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Improving Neural Networks

• Cumulant-based significance can be used to 
identify noisy data

• Noisy data can be removed from the 
training set

• Example: Mackey-Glass equation that 
describes white blood cell production 
exhibits chaotic dynamics
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Example: Mackey Glass Model
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Neural Network Predictor
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Linear Model (Quite Bad)



6

Nonlinear Model

Data Prediction
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Noise Spoils the Network
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Data Selection Using 
Windowed Significance

• Compute windowed 
significance

• Set criterion for elimination of 
data  (S < 5)

• Check to make sure all data 
(xt + p,xt, xt-∆, xt-2∆, xt-3∆) is 

available
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Network Trained on Limited Data
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Points About Noise and Network

• Nonlinear Dynamics are well approximated 
by the neural model because of low 
dimensionality

• Requires nonlinear model
• Noise spoils the network
• Significance may be used to eliminate noise

systematically
• Output describes system dynamics nearly as 

well as the clean system
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Significance vs Mutual Information

• Cumulant-based signifincance does better 
with limited datasets

• Cumulant-based significance detects 
underlying dynamics better in a noisy 
system

• Example:  Lorenz system + additive noise
xj = xj,Lorenz + α νj

where ν is a random Gaussian variable
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Significance vs MI

Significance

Mutual Information

• Lorenz System
• Significance > 1.6 detects 

deviation from surrogate 
noise

• MI computed from 
surrogate noise lies in 
yellow bar

• α = 0,0.25, 0.5,0.75,1
• C-B significance still works 

well for α = 1
• MI fails beyond α = 0.75


