will be certain sta-
tistical relations between the higher-order correlation
tensors

Ci...j =
∫

dyP (y)yi...yj ≡ 〈yi...yj〉 (5)

where i, ..., j ∈ 1, ..., m. In particular, the cumulants,
K1i2...in , of the distribution defined by

Ki = Ci = 〈yi〉 (6)
Kij = Cij − CiCj = 〈yiyj〉 − 〈yi〉〈yj〉
Kijk = Cijk − CijCk − CjkCi − CikCj + 2CiCjCk

Kijkl = Cijkl − CijkCl − CijlCk − CilkCj − CljkCi

−CijCkl − CilCkj − CikCjl + 2(CijCkCl

+CikCjCl + CilCjCk + CjkCiCl + CjlCiCk

+CklCiCj) − 6CiCjCkCl

should vanish unless i2 = ... = in = 1 where n is the
order of the cumulant. Therefore a useful measure
the statistical independence of the components of y1

on (y2, ..., yn), is the cost function defined as:

D =
∞∑

n=1

m∑
i2,...,in=1

(1 − δ1i2...in){K1i2...in}2 (7)

where δij...n is the Kronecker delta which eliminates
the diagonal elements. In the absence of correla-
tions, the cost function should vanish. To examine
the significance of correlations, we employ the method
of surrogates. The method consists of assuming a
null hypothesis, constructing surrogate data consis-
tent with that hypothesis, and then comparing the
cost function for the original data set with the cost
functions of the surrogate data sets. The significance
is defined as:

S =
|D0 − µS |

σS
(8)

where D0 is the cost of the original data set µS and
σS are the mean and variance of the costs computed
with the surrogate data sets,

µs =
1
N

N∑
i=1

DSi (9)

σS =
1

N − 1

N∑
i=1

(DSi − µS)2. (10)

where N is the number of surrogate data sets.
The surrogate data is chosen consistent with a null

hypothesis which for our purposes will be that there
is no causal relationship between the past and the
present. The surrogate data may be obtained by tak-
ing random permutations of the original data set or
by extracting data randomly from the same density
distribution as the original dataset. If the signifi-
cance is larger than Ŝ = 1.67, there is a 95% chance
that the null hypothesis is falsified and that there is a
clear underlying dynamics governing the system (note
that erfc(Ŝ/2) = 0.05) assuming Gaussianity in the
surrogates distribution which is typically true if the
number of surrogates is sufficiently large) [Deco and
Schürmann, 2000]. If the significance remains roughly
constant, the dynamics are stationary, but if the sig-
nificance changes in magnitude during time, it sug-
gests that the dynamics involved are non-stationary.
The technique was tested on a number of datasets
generated by mathematical equations for which the
underlying dynamics is known prior to application to
the magnetospheric datasets.

The significance can be useful for a number of tasks
[Deco and Schürmann, 2000]:

• By comparing the significance when keeping
only second-order cumulants with the signifi-
cance including higher-order cumulants, we may
determine whether the origin of the observed
statistical correlations are linear or nonlinear.
The second order cumulant is equivalent to the
correlation function.

• As in a spectrogram, we can also consider win-
dowed significance where data is sampled from a
window of width Nw and a significance is com-
puted for that data set. The window is then
shifted and the significance recomputed. Time
variations in the significance indicate changes in
the underlying dynamics of the system.

• We can introduce a proxy for the information
flow based on cumulant-based significance in-
tegrated over ”look ahead.” Information flow
deals with changes in the information content
of a system. The information flow can be used
to detect changes in underlying dynamics and
the loss of information in a system. The loss of
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information in a system can be quantified and
provides a measure of the predictability horizon
of the system. Such calculations are practical
because if there is a characteristic time for in-
formation loss in a system, it would be foolish
to attempt to develop parametric models to pre-
dict system behavior on longer time scales.

3.3. Significance as a Measure of Nonlinearity

By comparing the significance when keeping only
second-order cumulants with the significance includ-
ing higher-order cumulants, we may also determine
whether the origin of the observed statistical corre-
lations are linear or nonlinear. We Gaussianize the
data set in order to eliminate the effect of ”static”
nonlinearities in the original data set [Kennel and Is-
abelle, 1992] as described in § 3.5. Statistical studies
are then performed on the Gaussianized data which
exhibits no static nonlinearity (all cumulants vanish
beyond second order).

We present two example which illustrate the utility
of the method. The first example is the well-known
Lorenz system [Lorenz, 1963] which satisfies the fol-
lowing equations:

dx

dt
= σ(y − x)

dy

dt
= −xz + rx − y

dz

dt
= xy − bz (11)

The Lorenz system exhibits a chaotic attractor for
r = 45.92, b = 4, and σ = 16. We show a tra-
jectory for the system in Figure 2. We consider an
embedding dimension, m = 2, which appropriately
captures the dynamics of the attractor. In Figure 3
we show the normalized significance as a function of
time delay for the Lorenz system. The linear sig-
nificance, SL, is obtained by retaining only second
order cumulants in Equation 7, while the nonlinear
significance, SNL includes cumulants to fourth order
[Deco and Schürmann, 2000]. The linear significance
is proportional to the correlation function. There is
an obvious difference between the linear and nonlinear
significance which indicates the importance of nonlin-
earities in the system dynamics. While the linear sig-
nificance drops off rapidly, the nonlinear significance
has a rich quasi-periodicity not seen in the correla-
tion function. The nonlinear significance captures the
nonlinearity of the system shown in Figure 2 where
the system oscillates chaotically around two attrac-
tors. However, unlike a sinusoidal function, there is
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Figure 2. Phase space plot of the Lorenz system
defined in Equation 11 for r = 45.92, b = 4, and
σ = 16. This system is highly nonlinear and oscillates
in a quasi-periodic manner about two fixed points. ).

only quasi-periodicity. Although there is a long-term
decreasing trend in the significance, a high level of
nonlinearity remains even for long time separation as
expected for a chaotic system for which information
is not lost.

When performing nonlinear analysis of a system
with an embedding vector, it is often useful to con-
sider the most appropriate time delay. The most in-
formation about the system is obtained when the cor-
relation is minimum. Usually, the first minimum of
the correlation function is chosen. However, a more
suitable choice would be the first minimum of the sig-
nificance where an embedding of m = 2 is taken. In
the case of the Lorenz attractor, the first minimum
appears to be at approximately τ = 15.

For comparison, in a linear system, the linear and
nonlinear significance typically have the same general
structure and may not differ due to the decreasing
importance of the higher-order cumulants. As an ex-
ample, consider a noisy oscillator defined by the fol-
lowing system of difference equations

xj+1 = xj + αyj + ν1

yj+1 = yj − αxj + ν2 (12)

where ν1 and ν2 are a random, Gaussian distributed
variable. In Figure 4 we take α = 0.01 and the vari-
ance of ν is 0.01, which produces a noisy oscillator.
The significance is shown in Figure 5 as a function of
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Figure 3. Normalized significance as a function of
time delay, τ for the Lorenz system [Lorenz, 1963].
The time delay is measured in units of the sampling
time (0.02). An embedding of m=2 is used in comput-
ing the significance. SL: only linear correlations are
considered; SNL: Higher-order correlations are con-
sidered (up to fourth order). The existence of peaks
with different amplitudes captures the quasiperiodic
nature of the Lorenz attractor. The normalization
factor is 10 for SNL.

time delay, τ , with an embedding vector of dimension
m = 2. The linear and nonlinear significance do not
show any significant differences.

3.4. Significance as an Indicator of Changes in
Underlying Dynamics

As in a spectrogram, we can also consider win-
dowed significance in which case data is sampled from
a window of width Nw and a significance is computed
for that data set. The window is then shifted and the
significance recomputed. Time variations in the sig-
nificance indicate changes in the underlying dynamics
of the system. Because the significance is a function
of time delay, it is useful to consider a time delay
which is most suitable for the data. While it could
be varied, a useful choice is the first minimum of the
significance of the entire dataset which is considered
to be the best time delay for analyzing the nonlinear
dynamics of the system.

For example, in Figure 6 we examine a system gov-
erned by Lorenz dynamics for t < 60 with an abrupt
change to sinusoidal dynamics for t > 60. Note
that the significance remains roughly constant while
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Figure 4. Noisy oscillator solution to Equation 4 for
α = 0.01.
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Figure 5. There is no significant difference in the
linear and nonlinear significance for the linear system
defined in Equation 12.
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Figure 6. Windowed significance as a function of
time. For t < 60 the system is governed by Lorenz
dynamics [Lorenz, 1963]. Near t = 60 there is a tran-
sition to siniusoidal dyanmics. Note that an abrupt
change in the significance clearly indicates the change
in the underlying dynamics of the system.

the system dynamics are stationary, but the signifi-
cance changes abruptly when the underlying dynam-
ics change. Hence, the significance can be a good
indicator of changes in the underlying dynamics of a
nonlinear system. The technique of windowed signifi-
cance will be applied to magnetospheric data to detect
changes in the underlying dynamics of the magneto-
sphere. Any predictive model would need be able to
account for such changes in the underlying model.

3.5. Gaussianization of Data

Measurement of a time series can involve static
nonlinearities and dynamic nonlinearities. Static non-
linearities are those nonlinearities introduced simply
by measuring a system variable and involve a nonlin-
ear transformation of the observing process. Because
we are only interested in dynamical nonlinearity in-
herent to the dynamics of the system not those static
nonlinearities related to the measurement process, we
have employed Gaussianization to the data to elim-
inate the contribution of the static nonlinearities to
the calculation of cost and significance.

The Gaussianization procedure is described by
[Kennel and Isabelle, 1992]. We generate a sequence
of random Gaussian distributed numbers with unit
variance the same length as the original data set. The
data and random variable are then sorted numerically.

This procedure defines a one-to-one mapping of the
original data set to the random variable. The sta-
tistical procedures are then applied to the new time
series defined by the reordered series of the random
variable. The cumulants of the random variable be-
yond second order vanish because it is Gaussian dis-
tributed therefore eliminating any static nonlinearity
in the original data. Any nonlinearities that are de-
tected are the result of the dynamics (time-ordering).
Surrogate data sets can also be drawn directly from
the Gaussian distribution rather than by reshuffling
the data.

3.6. Cumulants and Mutual Information

Mutual information is an elegant information-theoretic
quantity that is commonly employed to detect nonlin-
ear dependency in a complex system. Suppose mea-
surements of two quantities are obtained (e.g. Solar
Wind data and Dst measurements). The datasets will
span a range of data which can be binned/quantized—
the number of bins may be different if the variables
require different resolution. After quantization, we
have two variables, x and y, that will take on discrete
values

x ∈ {1, ..., N} ≡ ℵ1; y ∈ {1, ..., M} ≡ ℵ2 (13)

The variables may be thought of as letters in alpha-
bets ℵ1 and ℵ2 which have N and M letters respec-
tively. If considering an embedding vector (xt, xt−τ),
we would use the same alphabet for both variables.
The extracted data are then sequences of letters. The
entropy associated with each of the variables is de-
fined as

H(x) = −
∑
ℵ1

p(x) log p(x); H(y) = −
∑
ℵ2

p(y) log p(y);

(14)
where p(x) is the probability of finding letter x in the
set of x-data and p(y) is the probability of finding let-
ter y in the set of y-data. To examine the relationship
between the two variables, we extract a sequence of
words (x, y) from the dataset. The joint entropy is
defined by

H(x, y) = −
∑
ℵ1,ℵ2

p(x, y) log p(x, y); (15)

where p(x, y) is the probability of finding the word
(x, y) in the set of (x, y)-data. The mutual informa-
tion is then defined as

I(x, y) = H(x) + H(y) − H(x, y) (16)
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Figure 7. Comparison of (a) the cumulant-based
significance and (b) the mutual information for the
Lorenz system [Lorenz, 1963]. Shown are the cumu-
lant based significance, Sτ , and mutual information Iτ

verses time lag for one of the Lorenz variables. The
solid curve is without additive noise. The dashed,
dotted, dot-dashed, and grey curves show the results
with additive noise with signal to noise ratio of 0.25,
0.50 , 0.75, and 1.

One prescription to compute the mutual infor-
mation would be to first construct a database of
x ≡ (V Bs(t − τ )) and y ≡ Dst(t) and words (x, y) ≡
(VBs(t - τ ), Dst(t))). Secondly, discretize (bin) the
data. Finally, obtain the probabilities by sorting the
data pairs and counting. Mutual information is then
obtained with simple summation over all possible bin
combinations.

The mutual information may be used to assess
appropriate sample resolution, system reversibility,
and predictability horizon. Statistical limitations of-
ten hinder analysis based on the mutual information.
For example, it is useful to examine the limit as the
bin sizes become smaller, but the bins must be large
enough to contain a statistically representative num-
ber of data points. If there is limited data, the mu-
tual information cannot be accurately obtained. In
contrast, the cumulant based significance may be ap-
plied to limited datasets.

It is useful to ask the question whether mutual in-
formation or cumulant based significance is more use-
ful for detecting nonlinear dependencies. We applied
the two measures to the well-known Lorenz system
[Lorenz, 1963]. The solid curves in Figure 7a and Fig-
ure 7b show the cumulant based significance, Sτ , and
mutual information Iτ verses time lag for one of the
Lorenz variables. Note that the peaks and relative
amplitude of the peaks are very similar for both mea-
sures indicating that they both detect the presence
and nature of the nonlinearity of the Lorenz system.

3.7. Detecting Dynamics in a Noisy System

Measurements of physical quantities in the real
world usually contain some noise or uncertainties. It
is interesting to examine how the cumulant-based sig-
nificance and mutual information perform in the pres-
ence of noise. Therefore, we also performed a simi-
lar analysis for the Lorenz system when the signal
is artificially contaminated by random noise added
to the signal. The dashed, dotted, dot-dashed, and
grey curves show the results with additive noise with
signal to noise ratio of 0.25, 0.50, 0.75, and 1. Surro-
gate datasets were used in evaluating the significance
so that values of Sτ > 1.6 are statistically signifi-
cant. For the mutual information plot, we have also
included three horizontal plots which show the central
mean and standard deviation of the mutual informa-
tion obtained from the surrogate datasets assuming
no time ordering. The data contaminated by signal
to noise ratio 0.75 and 1 cannot be distinguished from
the surrogate data with any confidence with the mu-
tual information measure. In contrast, even with sig-
nal to noise ratio of 1, the cumulant based method
detects the nonlinearities. Hence, it would appear
that the cumulant-based significance can be used to
detect the presence of nonlinear dependencies in the
underlying dynamics even when the signal is heavily
contaminated by noise.

3.8. Cumulants as a Measure of Information
Flow

Entropy is commonly used to quantify the infor-
mation content of a system. Information flow deals
with changes in the information content of a system.
Obviously, the information flow can be used to de-
tect changes in underlying dynamics and the loss of
information in a system. Understanding the loss of
information in a system can yield important informa-
tion about predictability of the system. For example,
if there is a characteristic time for information loss
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in a system, it would be foolish to attempt to de-
velop parametric models to predict system behavior
on longer time scales.

The flow of information in a system is best defined
in terms of a conditional entropy, H, which measures
the uncertainty of a variable x(t+p) given all possible
preceding sequences of that variable.

Ip = lim
n→∞[H(x(t + p)|x(t), ..., x(t− n + 1)

−H(x(t + p − 1)|x(t), ..., x(t− n + 1)] (17)

In the case of a chaotic system, there is no loss of
memory and information flow is constant. On the
other hand, for a noisy system information flow de-
creases with increasing look ahead. Development of
predictive models is not practicable beyond the decay
length of the information flow.

Unfortunately, it is usually difficult to compute a
statistically meaningful information flow for a real
system because of the limited size of the data set.
However, cumulants which also carry information
about the underlying system dynamics are readily ob-
tained even from limited data sets. We can therefore
introduce a proxy for for the information flow which
we define as the cumulant-based information flow

IC(p) =
∞∑

n=1

m∑
i2,...,in=1

(1 − δ1i2...in){K(p)
1i2...in

}2 (18)

where K(p)1i2...in are the cumulants associated with
the vector {y1, ..., ym} = {y(t + p), y(t − ∆), ..., y(t−
(m − 1)∆)}. This quantity provides an estimate of
how well a predictive model could estimate a future
value of the time series p steps ahead given the past
history of the time series. The minimal value of
Ic(p) = 0 indicates statistical independence while in-
creasing values of IC(p) point to increasing dependen-
cies in the time series [Deco and Schürmann, 2000].
Ideally, m should be chosen large enough so that IC(p)
becomes a measure of predictability given the entire
past of the time series. For practical purposes, we
choose the value of m such that the information flow
does not change appreciably when m is increased. As
for the case of significance, we limit the computation
to the fourth-order cumulant.

While the information flow IC(p) provides an indi-
cation of how far into the future one should be able
to predict the time series, when examining changes in
the information flow, it is more practical to consider

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Information Flow for Lorenz Sequence

I
C
(p)       

p

Figure 8. Information flow, IC(p) as a function of
“look ahead”, p. For this sequence, we have taken an
embedding m = 6 and time spacing ∆ = 15 which
corresponds to the first minima in Figure 3.

an integrated information flow,

I
�

C =
P∑

p=1

∞∑
n=1

m∑
i2,...,in=1

(1 − δ1i2...in){K(p)
1i2...in

}2 (19)

The integrated information flow provides a measure
of predictability up to a look ahead, P , which should
be taken as large as the desired predictions keeping in
mind that it is only of practical value if it is smaller
than value of p which characterizes the falloff of the
information flow IC (p)

As an example, we consider the Lorenz attractor
system defined in Equation 11. In Figure 8 we plot
IC(p) for that system. We have taken an embed-
ding vector, m = 6, with time separation ∆ = 15.
Note that although the information flow does drop
initially, it remains reasonably stationary over a long
time. The constancy of the information flow is a prop-
erty of a chaotic system and is more or less captured
by the cumulant-based information flow.

4. Application to Magnetic Indices

4.1. Nonlinear response of Kp as a function of
solar cycle

To illustrate how the cumulant-based method can
be applied to the dynamics of geomagnetic indices,
we consider the hourly averaged time series of Kp in-
dices which are thought to gauge the level of magneto-
spheric activity. We have applied the statistical test
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Figure 9. Linear (SL) and nonlinear (SNL) signif-
icance (up to fourth order cumulants) as a function
of time-delay, τ , in hours for Kp data from two solar
minima. We have used an embedding vector m = 2.
Note that while the linear significance (linear corre-
lation function) drops off with time, there is a strong
nonlinear response with a time scale of around 40
hours.

to all years from 1974 to the 1999. In Figure 9 we
show the normalized significance for two solar min-
ima (1975 and 1987), and in Figure 10 we show the
normalized significance for two solar maxima (1980
and 1990). Llinear significance is computed keep-
ing cumulants to second order while nonlinear sig-
nificance is computed using cumulants to fourth or-
der. Interestingly, the nonlinear response is far more
pronounced for solar minimum than solar maximum.
This seems to apply also for years close to solar min-
imum (e.g. 1974-1976 and 1985-1987) exhibit strong
nonlinear response. The nonlinear response is most
likely related to internal magnetospheric dynamics.
It would seem reasonable that nonlinearities would
be more pronounced at solar minimum when the sys-
tem is more dominated by internal dynamics than at
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Figure 10. Linear (SL) and nonlinear (SNL) signif-
icance (up to fourth order cumulants) as a function
of time-delay, τ , in hours for Kp data from two solar
maxima. We have used an embedding vector m = 2.
Note that both the linear and nonlinear significance
drop off with time. For solar maxima, it there is not
a strong nonlinear at 40 hours as in the case of solar
minima.

solar maximum when the system may be driven by
external dynamics (the response to the solar wind).
A more recent solar minimum (1996-1999) does not
seem to exhibit as strong a nonlinear response. How-
ever, this solar minimum exhibits significantly smaller
solar wind velocity than usual which may be respon-
sible for the reduced nonlinearity in the response.

The existence of significant nonlinearity in Kp dy-
namics would complicate predictability of the system.
In this section, we examine the predictions of the
Costello neural network, which is commonly used to
predict Kp based on solar wind V , IMF |B|, IMF Bz.
We examine the performance of the neural network
for two solar cycles. Performance is quantified using
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Figure 11. Performance of the Costello NN over two solar cycles from 1974 to 1998. The True Skill Statistic
(TSS) and Gilbert Skill (GS) scores indicate that the Costello network could use improvement—especially for active
conditions. Moreover, the variation of the scores over the solar cycle indicates that the neural network performs
much better at solar maximum than at solar minimum. This result is not surprising given our finding that the
dynamics involve more nonlinearity at solar minimum.
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skill scores defined in [Detman and Joselyn, 1999].
In Figure 11 we show predictive model performance

as a function of solar cycle for various values of Kp.
We plot True Skill Statistics (TSS) and Gilbert Skill
(GS) scores for the neural network model. While
there is no significant difference in predictive ability
for Kp < 3, there is a significant solar cycle depen-
dence for Kp > 3. In either case, there is significant
room for improvement. It is also clear that there is
better predictability at solar maximum than at solar
minimum. Although this result may be related to a
training bias, it may also reflect the increased nonlin-
earity of the system dynamics for solar minimum.

4.2. Nonlinear response of Dst index

We also applied the same procedure to the Dst in-
dex which not only has better time resolution, but
also can be interpreted physically in terms of the re-
sponse of the ring current. In Figure 12 we plot the
significance for solar minimum and solar maximum.
It is also apparent that solar minimum exhibits a
stronger nonlinear response, although in this case, so-
lar maximum also exhibits some nonlinearity.

4.3. Windowed significance as an indicator of
dynamical changes

In Figure 13, we plot the significance as a function
of time for the nonlinear time series, Kp, over the
course of 1974. The significance is computed in a win-
dow of width 300 hours every 5 hours over the course
of the year. The significance is obtained in compar-
ison with 100 surrogate datasets including terms up
to fourth order cumulants.

The first item that can be noticed is that the signif-
icance is often quite large for extended periods of time
(10-20 days). As such, the Kp time series should be
reasonably predictable during those time periods. On
the other hand, the evolution of the significance sup-
ports the existence of statistical correlations between
past and future, which are probably of a nonstation-
ary nature due to strong changes in the magnitude
of the significance over time. As such, the underlying
dynamics are probably changing during time, perhaps
due to the sudden arrival of interplanetary shocks or
CMEs; therefore, any predictive model would need to
be able to accommodate such changes in the under-
lying dynamics.
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Figure 12. Linear and nonlinear significance as a
function of time-delay, τ , in hours for Dst data from
(a) solar maximum in 1980 and (b) solar minimum
in 1987. Note that unlike Kp, Dst shows a signifi-
cant nonlinear response at solar maximum; however,
the nonlinear response is far more pronounced at so-
lar minimum as for Kp. The characteristic time of
the nonlinear response appears to be around 30 hours
and is generally more rapid than Kp by around 10
hours. In this computation, we have used an embed-
ding vector m = 2.

4.4. Cross-significance of solar wind and mag-
netosphere data

So far, we have only considered the statistics of an
embedding vector taken from a single variable. In this
section, we generalize the approach to consider the
nonlinear correlations between multiple variables. In
this case, we are interested in understanding the non-
linear coupling between the solar wind and magne-
tospheric dynamical systems. We therefore consider
coupling between a solar wind variable such as V Bs or
the dynamic pressure, Pdyn and Dst which character-
izes the ring current response. We therefore consider
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Figure 13. Significance as a function of time for
Kp indices during 1974. An embedding dimension of
m=3 is used with a time lag of 1 hour. All quantities
were computed for a slicing window of 300 hours every
5 hours.

the nonlinear cross-correlations of the vector

c(t) = {V Bs(t), Dst(t − τ )} = {y1, y2} (20)

The generalization of cost are based on realizations
of {y1, y2}. In this case, each variable is Gaussian-
ized with unit variance to eliminate static nonlin-
earities (higher order self-correlations are eliminated
so that the cost measures only cross-correlations be-
tween VBs and Dst).

In Figure 14 we plot the significance obtained from
the year 1999 as a function of time delay, τ . Signif-
icance extracted from (a) {V Bs(t), Dst(t − τ )} and
(b) {V Bs(t), V Bs(t−τ )} for 1999. It should be noted
that there is a strong linear response at around 3 hour
time delay. There is a clear nonlinear response with
peaks around 25, 50 and 90 hours lasting for approxi-
mately 1 week. The absence of these nonlinearities in
the self-significance for VBs indicates that the non-
linearities are related to internal magnetospheric dy-
namics. As the Dst index is thought the reflect storm
activity, it is reasonable that nonlinear significance
would decay on the order of 1 week as storms com-
monly last around that time. The strong nonlinear
response at these peaks is likely related to multiple
modes of relaxation of the ring current following the
commencement of storms. It should also be noted
that other nonlinearities detected by even higher or-
der cumulants may also be present; however, the cal-
culation demonstrates the nonlinear nature of the un-
derlying dynamics.
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Figure 14. Significance extracted from (a)
{V Bs(t), Dst(t − τ )} and (b) {V Bs(t), V Bs(t − τ )}
for 1999. It should be noted that there is a strong lin-
ear response at around 3 hour time delay. There is a
clear nonlinear response with a strong peak around 50
hours lasting for approximately 1 week. The longterm
nonlinear response is absent in the solar wind data in-
dicating that the longterm nonlinear correlations be-
tween VBs and Dst are the result of internal magne-
tospheric dynamics.

4.5. Cumulant-based information flow

The information flow is also a good measure of dy-
namical behavior of the system and especially pre-
dictability of the system. In Figure 15 we compute
an information flow based on the multivariate vector
{x1, x2, x3, x4} = {Dst(t+p), Dst(t), V Bs(t), V Bs(t−
∆)}. The integrated information flow , IC(p, ∆), is
obtained as a function of look ahead and changes in
the solar wind VBs data.

In Figure 16 we plot the integrated information
computed in a sliding window of width 150 hours for
the year 1999. Information is integrated up to P=20
hours and a time delay ∆=1 hour is considered in
VBs. An important point is that there tend to be
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Figure 15. Information flow, IC(p, ∆) as a function
of look ahead, p, and solar wind delay time, ∆ for
1999. Notice that the information decays on the order
of 1 week which is a typical time scale for storm re-
sponse. The information flow remains relatively high
on the order of 20 hours and there is a strong nonlin-
ear response at around 40-50 hours as detected based
on the significance. In considering the integrated in-
formation, we will integrate up to 20 hours ahead.

times of reasonable predictability.

5. Discussion

The non-parametric studies described above can be
used to guide development of parametric models. The
output from models depends heavily on the method
by which the model is trained. If a training set is
noisy, for example, the output is often spoiled or not
well constrained. The windowed significance provides
a measure of the significance of data within a dataset.
Data with significance that does not exceed the surro-
gate data usually is corrupted by noise and is not use-
ful for training purposes. Such data could result when
the method to gather the data is corrupted by noise
or by intrinsic noise in the dynamical system. On
the other hand, data with high significance exhibits
strong dependencies and is therefore more likely to
be useful when trying to model those dependencies.
Thus, the significance measure can be used to elimi-
nate noisy data from a dataset. One consequence is
that models trained with data that best captures the
nonlinear dependencies should predict the dynamical
evolution of the system better.

Another useful property of the significance is that
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Figure 16. Integrated information flow verses day
of 1999 based on a 20 hour look ahead. There are
clearly times when there is high predictability. The
integrated information flow appears to be largest dur-
ing times of storm activity indicating increased infor-
mation flow and better predictability. The most re-
producible and predictable behavior of Dst appears to
be the recovery of the index; however, the information
flow does increase significantly prior to the onset of
the storm indicating that the storm onset could also
be predicted.

it can be used to detect changes in the underlying
dynamics of a system. When the system dynam-
ics change, the significance detects this change. The
magnetosphere is believed to be a multi-state system.
Magnetospheric behavior is often classified as active
or quiescent. The windowed cumulant-based signifi-
cance is useful for detecting changes in the state of
the system. Moreover, it is useful for classifying data
according to the state of the system. The dynamics
of those states are usually different, and therefore, it
would be useful to apply different models to those two
different states. By assessing the significance of data
and separating it according to its state it is possible
to fine tune models to describe the state of the system
as illustrated in Figure 17. It is also possible to dy-
namically determine when to switch dynamical states
using the significance measure for an incoming stream
of data.

The cumulant-based information flow (computed
by summing over the look-ahead significance) can be
used as a proxy for information flow in the system.
This information flow can be computed from the data
as well as from the neural network. The network can
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Figure 17. An illustration of how the windowed sig-
nificance can be used to identify the state of a sys-
tem. Larger significance usually indicates a system
with simpler underlying dynamics while a state with
lower significance is usually more complex. The data
can be binned according its windowed significance so
that a parametric neural network model can specialize
in each state. The instantaneous significance measure
can be used to identify whether to toggle between the
two networks which predict the state of the system.

be trained so as to best approximate the information
flow rather than to simply minimize the error in the
training set (which does not account for the possibility
of noise contamination). The network can be modi-
fied (i.e. new nodes added or removed) in a systematic
way so as to best approximate the information flow
with the minimum number of parameters. By requir-
ing that information flow is well approximated by the
parametric model, we are more assured that the un-
derlying dynamics are faithfully modeled than with
simple error minimization.

6. Summary

In this study, we have applied information dynam-
ical techniques to the Kp and Dst magnetospheric
indices. Using the cumulant-based significance, we
have established that the underlying dynamics of
Kp evolution is, in general, nonlinear exhibiting a
quasi-periodicity which is detectable only if nonlin-
ear correlations are taken into account. As such one
expects that linear auto-regressive moving average
(ARMA) models commonly used to predict magne-
tospheric response should be inaccurate. Local-linear
models (which include slow evolution of parameters)

are also likely to fail where the dynamics suddenly
change which occurs regularly in Figures 13 and 16.
A promising alternative would be to train a neural
network with data identified to have large significance
so as to avoid irrelevant noise which normally spoils
the generalization characteristics of the neural net-
work. Additional improvements could be realized by
using the fact that magnetospheric dynamics are not
stationary to separate the data into “states” and fine
tune predictors for those states.

Our analysis of the information flow and integrated
information flow provides additional insight. The sys-
tem appears to have reasonable predictability proper-
ties on the time scale of 10 hours—a time scale that
would be of practical value for protecting vulnera-
ble satellite equipment. However, nonlinear effects
already play a significant role even on that time scale.
Longer term forecasting may also be possible as ev-
idenced by peaks in the information flow. Improve-
ments to parametric modeling could also be realized
by training parametric models to approximate the in-
formation flow in the real system.
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