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A kinetic-fluid model 

C. Z. Cheng and Jay R. Johnson 
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 

Abstract. A nonlinear kinetic-fluid model for high •3 plasmas with multiple ion 
species which can be applied to multiscale phenomena is presented. The model 
embeds important kinetic effects due to finite ion Larmor radius (FLR), wave- 
particle resonances, magnetic particle trapping, etc., in the framework of simple 
fluid descriptions. When further restricted to low-frequency phenomena, with 
frequencies less than the ion cyclotron frequency, the kinetic-fluid model takes a 
simpler form in which the fluid equations of multiple ion species collapse into one- 
fluid density and momentum equations and a low-frequency generalized Ohm's law. 
The kinetic effects are introduced via plasma pressure tensors for ions and electrons 
which are computed from particle distribution functions that are governed by the 
Vlasov equation or simplified plasma dynamics equations such as the gyrokinetic 
equation. The ion FLR effects provide a finite parallel electric field, a perpendicular 
velocity that modifies the E x B drift, and a gyroviscosity tensor, all of which 
are neglected in the usual one-fluid MHD description. Eigenmode equations are 
derived, which include magnetosphere-ionosphere coupling effects for low-frequency 
waves (e.g., kinetic/inertial Alfv•n waves and ballooning-mirror instabilities). 

1. Introduction 

A grand challenge in space plasma physics is to study 
low-frequency multiscale phenomena in which kinetic 
physics involving small spatial and fast temporal scales 
can strongly affect the global structure and longtime be- 
havior of plasmas. Dominant global magnetospheric dy- 
namical behavior such as magnetospheric substorms, re- 
connection and plasma transport processes at the mag- 
netopause, and storm time plasma transport in the ring 
current region involve complex multiscale low-frequency 
phenomena with timescales much longer than the ion 
cyclotron period. 

Coupling between multiple scales in space and time 
is an inherently difficult process to model. The diffi- 
culty stems from the disparate scales which tradition- 
ally are analyzed separately. Global-scale phenomena 
are generally studied using the MHD framework, while 
microscale phenomena are best described with kinetic 
theories. The most fundamental kinetic description of 
a collisionless plasma system is to employ the Vlasov 
equation to obtain particle distribution functions for all 
particle species and compute the electric and magnetic 
fields from the particle density and plasma current by 
the Maxwell's equations. Such a treatment would in- 
volve plasma temporal and spatial scales over many or- 
ders of magnitude, and, consequently, it is extremely 
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difficult to perform analytical analysis or numerical sim- 
ulations for low-frequency global phenomena. To ef- 
fectively model kinetic effects on low-frequency MHD 
phenomena, we need not only eliminate high-frequency 
(higher than ion cyclotron frequency) and small-scale 
(smaller than ion gyroradius) phenomena from the gov- 
erning dynamical and field equations but also retain 
essential coupling between fast temporal and small spa- 
tial scale kinetic physics with slow temporal and large 
spatial scale MHD physics. 

We have previously developed a kinetic-MHD •nodel 
[Cheng, 1991] to study particle kinetic effects on MHD 
phenomena by taking advantage of the simplicity of the 
MHD model while properly including major kinetic ef- 
fects of energetic particles. The kinetic-MHD model 
assumes that the plasma consists of two components: 
(1) a low-energy core component which has major den- 
sity fraction and (2) an energetic component which has 
low density, high energy and high/•, and does not sat- 
isfy the MHD description. Each component can consist 
of more than one particle species. Instead of employ- 
ing a full kinetic approach for all particle species, the 
kinetic-MHD model treats the low-energy core plasma 
by the MHD description and energetic particles by ki- 
netic approach such as the gyrokinetic equation [Frie- 
man and Chen, 1982; Hahm et al., 1988; Brizard, 1989] 
or Vlasov equation, and the coupling between the dy- 
namics of these two components of plasma is through 
the plasma pressure in the momentum equation. Be- 
cause kinetic effects of the core component are neglected 
and the energetic particle density is low, the parallel 
electric field is negligible. The kinetic-MHD model op- 
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timizes both the physics content and theoretical (an- 
alytical as well as numerical) effort for studying such 
two-component plasmas and properly accounts for the 
energetic particle dynamics of high • plasma with pres- 
sure anisotropy in general magnetic field geometries. 
The kinetic-MHD model has been successfully employed 
to study the stabil. ity of ballooning-mirror instability 
which has improved understanding of the compressional 
Pc 5 waves in the ring current region [Cheng and Qian, 
1994]. 

The basic assumption of the previously developed 
kinetic-MHD model will break down if the energetic 
particle density is comparable to core plasma density. 
Another major weakness of the kinetic-MHD model 
[Cheng, 1991] is that the kinetic effects associated with 
core plasma component are neglected. It is thus im- 
portant to extend the kinetic-MHD model to properly 
include important kinetic effects of all particle species. 
It is expected that the core plasma kinetic effects will 
modify the Ohm's law, introduce gyroviscosity stress 
tensor to the momentum equation, and modify the adi- 
abatic pressure law. 

In this paper we present a new kinetic-fluid model 
that includes important kinetic effects of all particle 
species with a minimum of modification to the one- 
fluid equations: the mass density continuity equation, 
momentum equation, and a generalized Ohm's law. Ki- 
netic effects are included in the particle pressure tensors 
which are obtained from the moments of the particle 
distribution functions. Specifically, important global 
effects such as background density, temperature and 
magnetic field gradients, magnetic field curvature, large 
plasma •, and pressure anisotropy are retained, while 
important kinetic effects, such as finite Larmor radius, 
resonant wave-particle interactions, and bounce reso- 
nance are added. These kinetic effects are essential 

when describing multiscale coupling processes; for ex- 
ample, we have demonstrated that wave-particle res- 
onance and background plasma gradients are impor- 
tant in determining the wave structure and stability 
of global mirror modes in the magnetosheath [John- 
son and Cheng, 1997a]. In the presence of background 
gradients, finite Larmor radius effects couple global dis- 
turbances with kinetic Alfv•n waves which can strongly 
interact with ions because the perpendicular wavelength 
is the order of the ion gyroradius. Wave-particle inter- 
action leads to anomalous particle transport and dis- 
sipation which can significantly alter the background 
equilibrium on the transport timescale as demonstrated 
at the magnetopause for kinetic Alfv•n waves [John- 
son and Cheng, 1997b]. Energetic trapped particles can 
strongly affect the stability of ballooning-mirror modes 
in the ring current region. The importance of these 
effects is exemplified in observed Pc 4-5 waves [Taka- 
hashi et al., 1987], which generally exhibit antisymmet- 
ric mode field-aligned structure in the parallel magnetic 
field component contrary to the MHD theory predic- 
tion. Energetic trapped particles which are accounted 

for in the kinetic-fluid theory, but not in MHD, stabilize 
the symmetric modes and therefore explain the obser- 
vations [Cheng and Qian, 1994; Cheng et al., 1994]. 

In the following sections we will first motivate the 
need for a new kinetic-fluid model by discussing the ad- 
vantage and shortcomings of the ideal MHD model and 
our previously developed kinetic-MHD model. Then, 
we present a kinetic-multifiuid model for plasmas with 
multiple ion species that includes kinetic effects of finite 
ion gyroradii and wave-particle resonances for all parti- 
cle species. The kinetic-multifiuid mode is appropriate 
for studying phenomena with frequencies up to the or- 
der of ion cyclotron frequencies. If we further restrict 
the temporal scales to frequencies below the ion cy- 
clotron frequency, the kinetic-multifiuid mode is greatly 
simplified to a low-frequency kinetic-fluid model that 
consists of one-fluid equations. Then, we demonstrate 
that our low-frequency kinetic-fluid model properly de- 
scribes all major particle kinetic effects by obtaining a 
dispersion relation for low-frequency waves and instabil- 
ities which properly accounts for the well-known kinetic 
Alfv•n waves. Finally, we summarize the paper. 

2. Limitation of Ideal MHD Model 

The most commonly employed model used to study 
global plasma dynamics is the one-fluid ideal MHD 
model. The global dynamics of the ideal MHD plasma is 
governed by the mass density continuity equation, mo- 
mentum equation, adiabatic pressure law, and Ohm's 
law. We shall employ the rationalized MKSA unit sys- 
tem in the paper. The center-of-mass density continuity 
equation is given by 

d 

Zp + pv. v - o, (1) 
where d/dt = O/Or + V. V is the total time deriva- 
tive, p - Zj njmj is the center-of-mass density with 
the summation over all particle species, nj is the par- 
ticle density of each particle species, mj is the particle 
mass, V - Y•.j njmjVj/p is the bulk fluid velocity, and 
Vj is the fluid velocity of each particle species. The 
momentum equation is given by 

d V P dt --VP+JxB, (2) 

where J is the plasma current, B is the magnetic field, 
P is the isotropic plasma pressure due to all particle 
species in the center-of-mass reference frame. Both the 
center-of-mass density continuity equation and the mo- 
mentum equation are exact. The Maxwell's equations 
in the magnetostatic limit hold: the Faraday's law, 
OB/Ot - -•7 x E, where E is the electric field; the 
Ampere's law, J = V x B; and V. B = 0. 

To close the above equations, the ideal MHD model 
prescribes the relation between the electric field and the 
fluid velocity by the Ohm's law, 
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E +V x B = 0, (3) 

so that the perpendicular fluid motion is determined by 
the E x B motion and the parallel electric field is zero. 
In the resistive MHD limit, the parallel electric field 
is proportional to the parallel current density through 
plasma resistivity. The dynamics of plasma pressure is 
described by the adiabatic pressure law which relates 
the plasma pressures to the plasma density and plasma 
convection as well as compression by 

d (pp -5/3) =0 (4) dt ' 

The major advantage of the one-fluid MHD model is 
that the governing equations are much simpler than the 
kinetic equations and properly describe the global pro- 
file and geometrical effects. 

The fundamental shortcomings of the MHD model 
are in the Ohm's law and adiabatic pressure law: (a) the 
plasma is frozen in the field lines and moves across the 
field with a E x B drift velocity and (b) the plasma pres- 
sure changes adiabatically. The Ohm's law and adia- 
batic pressure law are appropriate only if the frequency, 
co, and perturbation wavenumber, k, of MHD phenom- 
ena satisfy the frequency and spatial scale ordering as- 
sumptions that coci > co > co•,,cod and L > k -1 > Pi, 
where coci is the ion cyclotron frequency, cob is the par- 
ticle bounce frequency, cod is the particle magnetic 
and curvature) drift frequency, L is the background 
plasma and magnetic field scale length, and pi is the 
ion Larmor radius. These assumptions break down if 
the particle magnetic drift velocity is not small in com- 
parison with the E x B drift velocity or if kinetic effects 
such as finite particle Larmor radii, wave-particle reso- 
nances and particle trapping in a nonuniform magnetic 
field are important. For example, because cod is propor- 
tional to the particle energy, energetic particles can sig- 
nificantly affect the MHD stability. For low-frequency 
MHD modes with co << cod, the energetic particle dy- 
namics perpendicular to B are no longer governed by 
the E x B drift but rather by the magnetic drift. For 
MHD modes with co •_ cod, the energetic particle can res- 
onate with MHD waves and excite new types of kinetic- 
fluid modes. When the Alfv6n speed is approximately 
equal to the particle velocity, the MHD shear Alfv6n 
waves can be driven unstable by free energy of particle 
pressure gradient via wave-particle bounce resonance 
processes if the wave frequency is less than the parti- 
cle diamagnetic drift frequency. In addition, because 
ion motion across field lines is different from the elec- 

tron E x B motion, significant charge separation can 
result if the perpendicular wavelength is on the order 
of ion gyroradii. The resultant charge separation not 
only allows the kinetic Alfv6n waves to travel across 
the field lines but also gives rise to a parallel electric 
field. Because the particle gyroradius is proportional to 
the particle velocity, energetic ions resonating with the 
kinetic Alfv6n waves can decouple from the magnetic 

fields and lead to significant diffusion across the mag- 
netic field [Johnson and Cheng, 1997b]. In addition, 
the electric field can effectively accelerate or decelerate 
resonant ions. 

In order to study kinetic effects on MHD phenom- 
ena, we have previously developed a hybrid kinetic- 
MHD model [Cheng, 1991] for describing low-frequency 
phenomena in high /• (/• • O(1)) anisotropic plas- 
mas for general magnetic field geometries. However, 
while the kinetic-MHD model retains full kinetic ef- 

fects of energetic particles, it neglects kinetic effects 
of the core plasma component by assuming that the 
core plasma component satisfies ideal MHD descrip- 
tion. The kinetic-MHD model is applicable to magne- 
tized collisionless plasma systems where the energetic 
particle density is small in comparison with the low- 
energy core plasma component so that parallel electric 
field effects are negligibly small. However, for problems 
that require core plasma kinetic effects (such as kinetic 
Alfv6n waves), it is important to modify the kinetic- 
MHD model so that it properly addresses the relevant 
core plasma kinetic effects. In the following sections 
we shall first present a kinetic-multifiuid model that is 
applicable to ion cyclotron wave phenomena for multi- 
ple ion species. Then, the kinetic-multifiuid model is 
reduced to a low-frequency kinetic-fluid model that is 
applicable to MHD phenomena with frequencies below 
ion cyclotron frequencies. The low-frequency kinetic- 
fluid model preserves the one-fluid flamework but re- 
tains the kinetic effects of multiple ion species. 

3. Kinetic-Multifiuid Model 

We consider a plasma with multiple ion species which 
is common in space environment and laboratory fu- 
sion devices. First, we shall present a general kinetic- 
multifluid model that eliminates temporal scales with 
frequency higher than the ion cyclotron frequency. Be- 
cause the magnetic field can vary by orders of mag- 
nitude in the magnetosphere, it is often necessary for 
a global model to be valid at the ion cyclotron fre- 
quency of each ion species as well as in the MHD regime. 
For example, consider ion cyclotron waves generated in 
the central plasma sheet by ion temperature anisotropy 
which frequently are associated with ground-based ob- 
servations. The magnetic field varies several orders of 
magnitude between the central plasma sheet and the 
ionosphere, and, in order to describe these waves with 
a global model, it must be sufficiently general to in- 
clude ion cyclotron resonances. The kinetic-multifiuid 
model consists of a set of fluid equations which are 
closed by the solutions of kinetic equations for each 
species. The fluid equations consist of continuity equa- 
tions and momentum equations for each particle species 
and will be closed provided the particle pressure tensors 
are obtained from solutions of the Vlasov equation. The 
particle kinetic physics is incorporated through plasma 
pressure tensors. Because of small electron mass, the 
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electron momentum equation can be replaced by Ohm's 
law and the electron density determined by the charge 
quasi-neutrality condition. In this form, the model is 
sufficiently general to describe global structures with 
frequency up to the ion gyrofrequency. Hence it is ap- 
propriate for studying ion-cyclotron waves and other 
low-frequency phenomena. 

For each particle species the density continuity and 
momentum equations are given by 

and 

Onj 
+ v. = 0 ot 

njmj • + Vj . 57 V• = %q• (E +V• x B) - V.P• 

(6) 
where qj is the particle charge, mj is the particle mass, 
the pressure tensor for each species is defined in its mov- 
ing frame by 

Pj --mj / - %)(v - (7) 

and fj is the particle distribution function for species 
j. 

A generalized Ohm's law that relates the current to 
the electric field is obtained by multiplying (6) by 
qj/m• and by summing over all particle species (conve- 
niently ignoring corrections which are O(me/mi)) and 
is given by 

+ v. (av + va) + va - 

l(z ) E q- rtiqiVi -- J x B 
•ee i 

me 

Tie ½2 

+__•7. pecm- emi Vi , (8) r•ee i 

where the summation over i is for all ion species, e = 
Iqel, the center-of-mass pressure tensor for each species 
is defined relative to the bulk flow velocity V by 

V• m -- T/•j /d 3v(V - V)(v - V)fj, (9) 

which is related to Pj by pc.m _ Pj+njmj(V-Vj)(V- --3 

Vj), and the plasma resistivity (r/) contribution is con- 
veniently added to model collisional effects. In deriv- 
ing the generalized Ohm's law we have made use of 
the charge quasi-neutrality condition, nee = Y•.i niqi, 
which relates the electron density to the ion densi- 
ties. The charge quasi-neutrality condition is equiva- 
lent to V-J = 0. Note that the generalized Ohm's 
law essentially replaces the electron momentum equa- 
tion. For a single ion species, the generalized Ohm's 
law reduces to the well-known one-fluid form with Vi = 

V(1 + (9(me/mi)). However, for multiple ion species, 
the generalized Ohm's law relates the electric field to 
the density and fluid velocity of all ion species. This 
complication arises because the diamagnetic and polar- 
ization drift velocities are different for each ion species. 
The one-fluid mass density and momentum can thus not 
be used to couple with the generalized Ohm's law. 

Therefore, in our kinetic-multifluid model, we shall 
adopt the density and momentum equations for each 
ion species. The electron momentum equation is re- 
placed by the generalized Ohm's law. The electric and 
magnetic fields are related to the plasma current and 
are obtained from Maxwell's equations in the magneto- 
static limit: the Faraday's law, OB/Ot = -V xE, where 
E is the electric field; the Ampere's law, J = V x B; 
and V. B = 0. To close the above multifluid equations, 
we need to specify the pressure tensor for each particle 
species. Instead of prescribing a fluid description for 
electron and ion pressure tensors, we shall compute the 
pressure tensor from the particle distribution functions. 
For collisionless plasmas the most fundamental descrip- 
tion of particle dynamics is by the Vlasov equation: 

Of q Of 
o--? + v . v f + - + v x . - o. ß m •vv 

The particle dynamics are correct even for systems with 
equilibrium profile scale length on the order of ion gy- 
roradii. In many plasma systems the electron dynam- 
ics can be adequately simplified by the guiding center 
particle description with the fast electron gyromotion 
ignored. If possible, the electron pressure tensor will be 
expressed in terms of an appropriate equation of state 
or in an analytic form to minimize the computational 
requirements so that computational resources can be 
devoted to wave-ion interactions and complicated dy- 
namics which occur when the gyroradius is on the order 
of the background field gradients. 

This kinetic-multifiuid model has eliminated high- 
frequency wave phenomena with frequency the order of 
the electron cyclotron frequency. It is appropriate for 
studying Alfvdn, ion cyclotron, and MHD waves. The 
difference between the kinetic-multifiuid model and full 
kinetic Vlasov model is that the ion densities and ve- 

locities are governed by the continuity and momentum 
equations instead of computing from the particle dis- 
tribution functions, so that high frequency phenomena 
involving electron dynamics are basically eliminated. 
This kinetic-multifiuid model is different from the pre- 
viously developed kinetic-MHD model [Cheng, 1991] in 
that (1) the dynamics of multiple ion species are prop- 
erly treated, (2) a generalized Ohm's law is adopted in- 
stead of the simplified Ohm's law, (3) the particle pres- 
sure tensor is computed from appropriate particle distri- 
bution functions for all particle species, (4) the Vlasov 
equation, instead of the low-frequency gyrokinetic equa- 
tion, is employed for particle dynamics if Pill • O(1) 
and/or o:/COci •0 O(1), and (5) effects of equilibrium flow 
are included. 
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This kinetic-multifluid model is appropriate for non- 
linear simulations of multiscale phenomena for general 
magnetic field geometry. However, it still contains the 
fast ion cyclotron timescale and is therefore difficult 
for performing simulations of phenomena which have 
a longer MHD timescale. Moreover, it is also difficult 
for analytical analysis because analytical solutions of 
the Vlasov equation for systems with complex mag- 
netic field geometries are, in general, difficult to ob- 
tain. To improve the kinetic-multifiuid model for longer 
timescale simulations of global MHD behavior, we will 
further reduce the multifluid equations by employing 
one-fluid equations and a low-frequency Ohm's law as 
well as simplify particle dynamics by employing the gy- 
rokinetic equations. 

locities, for each species, respectively. Multiplying nimi 
to the ion perpendicular velocity and summing over all 
ion species, we obtain 

pV•_ - pV• + Z nimi(V,•i + Vpi). (17) 
i 

Finally, multiplying niqi to the ion perpendicular veloc- 
ity and summing over all ion species we have 

Z niqiViñ -- n•eV•_ + Z niqi(Vdi + Vpi) 
i i 

--nee Z nimi (Vdi -]- Vpi). 
i P 

We note that the difference 

(18) 

4. Low-Frequency Kinetic-Fluid Model 

A major purpose of this paper is to further restrict the 
temporal scales to frequency below the ion cyclotron fre- 
quency and to obtain a low-frequency nonlinear kinetic- 
fluid model involving one-fluid equations. The model 
eliminates ion cyclotron waves but is appropriate for 
studying kinetic effects on MHD phenomena. It is in 
this regime that the multi-ion fluid model reduces to an 
one-fluid model. The basic reason for this is that to the 

lowest order in v:/v:ci all ion velocities are dominated 
by the E x B and diamagnetic drift motion. Hence 
an one-fluid description of a low-frequency generalized 
Ohm's law can be obtained by keeping the information 
on the ion diamagnetic drift motion which depends on 
ion mass, charge, and pressure gradient. The informa- 
tion that is lost in the one-fluid model is the individual 
ion cyclotron waves. 

To obtain an one-fluid description of the generalized 
Ohm's law, we first rewrite the ion momentum equation, 
(6), as 

0 (nirrtiVi) -- niqi (E + Vi x B) - V. P• (11) Ot ' 

where 

P? - mi / d • vvv fi. (12) 
The perpendicular ion velocity, Vi•_ - B x (V x B)/B •, 
can be written as 

ViA ' = V E -• Vdi -• Vpi , (13) 

where 

and 

ExB 

V•- B2 , (14) 
BxV.P• ø 

Vdi -- niqiB2 , (15) 

Vpi - I B O(niTgtiVi) niqi B • x Ot (16) 
are the E x B, diamagnetic and polarization drift ve- 

niqi nimi) Vpi << Vpi • O(•/•ci)(VE •- Vdi), nee p 

(19) 

which can be neglected in (18). For a single ion species 
the difference is zero. Then we have 

mi 1 •7 ß P• x B2 , Z niqiviA "• Vñ + Z Pqi n•e i Tte• i 
(20) 

and from (8) a low-frequency generalized Ohm's law can 
be obtained as 

E+VxB - 1 J x B - V. pecm- emi -• nee i 

+z(mi 1)B ( 0 B) ß Pqi nee • X •7.Pi X • 

+ e +V.(JV+VJ) +V J, (21) Tte ½2 '•- 
which eliminates the ion density and fluid velocities for 
all ion species in favor of the center-of-mass density, 
bulk fluid velocity, and the ion pressure tensors. For 
a single ion species case, the P• term is on the order 
of me/mi and can be ignored, and (21) is reduced to 
the well-known generalized Ohm's law [e.g., Krall and 
Trivelpiece, 1986]. Note that (21) is for multi-ion species 
and has not been derived previously. 

In addition to the low-frequency generalized Ohm's 
law, we need to obtain one-fluid mass density and mo- 
mentum equations which can be found in most plasma 
physics text books [e.g., Krall and Trivelpiece, 1986]. 
Multiplying (5) by rr•j and summing the equations over 
all particle species, the equation for mass density trans- 
port in the one-fluid form is given by 

Op 
0-• + V. (pV) - 0, (22) 

where the summation is over all particle species includ- 
ing both electron and ions. Summing (6) over all par- 
ticle species and assuming the charge quasi-neutrality 
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condition gives the equation for momentum transport 
in the one-fluid form 

p 

Thus our low-frequency kinetic-fluid model consists of 
the set of one-fluid equations, (21)-(23), which is closed 
by coupling with kinetic descriptions for particle dis- 
tribution such as the gyrokinetic equation from which 
pressure tensors for all particle species can be deter, 
mined. The electron density can be determined either 
via ion densities by using the charge quasi-neutrality 
condition or from the electron distribution function. 

Consistent with the low-frequency generalized Ohm's 
law, the electron density and pressure tensors for all 
particle species must be valid to (9(co/coci). Note that 
there are only three one-fluid equations in our one-fluid 
model which is much simpler than the multifluid model 
when there are more than one ion species. Moreover, 
we have the flexibility of dealing with particle pressure 
tensors for hot ion species by kinetic analysis and for 
thermal or cold ion species by fluid descriptions such as 
adiabatic pressure law or truncated pressure equations 
derived from the kinetic equations. 

5. Gyrokinetic Formulation 

If the particle magnetic moment is an adiabatic in- 
variant (which is satisfied if the gyroradius is smaller 
than the equilibrium magnetic field gradient scale length 
perpendicular to the magnetic field, Lñ), the gyroki- 
netic formulation, instead of the full Vlasov equation, 
can be employed to describe the particle dynamics in 
our kinetic-fluid model for low-frequency phenomena. 
The gyrokinetic formulation is also limited by the as- 
sumptions that kllLll > 1 and kñLñ > 1, where Lll is 
the parallel background equilibrium scale length. It is 
well known that it is unusual to have zero magnetic field 
in the magnetosphere except in isolated points because 
of the complexity of IMF and solar wind structure. It 
is also unlikely that the ion gyroradii exceed the mag- 
netic field gradient scale length except in very thin tails 
which may occur at the substorm onset region or far 
magnetotail. In laboratory plasmas the gyrokinetic for- 
mulation is valid because of the strong magnetic field 
employed to confine the plasmas. Thus the assumptions 
of the gyrokinetic formulation can be satisfied for most 
space and laboratory plasma conditions. 

To simplify the analytical treatment we shall consider 
collisionless plasmas without equilibrium flow. The case 
with equilibrium flow will be presented in the future. 
In a general three-dimensional equilibrium with nested 
flux surfaces, the magnetic field can be expressed as 
B = V•p x Va, where •p is chosen as the magnetic flux 
function. Both •p and c• are three-dimensional func- 
tions and are constant along magnetic field lines. The 
lines where surfaces of constant •p and c• intersect rep- 

resent magnetic field lines. For a collisionless plasma 
the particle energy per particle mass (œ - v2/2) and 
the adiabatic invariants, magnetic moment per parti- 
cle mass (/t - v2•/2B) and the longitudinal invariant 
(JII - f v. dx), are constant during the drift motions, 
where vii and vñ are the components of the velocity 
parallel and perpendicular to B in the guiding center 
coordinate, respectively. The guiding-center equilib- 
rium particle distribution function must have the form 
F = F(œ,/•,Jll ). In general, Jll - Jl[(œ,/•,•p,a) and 
F = F(œ,lu,•P,a). If all particles on each field line 
share the same drift surface, where •p labels the drift 
surface, then JII = JIl( œ,/•, •P) and F = F(œ,/•, •p). The 
guiding-center particle distributions F = F(œ,/•, •p) can 
be either prescribed by an analytical form or obtained 
from the satellite measurements of the particle flux. 
The equilibrium parallel and perpendicular pressures 
for each particle species are given by 

( pll )_Z2•rm/ø dœ•o '1• BF P_l_ oo œ dtt'l-•]-Ill ( v• ) (24) ,uB ' 

where the summation is over the particle species j and 

crll which represents the direction of particle velocity 
parallel to B and mj is the particle mass. The paral- 
lel velocity vii has the form vii - crllX/2(œ-/•B). By 
inspection, Pñ and/>11 are functions of •p and B only. 

We consider perturbations with kñ > kll and assume 
a WKB eikonal representation for perturbed quanti- 
ties, i.e., 5 f (x, v, t) = 5 f (s, kñ, v, t) exp (i f dxñ . kñ), 
where s is the distance along the equilibrium magnetic 
field. Following the gyrokinetic formulation, the per- 
turbed particle distribution function can be expressed 
as 

q OF q OF 
m OS (I) -4 --(• A ) mB 0/• - vII II 

{ q OF(sLt)}eiL' (25) q- • gl mB O-• ' 
1 

where the summation over l is over all integers, 

{(•L,}- [((I)- vllAii)Jl(/k ) vñ•Sll ] (26) 

(• is the perturbed electrostatic potential, All and 5Bll 
are the vector potential and perturbed magnetic field 
parallel to the equilibrium magnetic field B, respec- 
tively, Jl is the Bessel function of order l with argument 
/k -- k&vñ/coc, LI -- kñ x vñ '•)/coc-lO, 0 is the particle 
gyrophase angle between kñ and vñ, •) - B/B, and 
gl is the/th nonadiabatic contribution to the perturbed 
particle distribution function. For l = 0, gt represents 
the main low-frequency (co < a•c) contribution and is 
governed by the nonlinear gyrokinetic equation for high 
fi, anisotropic pressure plasmas in a general magnetic 
field geometry [Frieman and Chen, 1982; Hahm et al., 
1988; Brizard, 1989] given by 
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• + (vii + v•). v go - 

[qOFO B x V(F+g0) ] - m Oœ Ot B2 .V (6Lo), (27) 
where vd - (B/Bwc) x [V(pB)+ •v 2] is the parti- ll 

cle magnetic drift veJocity in the equilibrium magnetic 
field and • - •. Vb is the equilibrium magnetic field 
curvature. Equation (27) shows that •he nonlinearity 
arises from a gyrophase-averaged effective Eeff X B. V 
coupling, where Eeff = -V(•- v' A). Note that the 
nonlinear polarization drift is contained within the fi- 
nite Larmor radius corrections in J0 and J•. The elec- 
tric field is related to the electrostatic potential and 
the vector potential A by E = -V•- OA/Ot, where 
5B=VxA. 

For 1 • 0, gt represents the (W/We) correction to the 
particle distribution function, which contributes to the 
leading order finite ion Larmor radius effects in the gy- 
roviscosity and the fluid velocity. Because we are in- 
terested in low-frequency phenomena, the nonlinear ef- 
fects in gt can be ignored. Then gt is governed by the 
linearized general frequency gyrokinetic equation [Lee 
et al., 1983; Chen and Tsai, 1983; Berk et al., 1983] 

( 0 ) qF • + iv• • -•c g, - •(•, - •)(•,), (28) 
T where &, - -T/m[•O/OS + (l•c/B)O/O•] lnF, •, - 

(r/qn)•. • • Vlnr, • - •m•/r + •mv]/r, 
wb - (T/qB2)k• ß • x VB, and w• - (T/qB)kx . • x •. 
We emphasize that the important effects of background 
gradients, magnetic curvature, and wave-particle res- 
onances are all retained in the gyrokinetic equations 
through the various drift effects. Finite Larmor radius 
effects are included through the Bessel functions, and 
the theoretical framework is valid even for kzpi • O(1). 
For low-frequency phenomena with W/Wc << 1, the 
contribution to the pressure tensor from gt with 1 • 0 
can be obtained to the leading order in W/Wc. With the 
frequency ordering Wc > w, kllvll,wd, the solution of gt 
is given by 

q OF 
--(•L•) = gt mB Op 

q OF & qF&o-w. +0 -- (SLt) (29) 
mB O• l•c T l•c •c ' 

where & = (• - kllvll -•d). 
The pressure tensor P of each particle species in the 

guiding center coordinate can be expressed in terms of 
the diagonal elements and off-diagonal elements: 

P - PA- (I - bb) + Piibb + rl, (S0) 

where I is the unit dyadic, I - f•A-f•A- + 1• x f•A-l• x f•A- + 
1•1•, rl is the off-diagonal tensor element, and b - BIB 

is the unit vector along the magnetic field. Usually the 
diagonal (parallel and perpendicular) elements are more 
important than the off-diagonal elements in the momen- 
tum equation. The diagonal pressure tensor elements 
are computed from the particle distribution function f 
by 

711 - m f a•vv•f, 
P., - •m a•vv2, f, (31) 

where vii is the particle velocity along the b direction 
and vA- is the particle velocity perpendicular to the b 
direction in the guiding center coordinate. Employing 
(25) and carrying out the gyrophase angle average and 
the summation over l, the perturbed diagonal pressure 
elements are given by 

/ mv•_{ qOF 5Pñ - d3v 2 goJo +- m• 

-t q OF[ ]} mB Op ((I, - viiAll)(1 - Jo 2) vA-SBll aoax , 
(•2) 

and 

5Pii- f d3vmv• {goJo + q OF 
m• 0• (• - •11•11)(1 - a•) 

The off-diagonal pressure tensor element is contributed 
by the perturbed particle distribution and is given by 

n - n + •m •av(•11• + ••)• (34) 
where the gyroviscosity tensor is defined as 

n - •m dav vxvx- (I-bb) 5 f (35) 

If kA- >> kll, the contribution from FI need only be con- 
sidered in the off-diagonal pressure tensor element. Fur- 
thermore, because rl is of the order of W/Wc in com- 
parison with the diagonal pressure tensor elements, we 
shall retain only the linearized perturbed particle dis- 
tribution function in obtaining Fl. To evaluate the off- 
diagonal terms in the pressure tensor, first we obtain 

VIVA_ v•- (i _ 1•1•) -- •-- [(cos 20C + sin 20S)], (36) 
where O is the particle •g•yrophase• an•gle^between l• and 
•:A_, C - 2•A_•A_ - (I - bb), S - kA_b x kA_ + •) x 
and l• and •A_ are the unit vector along the magnetic 
field and perpendicular wave vector directions, respec- 
tively. Then 

v. fi - f, x (v5?• x f,) + •, x V_L5?,, (37) 
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and 

where 

f,. v x v. fi - 

f:,. v x (f, x v. fi)- 

(38) 

(39) 

a v 2 cos 206f- 

and 

d 3 vmv• 2 • gt(Jt(X) + 2J['(X)), (40) 
l 

f my} 6P, -- d3 v 2 sin 206 f = 

f mv2• ( Jt(A) Ji(A) ) (41) d 3v 2 Z 2ilgt A2 A ' 
l 

In deriving the above equations, the following identi- 
ties and definitions are used' e iAsinO ---- EtJl(•)e ilo, 
Y']t J• - 1, Y']t j[2 _ 1/2, Y']t JtJ[' - -1/2, Y']t JtJ[ = 
Y•tJ/J[' -O, (eiLtcosnO> --[Jt-,(A)+ Jt+,(A)]/2, 
{e iL' sinn0) - [Jt-n(A) - Jt+n(A)]/2i where n is an in- 
teger and {A(0)} - 1/2•r f• dOA(O)is the gyrophase 
average of A(O). 

Making use of the solution of gt given in (29), the 
summation over 1 in 6Pc and 6P, can be carried out, 
and to leading order in (ov/OVc) we obtain 

5Pc - 5Pc• + 5Pc2, (42) 

where 

mv2• 6Pal - d3v 2 go(Jo - 2J•) (43) 
is due to go, J• - J0 - J•/A, and 

6Pc2 - / d 3vmv•- q OF 2 mB Ol• (• - VllAii)(2JoJ• - J•) 

vñSBll (JoJ• - 2J• J•)] (44) kñ 

has no contribution due to go. Note that 5Pc contain 
the finite gyroradius contribution and those corrections 
come in at the same order as 5Pñ. There is no contri- 
bution due to go in 5P•, which is given by 

imv• qF &o - W, q OF& 
5P• - d • v A• T •c mB O• • 

{ + - 1) 
vzdB I [A(1 - 2J•) - 2JoJ•]}. (45) 2kz 

Note that 5P• is smaller than 5Pc by •/•. Because 
of the small electron mass the gyroviscosity tensor is 
mainly from ion contribution. We also note the gyro- 
viscosity tensor elements are smaller than the diagonal 

pressure elements by (kñpi) 2 in the small ion gyrora- 
dius limit. From the particle equilibrium guiding center 
distribution functions 5Pc2 and 5P8 can be straightfor- 
wardly computed. 

In order to completely determine the plasma pressure 
tensor, we need to obtain go by integrating the low- 
frequency gyrokinetic equation, (27), which is a nonlin- 
ear equation and in general can be solved by simulation 
techniques. However, for the purpose of studying linear 
stability, progress can be made by integrating the gy- 
rokinetic equation, which has been obtained previously 
[Cheng, 1991]. Employing the gyrokinetic formulation 
in the kinetic-fluid model is in principle much simpler 
than that using the Vlasov formulation because particle 
and wave dynamics involving timescales faster than ion 
cyclotron period are eliminated so that large numerical 
time steps can be used in the numerical simulation. It is 
also important to point out that employing the gyroki- 
netic formulation in the kinetic-fluid model primarily 
requires the frequency ordering co/COc << 1, which is 
fully justified for low-frequency MHD phenomena and 
associated plasma transport. 

Finally, we summarize this section with the expres- 
sion for each particle species' 

V. P - VPñ + BB . V ( Pll - Pñ ) B 2 

B2 B.VB+ • x V6Pc x •. + • x V6Ps. 
(46) 

The divergence of the perturbed pressure tensor is ap- 
proximately given by 

V. 6P • Vñ6•ñ + b x V•_6P• + bb ß V6Pii , (47) 
_ 

where 6Pñ - 6Pñ + 6Pc. Note that the gyroviscosity 
contribution, 6Pc and 6P•, are mainly due to ions be- 
cause the electron gyroviscosity is much smaller and can 
be neglected due to small mass. 

6. Low-Frequency Kinetic-Fluid 
Eigenmode Equations 

In order to show that our low-frequency kinetic-fluid 
model provides proper kinetic and global effects, we 
will derive the linear eigenmode equations for describ- 
ing nonlocal low-frequency phenomena with ov < OVci. In 
particular, the kinetic-fluid eigenmode equations should 
properly take into account the effects of finite Lar- 
mor radius (FLR) for each ion species as well as elec- 
tron inertia for kinetic Alfv•n waves. To derive the 

kinetic-fluid eigenmode equations, we will first decom- 
pose the nonlinear one-fluid momentum equation into 
three scalar components by following the paper by Cheng 
[1991]. First we rewrite the one-fluid momentum equa- 
tion as 

= -V(Pñ + B2/2) + aB. VB P dt 

+B(B. Va) - V. lq, (48) 
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where cr = 1 + (Pñ - Pii)/B 2. Note that V(Pñ + B2/2) 
is the dominant term for perturbations with kll < kñ 
and kñpi < 1. The one-fluid momentum equation can 
be decomposed into three components. First, the com- 
ponent parallel to B is given by 

B. p-•T+V.n - 

_B. •7pi I + PII- P-LB. •7B (49) B ' 

To eliminate the •7(P_L+B•/2) term, we apply B.•7x to 
the one-fluid momentum equation, (48). Also making 
use of the quasineutrality condition, V.J = 0, we obtain 
the parallel current (or vorticity) equation 

crJ-B -B x•-•7(crB2)+•7 ß pB x • B2B . •7 B 2 

-B. V x (V. n) - pJ. dt - 0, (50) 
where n = (B/B). V(B/B). To retain the V(P_L + 
B2/2) term, we apply the B. V x Bx operator to the 
one-fluid momentum equation, (48), and we obtain the 
perpendicular current equation 

[ / / B.Vx Bx p-•-j-+v.n + P.+ 

B 2 B 2 

•- -B. B / 
x 

B 2 

-•I x B.V T = 0. (•1) 
To obtain the line•rized one-fluid momentum equa- 

tion for low-frequency perturbations, we consider per- 
turbed quantities 5B • e -4•t with • << • •nd kll • 
kz. For simplicity, quantities such •s B, p, B, etc., 
•re denoted •s equilibrium v•lues. The line•rized p•r- 
•11el momentum equation, which describes slow m•g- 
nerosonic w•ves •nd m•int•ins p•r•llel force b•l•nce, 
becomes 

-i•pB . 5V + B . VSPii + 5B . VPII 

- B•B.VB.SB •0. (52) 
The line•rized parallel current equation, which m•inly 
describes the transverse Alfv•n type w•ves •nd insta- 
bilities, reduces to 

B2B.V •SJ.B] B2 - B x n. V(B. 5B - 5PII) 

-v. (i•pB • 5v) - B. v • (v. 5n) • 0. (•) 

We need to obtain the perturbed center-of-mass velocity 
5V and parallel electric field potential ß from the low- 
frequency generalized Ohm's law, (21). Substituting 
the momentum equation, (23), into the low-frequency 
generalized Ohm's law and making use of (46), we have 

icop 
5V x B '" -SEñ 

17,ee 

+ • m• v.(sa.• + 5a•) + • x v.sa• . (•4) 
. 

Combining this equation with the gyroviscous force ex- 
pression, (38), and neglecting terms of the order of 
(co/COci), we have 

•7. (icopB x 5V) + B. V' x (V. 51-[) 

- i co Z n i m i V 2• 62 + 5 Pi_L + SPic - '•-- ,. -,- i s ß 
i niqi uo 

(•) 
Note that the parallel current is related to the paral- 
lel vector potential through the parallel Ampere's law, 
V•Aii - -SJll and the parallel vector potential is re- 
lated to the parallel electric field by 5Ell = -Vll• = 
-Vll• + i•All. Then(53) becomes 

B. V B2 B. V (62- •) + • nimicø2 B---•-- • 
i 

x •2+ 5Pi_L+SPi• •iSp. 
niqi 

icoB x •; 

+ B•-V (B. 5B - 5all ) • 0. (56) 
We can give a physical interpretation to (56). This 
equation is the charge quasi-neutrality condition V. J 
0. The Larmor radius corrections that appear are due 
to Vz. Jz which is carried by the ion diamagnetic and 
polarization drift currems. The ion diamagnetic drift 
contributes only through the gyroviscosity, while the 
ion polarization drift results from the time variation of 
the 5E x B and diamagnetic drift. The Larmor radius 
corrections also contribute to the parallel electric field 
which influences the parallel currein. 

The linearized perpendicular currein equation, which 
mainly describes the compressional Alfv•n type waves 
and instabilities, reduces to 

• ß 5B)] + B 5B) s. v [•s. v(s v•(5ez + ß 
+• . v • [• • (-i•p5v + v. 5n)] = 0. (•7) 

Because the B x operator removes the parallel dynam- 
ics information, (57) describes mainly waves associated 
with the compressional magnetic field. For • << kzV•, 
the perturbed perpendicular pressure is out of phase 
with the perturbed magnetic pressure. From (57), 
is related to the compressional magnetic field, and, 



422 CHENG AND JOHNSON: KINETIC-FLUID MODEL 

from (53), 5Pll enters with the magnetic field curva- 
ture. From (54) and the gyroviscous force expression 
(39) and making use of the Faraday's law, we have 

B. V x [B x (-icopSV + V. 51-[)] 

pa;2B - 5B + B2V2• E SPic, (58) 
i 

where terms of the order of (•/•ci) have been neglected. 
Then (57) becomes 

[cr ] p•o 2 B.V •¾B.V(B.SB) +•B.SB 

+V• (B. 5B + 5Pz + • 5P4c)zO, (59) i 

Note that the gyroviscosity enters this equation through 
SPic, which gives a finite ion gyroradius correction. 
Equation (59) describes the fast magnetosonic (com- 
pressional A1N•n) waves and mirror instabilities. 

To close (56) and (59) we need to obtain another re- 
lationship between •, •, and 5Bll. This relationship 
may be obtained using the charge quasi-neutrality con- 
dition or the parallel component of the low-frequency 
generalized Ohm's law which is given by 

which can be properly derived by obtaining the solu- 
tions of the gyrokinetic equation [see, Cheng, 1991, Ap- 
pendix C]. Note that on the right-hand side of (61) 
the first term represents the convective derivative of 
plasma pressure and the second term represents the 
compressional magnetic field effect associated with pres- 
sure nonuniformity along the field line resulting from 
pressure anisotropy. 

We point out here that the linear eigenmode equa- 
tions used in our previous kinetic Alfv6n wave paper 
[Johnson and Cheng, 1997b] and global mirror mode 
paper [Johnson and Cheng, 1997a] are more simplified 
than the more general eigenmode equations, (56), (59), 
and (60), because couplings between 5Bñ and 5Bii were 
ignored. The eigenmode equations employed in the 
paper by Cheng and Qian [1994] for studying Pc 4-5 
waves in the ring current region do not include core 
plasma kinetic effects which can give rise to a finite par- 
allel electric field. These shortcomings are now fixed in 
the present eigenmode equations, (56), (59), and (60), 
which are derived from the kinetic-fluid model. It is 

thus important to revisit these problems using the more 
general eigenmode equations. 

7. Alfv6n Waves and Instabilities 

B.JE- 1 [B . V (jPile - y•. qime jpili) nee i emi 

+SB. VPii e - nee2 r/ B. 5J. (60) 
Thus (56), (59), and (60) form the kinetic-fluid eigen- 
mode equations for low-frequency waves such as kinetic 
Alfv6n waves [Hasegawa, 1976], inertial Alfv6n waves 
[Goertz and Smith, 1989] as well as the kinetic bal- 
looning and mirror modes [Cheng and Qian, 1994]. In 
the section 7 we verify that the correct dispersion re- 
lations are obtained for well-known kinetic effects on 
MHD waves. 

The perturbed pressures, 6Pñ and 6Pii , for each parti- 
cle species must be obtained from the perturbed particle 
distribution functions. In the paper by Cheng [1991] the 
perturbed particle distribution functions were derived, 
and the perturbed pressures are written as 

6Pz ' 

where • - V - VB (O/OB)•; the finite Larmor ra- 
dius and other kinetic effects such as wave-particle res- 
onances and trapped particle dynamics are included 
in the nonadiabatic perturbed pressures 6Px and 6•11 , 

We have at this point obtained a closed set of kinetic- 
fluid eigenmode equations for low-frequency (•o < •oci) 
waves and instabilities. Our strategy is to solve the 
gyrokinetic equation in various limits and obtain parti- 
cle kinetic corrections to the low-frequency eigenmode 
equations. We will obtain explicit expressions of the 
perturbed particle pressures and ion gyroviscosity ten- 
sors by neglecting the magnetic drift frequency. 

We consider a bi-Maxwellian ion equilibrium distribu- 
tion F(œ, l•, •) - N(•)(2•rTIl(•)/m) -3/2 exp[-mœ/TII 
+ml•Bo(•)/To(•)] or, equivalently, F(vñ, vii ) = n(•,B) 
(2•rTñ/m)-• (2•rTii/m) -•/2 exp[-mv•_/2Tñ-mv• /2Tii ], 
where n(•,B) = N(•)Tñ/Tii is the particle density, 
Tñ/Tii = (1- BoTii/BTo) -•, and PII,ñ = nTIl,ñ are 
the pressures. Then (q/m)[OF/Oœ + (1/B)OF/O•] = 
-qF/Tñ, and (q/m)OF/Oœ = -qF/Tii. We now pro- 
ceed to evaluate the perturbed ion pressures and gyro- 
viscosity in the limit •v, kl[vi > v.;di, where vi is the ion 
thermal velocity and •vdi is the ion magnetic drift fre- 
quency. The solution of the linearized ion gyrokinetic 
equations is obtained from (27) and is given by 

qi OF •v - &, 

mi O• v½-/ellVii 

v_kSBi I ] x (•-v1•.4•)4+ • •, , (½2) 
where &, = miB x k. VF/qiB(OF/Oœ). Then by ig- 
noring the temperature gradient effect we obtain from 
(33) the perturbed parallel ion pressure 
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I qi(i ) (•Plli -- Plli 
( qi(I ) Tñi 

+ (r0 - , (oa) Ti[i B 

where •,i - (Tlli/qiB•Ni) B • VNi. k• is the ion 
2 diamagnetic drift frequency, 

T[li/mi, Z(•i) is the plasma dispersion function, Z' 
-2(1 • (iZ), F•(bi) - I•(bi)e -•, I• is the modi- 
fied Bessel function of the first kind of order n, and 

2 bi- k•Wi•/mi•ci. 
Similarly, from (32), (43), (44), and (45) we obtain 

the perturbed ion perpendicular pressure and ion gyro- 
viscosity tensor contributions' 

(•Pñi -{- •Pic -- Pñi 
qi(I ) 

(64) 

and 

i•idPi• _ p_Li (l_ V:,iWñi ) w wT[li 1 - F0) qi(I ) bi Wñi 

(1-F0 +F1)5BII (qi(I) 5BII)] + bi -•- - (to - rl) • + 2-•- 

+Pñi (1- Tñi mi •2 

(1- Fo (Fo- Fx)) qi(• - •) (65) X bi TAi ' 
•om (64) and (65), the vorticity equation, (56), re- 

duces to 

IcrV•- I i•Bxn B-V k B2 B. V((I)- •) + B• 'V (•BllB - 

+ (1- Wli• '•]]i ] mi •2 

(l-r0 (r0- 0. (co) x bi 
Equation (66) describes mainly the transverse/kinetic 
Alfv•n waves and ballooning instabilities in high • plas- 
mas with anisotropic pressure. Note that a Pad• ap- 
proximation can be used to simplify the Bessel func- 
tions so that the differential operators can remain valid 
for general values of kñpi. Physically, the Larmor ra- 
dius corrections modify the zero order polarization cur- 
rent which arises from ion inertia. Also note that for 

•i ~ O(1) the 5Bi[ contribution resulting from the gy- 
roviscous force is at least of the same order as the finite 
Larmor radius correction to the electrostatic potential. 

For electrons, we consider kllv•,• • •a• so that the 
transition from kinetic to inertial Alfv•n waves which 

occurs for kllv• • • is retained. Neglecting effects 
of trapped particle dynamics, gyroradii, and pressure 
anisotropy, the linear perturbed electron distribution 
function can be straightforwardly obtained from (25) 
and (27) and is given by 

m 0œ 

+ • + 5Bll (67) 
kllVll - cv 

Integration over the velocity space and ignoring the 
temperature gradient we obtain the perturbed electron 
density 

[co,e e(• ( co,e) 5ne - ne -- + 1 - 

x (1 + (eZ((e)) • - (eZ((e) , (68) 
the perturbed parallel electron pressure is given by 

5PIle - neTe •7 + (1 - 

x (1 - (•Z'((e)) • + (e ((e)-•- , (69) 
and the perturbed perpendicular electron pressure is 
given by 

(1- 

x (1 + •eZ(•e)) • - 2•eZ(•e) , (70) 
where cv,e - -(Te/eB2ne)B x Vne-kñ, •e - w/'f•kllVe, 

2 
and - 

We obtain the parallel current and parallel electric 
field from the parallel component of the low-frequency 
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Ohm's law, (60). Because •Bñ = V x All and the par- 
allel electric field definition, •Eii = -X711• = -X711• + 
iwAii , we also have 

•B ß X7Pe - -iene Bkll -•- . 

Employing the parallel Ampere's law, X7•_Aii - -•JII, 
and ignoring plasma resistivity, the parallel component 
of the low-frequency Ohm's law, (60) then reduces to 

2 z, ] j Tii j kll 2 qj B ' 

where the summation over j is over all particle species. 
We have also neglected terms that are on the order of 
(m•/mi). Note that the parallel electric field in the 
Ohm's law is cancelled by a contribution from the B. 
VSPi]• term and thus the parallel electric field potential 
is determined by the balance of other terms in the low- 
frequency Ohm's law. 

Equations (59), (66), and (72) together with the 
expressions for perturbed particle pressures and ion 
gyroviscosity tensors form a closed set of eigenmode 
equations describing the dispersion of dispersive ki- 
netic/inertial Alfv•n waves as well as kinetic ballooning 
and mirror modes for high • plasmas. The operator 
ik]] = Vii acts along field lines, and an integral equa- 
tion should be used if there are plasma and magnetic 
field gradients along field lines. Kinetic effects of finite 
i6n Larmor radii and electron wave-particle resonances 
are included for nonuniform plasmas in a general mag- 
netic field geometry. However, kinetic effects of trapped 
particles and particle magnetic drifts are neglected. 

It is worthwhile to note that for high • plasmas we 
must retain in (72) the ion parallel current contribution, 
5J]li, which is due to the •(m•qi/mie)B.VSP]]i term 
in the parallel Ohm's law. This term has been neglected 
in all previous studies involving the Ohm's law. To as- 
sess the importance of 5J]]i relative to 5J]]e we consider 
three different limits. In the small parallel wave phase 
velocity limit, w/kll << Vi << Ve, we have Z • • -2 and 

5JIli co - co,i Te Te 
•JIl• co - co,e Ti Ti 

Thus the ion parallel current is of the same order as 
the electron parallel current and must be retained. In 
the medium parallel wave phase velocity limit, vi << 
W/kll << ve, we have Z•(•i) • 1/•/• and thus 

In the high parallel wave phase velocity limit, vi <• 
v• • co/kll , the ion parallel current can be neglected 
because 

6Jill ..0co - co__,i T• vi 
5Jil• co - co,• Ti mi 

For transverse Alfv•n waves, co •_ kllV• , and thus 
2(kllV•/co) 2 - /•mi/me and 2(kllVi/co) • - /•i. For 
/• > m•/mi and ]•i • I the small parallel wave phase 
velocity limit applies, and the ion parallel current is 
the same order as the electron parallel current. For 
/•e • me/mi and •i < I the medium parallel wave phase 
velocity limit applies and 5Jili/SJii • •/•/2. Obviously, 
if •e > I (due to T•/Ti >• 1) the parallel ion cur- 
rent contribution becomes important. For/• < m•/mi 
and •i • 1, the high parallel wave phase velocity limit 
applies, and the ion parallel current can be neglected. 
Near the ionosphere, v• < VA (]•e < me/mi) and the 
electron inertia effect is important. 

7.1. Dispersive Transverse Alfv•n Waves in Low 
•] Limit 

We will demonstrate the dispersive aspects of Lar- 
mor radius corrections and electron inertia on the shear 

Alfv•n waves. For low • (• 1) plasmas the kinetic-fluid 
eigenmode equations for dispersive transverse Alfv•n 
waves can be further simplified by considering the limit 
co • kllvi. We can also neglect the parallel ion current 
contribution, the 5Bii terms, and the magnetic field cur- 
vature term in (66) which is usually smaller than the ion 
inertia and field line bending terms. Then from (72) the 
parallel electric field potential is given by 

!•t -- k•p• k}•p + 1- C• (C•) , (73) 

where Ap = C/Wp• is the electron skin depth. By ne- 
glecting the temperature anisotropy effect we obtain 
from (66) the eigenmode equation for describing non- 
local properties of dispersive transverse Alfv•n waves 

[aV• ] nimiw(w -- w.i) (1-- Fo ) B. V B2 B. VT + • B 2 bi 
i 

x 1-(w .... •-, _ 
where T = ß - ß and the effects of full ion Larmor radii, 
diamagnetic drifts, and electron-wave resonances are in- 
cluded. Note that new diamagnetic drift effects are in- 
cluded in the nonlocal eigenmode equation in compar- 
ing with the previously derived dispersion relation for 
kinetic Alfv•n waves [Hasegawa and Chen, 1976; Lysak 
and Lotko, 1996]. For bi • 1 the Bessel function can 
be expanded with (1 - F0)/b• • I - 3b•/4. The Bessel 
function can also be approximated by the Pad• approx- 
imation, (1 - Fo)/bi • 1/(1 + hi), which is correct for 
both the bi • 1 and bi • 1 limits. Equation (74) 
is a three-dimensional eigenmode equation and deter- 
mines the magnetosphere-ionosphere coupling of trans- 
verse Alfv•n waves. Near the field line resonance loca- 

tion the equation can be simplified to a one-dimensional 
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field-aligned equation by taking the limit kñ •/oil and 
treating •72• - -k•. 

Two limits of (74) are worth pointing out. For the 
limit •e • 1 (i.e., •3 • • and m•/m• • • • 1), 
• (•) - -2+•(•) and the parallel electric field poten- 

tial is ß • ••/(••- •e•(•- •,e)/•e). For 
• • •,e and •Te/mi•i • 1, we have the well-known 
parallel electric field potential ß • ( 2 2 - •T•/m•)• 
for kinetic Alfv•n waves. For one ion species we obtain 
the dispersion relation for kinetic Alfv•n waves 

•(•--•.i) •bi k•T• ( • - •.i ) (75) k•V• •1 F0 • • ' -- •i•ci • -- •e 

Considering bi • I and ignoring the diamagnetic drift 
and pressure anisotropy effects, we obtain the well- 
known dispersion relation for the kinetic Alfv•n waves 

•2 __ k• V• I + + • •i• i j . 
Equation (76) had been previously derived based on 
the gyrokinetic theory [Hasegawa, 1976; Hasegawa and 
Mima, 1978; Goertz, 1984] for low • plasmas. The 
eigenmode equations including full Larmor radius ef- 
fects have also been derived for kinetic Alfv6n wave and 

kinetic ballooning modes [Cheng et al., 1995]. 
Near the ionosphere where v• • VA, we adopt the 

ordering 1 (( • (• ((m•/mi), then Z•(•) • 1/•, 
and we find the well-known parallel electric field for 
inertial Alfv6n waves with ß • k•A•/(1- •,•/• + 
k•A•). It is worthwhile to note that for • • •,• and 

2 2 
kmT•/mi•ci (( 1 this parallel electric field potential 
has an opposite sign from the kinetic Alfv6n wave case. 
For one ion species we obtain the dispersion relation for 
inertial Alfv6n waves 

) 2 2 -- ' 

kllV A l-F0 1-•.•/•+k•A• 
Ignoring the diamagnetic drift and pressure anisotropy 
effects, the inertial Alfv6n wave dispersion relation for 
bi (( I becomes 

I + 

as previously obtained [Goertz and Boswell, 1979]. 

7.2. Reduced Two Fluid Equations for Disper- 
sive •ansverse Alfv•n Waves 

sure, 5Pe = 5n•T•, can be properly used in the electron 
momentum equation. 

The electron density and parallel momentum equa- 
tions are 

One 
0--•- + V-(n•Vll•) • 0, (79) 

and 

men• dVll• + eneEll + X711p• - O. (80) dt 

If we use the representation Ell = -X711•, assume 5Jll • 
-n•½Vlle, and ignore the diamagnetic drift frequency 
contribution, then from the parallel Ampere's law and 
the linear electron continuity equation, (79), we obtain 

5ne ( k,,v• ) • k• (• _ •) (81) ------• 2 ' 
•0 • mi•ci 

Combining this equation with the parallel electron mo- 
menturn equation, (80), yields 

ß _ k•l• (1 -(k[[Ve/•) 2) •. (82) 
2 ) 1 + kz •p v•/w) • 

The result is in agreement with the (kllV•/•) 2 • I and 
(kllV•/•) • • 1 limits of (73). However, from (68) and 
(69) we can easily obtain 

e ' 

Near the ionosphere (•)) 1, 5P• • 3T•Sn•, which 
is a factor of 3 different from the isothermal model. 

However, the pressure does not enter the leading order 
balance of the parallel electric field and inertia so the 
pressure law is not important. In the magnetosphere, 
{• (( I and the pressure balances the electric field in the 
leading order and the inertia is not important. Any at- 
tempt to keep the inertia term in the reduced two-fluid 
model in this limit is futile because the error introduced 

by the isothermal electron pressure model is larger than 
the inertia term and gives the wrong sign. (Note that 
for {• (( 1, 5P• • T•Sn•(1 + 4(•), and the error is 
the same order as the inertia term.) While the qual- 
itative behavior of dispersive transverse Alfv6n waves 
is recovered by the simple isothermal electron pressure 
model, quantitative studies will be inaccurate because 
they neglect important physical effects near the transi- 
tion where {e • I where electron Landau damping is 
important. 

A reduced two-fluid model has been employed in 
studying shear/kinetic Alfv6n waves in low/• plasmas 
[Streltsov et al., 1998] without gradient in density and 
temperature. The equations involved are the electron 
parallel momentum equation, electron continuity equa- 
tion, current continuity equation, and ion momentum 
equation. The perpendicular current is determined by 
the ion momentum equation, and the parallel current 
is determined from the electron equation. An impor- 
tant question is whether an isothermal electron pres- 

8. Summary and Discussion 

In this paper we have formulated two nonlinear kinetic- 
fluid models for high/• plasmas with multiple ion species 
to study multiscale phenomena: One is a kinetic-multi- 
fluid model for studying phenomena with frequency of 
the order of ion cyclotron frequencies; the other is a 
low-frequency kinetic-fluid model for studying phenom- 
ena with frequency below the ion cyclotron frequency. 
These two kinetic-fluid models were developed by tak- 
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ing advantage of the simplicity of the fluid models and 
by properly taking into account finite ion Larmor ra- 
dius (FLR) and other major particle kinetic effects. 
The kinetic-multifluid model treats each particle species 
by fluid descriptions as well as by particle kinetic ap- 
proaches such as the Vlasov or gyrokinetic equation 
to determine particle distribution functions from which 
particle pressure tensors are obtained, and the coupling 
between the particle kinetic dynamics and multifluid 
models is through the particle pressure tensor in the 
fluid momentum equations. 

The low-frequency kinetic-fluid model is obtained from 
the kinetic-multifluid model by further restricting the 
timescales to be longer than the ion cyclotron time. In- 
stead of the electron and multiple ion fluid equations, 
the one-fluid density and momentum equations, (22) 
and (23), and a newly derived low-frequency Ohm's 
law, (21), are employed. The particle kinetic physics 
is again coupled to the one-fluid equations and the low- 
frequency Ohm's law through particle pressure tensors. 
The major advantage of the low-frequency kinetic-fluid 
model is that important kinetic effects can be accurately 
described with a minimum of modification to the one- 

fluid equations. We note that important particle ki- 
netic effects such as finite Larmor radii, resonant wave- 
particle interaction, and trapped particle dynamics are 
properly retained. These kinetic effects are essential 
when describing multiscale coupling processes for long 
timescale global phenomena. 

From the low-frequency kinetic-fluid model we have 
derived the eigenmode equations for low-frequency (w • 
Wci) waves and instabilities in high • plasmas such 
as dispersive transverse Alfv(•n waves (kinetic and in- 
ertial Alfv•n waves) and ballooning-mirror instabili- 
ties. The eigenmode equations take into account the 
magnetosphere-ionosphere coupling. For • • 1 plas- 
mas effects due to ion Larmor radii, electron Landau 
damping and electron inertia on parallel electric field 
are properly retained in the dispersion relation of dis- 
persive transverse Alfv•n waves. Note that the ion Lar- 
mor radius effects on the kinetic Alfv(•n wave are not 

properly included in the popularly employed reduced 
two-fluid equations without the proper gyroviscosity 
contribution. In the presence of background gradients, 
finite ion Larmor radius effects couple global MHD dis- 
turbances with kinetic Alfv(•n waves which can strongly 
interact with ions because the perpendicular wavelength 
is of the order of ion gyroradii. 

It is also helpful to point out the differences between 
the kinetic-fluid model and the previously developed 
kinetic-MHD model [Cheng, 1991]. The previously de- 
veloped kinetic-MHD model is based on the assump- 
tions that the energetic particle density is much smaller 
than the core plasma density and the core plasma ki- 
netic effects are not important. Thus, in the kinetic- 
MHD model, the core plasma dynamics are assumed 
to satisfy the ideal MHD model, (1)-(4), and the en- 
ergetic particle kinetic effects couple with core plasma 

fluid dynamics via energetic particle pressure in the one- 
fluid momentum equation. The energetic particle pres- 
sure is obtained from the particle distribution functions 
which are governed by particle kinetic equations. The 
assumptions of the kinetic-MHD model will break down 
if the energetic particle density is comparable to the core 
plasma density or the kinetic effects associated with the 
core plasma component are significant. The weakness of 
the kinetic-MHD model is now mitigated in the kinetic- 
fluid model by introducing a new generalized Ohm's law 
(valid for multi-ion species plasmas) and by determining 
particle pressure tensors from kinetic particle distribu- 
tion functions for all particle species. 

It is also useful to discuss the major advantages of 
the kinetic-fluid model over the conventional one-fluid 

model [e.g., Krall and Trivelpiece, 1986; Ma and Bhat- 
tacharjee, 1996; Winglee and Menietti, 1998]. In the 
one-fluid model the plasma pressure is assumed to be 
isotropic and obeys the adiabatic pressure law, and 
the electron pressure is usually assumed to be a fixed 
fraction of the total plasma pressure to avoid follow- 
ing electron dynamics. Moreover, the Ohm's law em- 
ployed in the one-fluid model is valid only for single ion 
species plasmas [Krall and Trivelpiece, 1986]. The ion 
finite Larmor radius effects are partially included via 
the Ohm's law and other particle kinetic effects are ab- 
sent. Thus advantages of the kinetic-fluid model over 
the conventional one-fluid model include the following: 
(1) Kinetic effects for low-frequency phenomena are 
fully retained via particle pressure tensors for all parti- 
cle species; (2) only one-fluid equations are needed even 
for multi-ion species; and (3) the kinetic-fluid model al- 
lows the flexibility of treating different particle species 
with different kinetic descriptions or even with fluid de- 
scriptions to compute particle pressure tensors. 

Finally, the kinetic-fluid model presented in the pa- 
per represents a major advance in laying the theoretical 
foundation for studying long time behavior of multi- 
scale phenomena in high/• plasmas. Besides the study 
of wave propagation and stability analysis in realis- 
tic plasma geometries, the natural next step is to de- 
velop global simulation codes based on the kinetic-fluid 
model. It is clear that when coupling kinetic mod- 
els to one-fluid equations one must perform additional 
simulation of kinetic equations such as the gyrokinetic 
equation or Vlasov equation to obtain pressure ten- 
sors. However, one major feature of the kinetic-fluid 
model is that most higher-frequency phenomena (ion 
cyclotron waves or higher-frequency waves) have been 
eliminated analytically. This feature will allow numeri- 
cal simulation kinetic-fluid phenomena with large time 
steps but with the constraint that the particle orbit un- 
der the influence of low-frequency electromagnetic per- 
turbations must be accurately computed. The kinetic- 
fluid simulation will certainly be computationally more 
expensive because of the additional computational ef- 
fort that results from the difference in following parti- 
cle dynamics and in solving the fluid pressure and heat 
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flux equations in the one-fluid simulations. However, 
such an effort to retain essential particle kinetic effects 
for low frequency phenomena is a small computational 
price to be paid. It is worthwhile to point out that 
a working simulation code based on the previously de- 
veloped kinetic-MHD model [Cheng, 1991] has been de- 
veloped for studying energetic particle kinetic effects on 
MHD phenomena in tokamaks [Park et al., 1992], which 
clearly supports the feasibility of simulation based on 
the kinetic-fluid model. Such kinetic-fluid simulation 

studies will greatly enhance our understanding of im- 
portant nonlinear physics of plasma heating and trans- 
port, which in turn determines the long time dynamics 
and structure of plasma and magnetic field profiles. 
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