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[1] The nonlinear dependencies inherent to the historical Kp data stream (1932–2003) are
examined using mutual information and cumulant-based cost as discriminating statistics.
The discriminating statistics are compared with surrogate data streams that are constructed
using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture
the linear properties of the original Kp data. Differences are regularly seen in the
discriminating statistics a few years prior to solar minima, while no differences are
apparent at the time of solar maxima. These results suggest that the dynamics of the
magnetosphere tend to be more linear at solar maximum than at solar minimum. The
strong nonlinear dependencies tend to peak on a timescale around 40–50 hours and are
statistically significant up to 1 week. Because the solar wind driver variables, VBs, and
dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results
seem to indicate that the nonlinearity is related to internal magnetospheric dynamics.
Moreover, the timescales for the nonlinearity seem to be on the same order as that for
storm/ring current relaxation. We suggest that the strong solar wind driving that occurs
around solar maximum dominates the magnetospheric dynamics, suppressing the
internal magnetospheric nonlinearity. On the other hand, in the descending phase of the
solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the
dynamics exhibit a significant nonlinear internal magnetospheric response that may be
related to increased solar wind speed.
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1. Introduction

[2] It is well known that the magnetosphere responds to
variation in the solar wind parameters [Clauer et al., 1981;
Baker et al., 1983;Crooker and Gringauz, 1993; Papitashvili
et al., 2000], and it has been established that the magneto-
sphere has a significant linear response to the solar wind.
However, it is also expected that the magnetosphere has a
nonlinear behavior due to the internal dynamics associated
with loading and unloading of magnetic energy associated
with storms and substorms. In this paper we explore the
nonlinear behavior of the magnetosphere as characterized by
the planetary index, Kp.
[3] The data analysis of Bargatze et al. [1985] indicated

that the dynamical response of the magnetosphere to solar
wind input could not be entirely understood using linear
prediction filters. This finding led to an increasing emphasis
on detecting and understanding the nonlinear dynamical
behavior of the magnetosphere. A significant body of work
focused on trying to characterize magnetospheric dynamics
as a low dimensional chaotic, nonlinear system and focused

on calculating properties of a possible strange attractor in
the Earth’s magnetosphere [Vassiliadis et al., 1990; Roberts
et al., 1991; Roberts, 1991; Vassiliadis et al., 1991; Sharma
et al., 1993]. Many of these studies focused on estimating
the dimension of the attractor, using such measures as the
correlation integral or Taken’s estimator [Takens, 1980].
Such studies commonly use an embedding based on the
time history of a single variable.
[4] The study of Prichard and Price [1992] suggested

that for data sets with a long autocorrelation time, the
computation of the correlation integral leads to spurious
estimates of the dimension. Moreover, in many cases,
statistical tests of nonlinearity such as dimension or entropy
yield similar results for both the actual data set and
surrogate data sets [Theiler et al., 1992], suggesting that
those nonlinear tests do not reveal the presence of nonlin-
earity on the system [Prichard and Price, 1992]. A specific
paper addressing the AE index showed no evidence for low
dimensional behavior [Prichard and Price, 1993]. They
argued that it would be appropriate to study the solar
wind-magnetosphere interaction as an input-output system
rather than as an autonomous system.
[5] Following up on that suggestion, Price and Prichard

[1993] examined the nonlinear response of the AE index to
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the VBs input signal and concluded that there is some
evidence for a deterministic nonlinear response of the
Earth’s magnetosphere. They estimated that consideration
of the nonlinearity improved predictive capability by
roughly 10%. Improvements in predictive capability using
the technique of nonlinear filters [Vassiliadis et al., 1995;
Ukhorskiy et al., 2002] and neural networks [Gleisner
and Lundstedt, 1997] compared with linear predictive
filters are also suggestive that nonlinearities in magneto-
spheric dynamics are important and should be considered
for predictive models. That nonlinearity is important in
magnetospheric dynamics is also consistent with analysis
of physics basedmagnetospheric analogue models [Klimas et
al., 1992, 1994; Horton and Doxas, 1996].
[6] In this paper we apply two discriminating statistical

approaches to detect the presence of nonlinearity in mag-
netospheric dynamics, mutual information and cumulant-
based cost. The methods are applied to time series data for
Kp. The discriminating statistic basically provides a measure
of nonlinear relationships between past and future values of
the magnetic indices. Because these measures relate the
current state of the magnetospheric index to past values, it
provides a measure of predictability for the system.

2. Discriminating Statistics for Linear and
Nonlinear Dependencies

[7] It is useful to understand the probability of finding a
system in a particular state given past history of the system
and/or the past history of the system drivers. We therefore
consider a set of input variables x � (x1, x2, . . ., xn), which
could consist of past values of the system or data from an
external driver, and output variables y � (y1, y2, . . ., ym) for
the system. For the magnetospheric system, x could consist
of past history of solar wind drivers such as VBs and
dynamical pressure, as well as internal magnetospheric
variables such as geomagnetic indices and energetic particle
fluxes. The output variables could consist of future geo-
magnetic indices and particle fluxes.
[8] The standard approach from the theory of linear

systems for evaluating the dependencies of the output, y,
on the input, x, is to consider the covariance matrix for the
variable z = (X, y), where the covariance matrix is defined as
C(z) = h(z� hzi) � (z� hzi)Ti. From the covariance matrix we
can define a measure of the dependency of the output
variables on the input variables (e.g., the predictability)

l x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� det C zð Þð Þ

det C xð Þð Þ det C yð Þð Þ

s
; ð1Þ

which is a generalization of the well-known correlation
coefficient for one input and one output variable [Tsonis,
2001]. It is also obvious that if x and y are independent,
then l = 0. On the other hand, if x and y are linearly
dependent, det(C(z)) will vanish and l = 1.
[9] A more general measure of dependency between an

input and output is obtained by considering whether

P x; yð Þ ¼? P xð ÞP yð Þ; ð2Þ

where P(x, y) is the joint probability of x and y, while P(x)
and P(y) are the probability of x and y, respectively. If the

relationship holds, then the variables x and y are
independent. For all other cases, there is some measure of
dependency. In the case where the system output is
completely known given the input, P(x, y) = P(x). The
advantage of considering equation (2) is that it is possible to
detect the presence of higher order nonlinear dependencies
between the input and output even in the absence of linear
dependencies [Gershenfeld, 1998].
[10] In this work we employ two discriminating statistics

that quantify equation (2), mutual information and a
cumulant-based cost. Mutual information has the advantage
that in the limit of Gaussian joint probability distributions,
it may be simply related to the linear predictability l
defined earlier [Li, 1990]. Cumulants have the advan-
tage of good statistics for limited data sets and noisy
systems [Deco and Schürmann, 2000]. Moreover, for
high-dimensional systems it is more efficient to compute
moments of the data rather than try to construct the
probability density function.

2.1. Mutual Information

[11] Mutual information (MI) is obtained from entropies,
which provide a measure of uncertainty. The mutual infor-
mation between the input X and output y basically com-
pares the uncertainty of measuring a particular input and its
output together with the uncertainty of measuring the input
and the output independently. Computation of the mutual
information involves estimating the probability distribution
function using such methods as clustering, kernel density
methods, or quantization.
[12] For our study, the mutual information is computed as

follows: Suppose measurements of two quantities are
obtained (e.g., Solar Wind data and Kp measurements or
past Kp and future Kp). The data sets will span a range of
data which can be binned/quantized; the number of bins
may be different if the variables require different resolution.
After quantization, we have two variables, x and y, that will
take on discrete values, x̂ and ŷ, where

x̂ 2 1; . . . ;Nf g � @1; ŷ 2 1; . . . ;Mf g � @2: ð3Þ

The variables may be thought of as letters in alphabets @1

and @2, which have N and M letters, respectively. The
extracted data are then sequences of letters. The entropy
associated with each of the variables is defined as

H xð Þ ¼ �
X
@1

p x̂ð Þ log p x̂ð Þ;H yð Þ ¼ �
X
@2

p ŷð Þ log p ŷð Þ; ð4Þ

where p(x̂) is the probability of finding letter x̂ in the set of
x-data and p( ŷ) is the probability of finding letter ŷ in the set
of y-data. To examine the relationship between the two
variables, we extract a sequence of words (x̂, ŷ) from the
data set. The joint entropy is defined by

H x; yð Þ ¼ �
X
@1;@2

p x̂; ŷð Þ log p x̂; ŷð Þ; ð5Þ

where p(x̂, ŷ) is the probability of finding the word (x̂, ŷ) in the
set of (x, y)-data. The mutual information is then defined as

I x; yð Þ ¼ H xð Þ þ H yð Þ � H x; yð Þ: ð6Þ

Once the data is quantized, computation of the mutual
information simply involves sorting the data pairs, counting
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their occurrence, and summing over all possible word
combinations.
[13] For a continuous probability distribution, the mutual

information is generalized to

I x; yð Þ ¼
Z

p X0; y0ð Þ log p x0; y0ð Þ
p x0ð Þp y0ð Þ dx

0dy0: ð7Þ

In the limit of Gaussian distributed joint probability
distribution, the mutual information collapses to

I x; yð Þ ¼ 1

2
log

det C zð Þð Þ
det C xð Þð Þ det C yð Þð Þ

� �
; ð8Þ

where z = (X, y) so that it is natural to define a measure,
L(X, y), that includes both linear and nonlinear dependency
as

L x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2I x;yð Þ

p
ð9Þ

[Li, 1990; Darbellay and Vajda, 1999]. The mutual
information may vary from 0 to 1 so that L varies from
0 for independence to 1 for dependence.
[14] The difference between l and L signals the inade-

quacy of a linear model on the grounds that linear correla-
tions capture only linear relationships. As such, the cost,
DMI = L � l is an indicator of the presence of underlying
nonlinear dynamics [Tsonis, 2001].

2.2. Cumulant-Based Cost

[15] An alternative measure of the dependency between
the input and output is to compute a cost based on
evaluating the cumulants of the underlying probability
distribution [Deco and Schürmann, 2000]. The cumulants
may be obtained directly by computing moments from the
data and do not require reconstruction of the probability
density function.
[16] If equation (2) were true, then there would be certain

statistical relations between the higher-order correlation
tensors

Ci...j ¼
Z

dzP zð Þzi . . . zj � hzi . . . zji; ð10Þ

where z = (x, y), and i, . . ., j 2 1, . . ., n + m, where X and y
have dimensions n and m, respectively. By definition, zi is
an input variable if i 2 M � [1, n] and an output variable if
i 2 N � [n + 1, n + m]. In particular, the cumulants, K1i2...in ,
of the distribution are defined by

Ki ¼ Ci ¼ hzii
Kij ¼ Cij � CiCj ¼ hzizji � hziihzji
Kijk ¼ Cijk � CijCk � CjkCi � CikCj þ 2CiCjCk

Kijkl ¼ Cijkl � CijkCl � CijlCk � CilkCj � CljkCi

� CijCkl � CilCkj � CikCjl þ 2 CijCkCl

�
þ CikCjCl þ CilCjCk þ CjkCiCl þ CjlCiCk

þCklCiCj

	
� 6CiCjCkCl :

If equation (2) were true, all cumulants involving cross-
correlations between the input and output variables should
vanish. Therefore we define a cost function

DC ¼
X1
q¼1

X
i1;...;iq2�q

K2
i1i2...iq

; ð11Þ

where �q are all combinations of q integers I � (i1, . . ., iq),
such that I 62 M or I 62 N (that is, they are not exclusively
input variables or exclusively output variables).
[17] The cumulant-based cost can be used as an indi-

cator of nonlinearity by considering the differences be-
tween the cost truncated at second-order versus keeping
contributions to the cost from higher-order cumulants
[Deco and Schürmann, 2000]. When the joint probability
distribution is Gaussian, all higher-order cumulants van-
ish. It is therefore useful to Gaussianize each input/output
variable in computing this discriminating statistic [Kennel
and Isabelle, 1992; Schreiber and Schmitz, 1996; Deco
and Schürmann, 2000]. The procedure involves (1) draw-
ing a string random data of the same length as the
original data set from a Gaussian distribution, (2) order-
ing the two data sets numerically, and (3) inverting the
sorted Gaussian data (as described by Schreiber and
Schmitz [1996]) according to the inverse map of the
original data set. This procedure ensures that higher-order
cumulants that are nonzero are only the result of higher-
order correlations between the input and output variables
and gives a cleaner result.

2.3. Evaluating the Discriminating Statistic

[18] The presence of underlying nonlinear dynamical
behavior will be established using the discriminating statis-
tics DMI and DC. In order to establish the existence of a
nonlinearity in the data, we will construct realizations of
‘‘surrogate data’’ [Theiler et al., 1992; Prichard and Price,
1992] that share the same linear properties as the original
data. In particular, the ‘‘surrogate data’’ have the same
autocorrelation, power spectrum, and distribution of values
as the original data [Kugiumtzis, 1999]. If the discriminating
statistic for the original data is significantly different from
discriminating statistics of the ‘‘surrogate data,’’ then it is
unlikely that the original data could be modeled as a linear
process such as a simple autoregressive (AR) model. In this
way we falsify the ‘‘null hypothesis’’ that the underlying
dynamics can be described as a linear process.
[19] The discriminating statistic will be computed for the

actual data set, D0, as well as for NS surrogate data sets, DSi
,

(where Si is the ith surrogate set). Falsification of the null
hypothesis will be gauged by the significance, S = jD0 �
mSj/sS, where mS � SiDSi

/NS is the average of the statistic
over all surrogate data sets and sS

2 = S(DSi
� mS)

2/(NS � 1)
is the variance of the surrogate data. The hypothesis is
falsified when the significance exceeds an arbitrary value. A
common choice is 2 or 3 standard deviations, which gives
95% and 99.5% assuming a normal distribution. The
assumption of normal distribution is reasonable when as
few as 30 surrogate data sets are used. We have found little
difference from the case where as many as 500 surrogate
data sets were used.
[20] For the analyses in this paper we will be consid-

ering time series of geomagnetic indices. To prepare the
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surrogate data, we apply the corrected amplitude adjusted
Fourier transform method (CAAFT) [Kugiumtzis, 1999].
The generated surrogate data are like the amplitude-
adjusted Fourier transform method (AAFT) [Theiler et
al., 1992] but corrected to match the autocorrelation
(necessary due to the limited size of the data set
[Schreiber and Schmitz, 1996]). For the correction, a
linear interpolation for the graph of the relation between
the Gaussian and the transformed autocorrelation is found
for lags up to a given tmax. This tmax will be taken at
least as large as the maximum timescale of interest for
our calculations. Using this interpolation function, for the
autocorrelation of the given time series, the autocorrela-
tion of the respective Gaussian time series is estimated.
On the basis of this autocorrelation, the coefficients of the
corresponding AR model of order p (which we prescribe
as the length tmax/(number of measurements) are estimated

and an AR-time series is generated and transformed to
match the amplitude distribution of the original time series.
This process is performed 20 times to obtain a statistic of
candidate AR models. Then the most proper is selected, in
the sense that the autocorrelation of the generated surrogate
matches best the autocorrelation of original data set. On the
basis of this AR model, we generate realizations of a
surrogate data stream and transform to match the amplitude
distribution of original data. In our analysis, we find that the
linear properties of the data are well captured by this
method.

2.4. Significance as an Indicator of Nonstationarity

[21] If it is expected that the underlying dynamics of a
system are nonstationary, it is appropriate to test how the
significance changes as a function of time. This test may
be performed by considering the evolution of the signif-

Figure 1. Analysis of Kp data from 1980 to 1982 (near a solar maximum) using the difference between
linear predictability and mutual-information based predictability as the discriminating statistic. (a) The
linear predictability (l); (b) the mutual-information based predictability (L); (c) the discriminating
statistic (L � l); and (d) the significance based on Figure 1c. In all figures, the quantities derived from
the actual data are shown as solid lines, the means of the surrogates are shown with dotted lines, and the
upper and lower standard deviations of the surrogates are shown as dashed lines. Significances that are
positive (more nonlinear) are shown as an x, while negative (more linear) significances are shown with an
o. This analysis suggests that there is no statistical difference between the discriminating statistic for the
surrogate data and the actual Kp sequence. See color version of this figure in the HTML.
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icance computed in overlapping windows as a function of
time (a task similar to constructing a spectrogram). If the
significance changes appreciably over time, it is a good
indicator that the dynamics are changing. Because the
cumulant-based statistic has the advantage of good statis-
tics for limited data sets, the technique would be far
better than the mutual-information based statistic for
examining nonstationarity in a data set on short time-
scales. In our study, we examine the significance of the
underlying magnetospheric dynamics over the history of
the Kp which includes nearly seven full solar cycles. We
compute the discriminating statistic for each year using 3-year
windows of data, which is adequate to resolve changes in the
underlying dynamics over the course of an 11-year solar
cycle. In order to achieve good statistics using the mutual-
information based discriminating statistics it was necessary to
compute the significance using 3-year data windows. The use
of smaller data windows would degrade the mutual informa-
tion results so that no meaningful conclusion could be drawn
from the analysis. On the other hand, the cumulant-based
statistic could be reasonably applied to data windows as

short as a few days to detect changes in the underlying
dynamics.

3. Application to Magnetic Indices

[22] The state of the magnetosphere is commonly
designated using the global magnetic activity index, Kp.
K indices isolate solar particle and IMF effects on the
Earth’s magnetic field; over a 3-hour period, they classify
into disturbance levels the range of variation of the more
unsettled horizontal field component on the ground.
Each activity level relates almost logarithmically to its
corresponding disturbance amplitude. Three-hour indices
discriminate conservatively between true magnetic field
perturbations and the quiet-day variations produced by
ionospheric currents. K indices are quantized in 28 steps
from 0 (quiet) to 9 (greatly disturbed), with fractional
parts expressed with ± or in thirds of a unit.
[23] Our initial examination of the nonlinearity of the Kp

time series suggested a solar cycle dependence in the
nonlinearity. In order to achieve better statistics (particularly

Figure 2. Analysis of Kp data from 1999 to 2001 (near a solar maximum) using the difference between
linear predictability and mutual-information based predictability as the discriminating statistic. The
format is the same as for Figure 1. Note that as for the 1980–1982 solar maximum, there is no evidence
to suggest any difference in the discriminating statistic from the surrogate data which was obtained from
the corrected amplitude adjustment Fourier transform (CAAFT) method. See color version of this figure
in the HTML.
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for the mutual-information measure), we found it useful to
consider data from 3-year windows. This length of window
is appropriate for discriminating differences in dynamical
behavior over the course of the 11-year solar cycle.

3.1. Mutual-Information Based Predictability

[24] In Figure 1 we show the results from the mutual-
information based predictability for data near a solar maxi-
mum for the years 1980–1982. Figure 1a shows the linear
correlation as a function of time delay. Figure 1b shows the
mutual-information based measure of correlation as a func-
tion of time delay. Figure 1c shows the difference between the
linear l and nonlinear lmeasures shown in Figures 1a and 1b
as a function of time delay. The mean and spread of the
surrogate data are also shown with dotted and dashed lines,
respectively. The significance based on Figure 1c is shown in
Figure 1d. The open circles indicate that the measure of
nonlinearity suggests the measured data was more linear than
the surrogates, while the crosses indicate when the signifi-
cance indicates the measured data was more nonlinear than
the surrogates. Several items of importance should be noted.

First, Figure 1a demonstrates that the linear properties of the
surrogate data sets are statistically identical to those of the
measured data. Second, the nonlinearity measure of
the surrogate data increases with time delay. This increase
is a result of (1) the limited size of the data set, (2) the fact that
the data is not Gaussian distributed, and (3) the fact that the
CAAFTmethod, while preserving linear properties, is itself a
nonlinear transform which could introduce additional non-
linearities into the data. Third, for this solar maximum the
value of the significance is generally less than 1, indicating
that there is no statistical difference between the measured
data and the surrogate data. Therefore the assumption that the
underlying dynamics can be described with a linear AR
process based on the last 200 hours of data is not falsified.
A second example showing similar results for another solar
maximum is shown in Figure 2.
[25] For a solar minimum (1994–1996) the results of this

analysis are strikingly different, as shown in Figure 3.
The format of the plots is the same as in Figure 2. While
again, the surrogates capture the linear properties of the
data, the measure of nonlinearity is significantly different.

Figure 3. Analysis of Kp data from 1994 to 1996 (near a solar minimum) using the difference between
linear predictability and mutual-information based predictability as the discriminating statistic. The
format is the same as for Figure 1. Note that although the linear properties of the Kp time series are well
reproduced by the surrogates, the discriminating statistics indicate that there is significant nonlinearity
that has not been captured. The significance can be as large as 4 standard deviations and peaks
around 50 hours. See color version of this figure in the HTML.
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The significance exceeds 3 for time delays on the order of 40–
75 hours, falsifying the null hypothesis that the system could
be modeled as a linear AR process on those timescales. The
negative values for the significance for short delays indicates
that the real data behavesmore linearly than the surrogate data
(but also seems related to the fact that the surrogates do not
have much spread at small correlation time). A similar case is
shown for another solar minimum in Figure 4 which also
indicates a peaked nonlinear significance at a correlation time
of 50 hours. It should be noted that the nonlinear peak for
1994–1996 is broader than the more focused peak for 1974–
1976 which has very high significance. It should be
concluded that there is a significant nonlinearity in the
underlying dynamics of the system for these years.
[26] In order to evaluate whether this nonlinear feature is

related to the solar cycle, we examined all data available
from 1932 to 2003 using a 3-year window as in Figures 1–
4. The results of this analysis are shown in Figure 5. In this
figure we present several measures of nonlinear significance
over the course of several solar cycles. Figure 5a shows the
maximum significance for each year. Figure 5b shows an
integrated measure of the significance. Significances which
either (1) indicate that the data is more linear than the

surrogates (as for small time delay in Figure 3) and/or (2) are
less than 2 standard deviations are set to 0 when performing
the average. Our choice of two standard deviations ensures
that there is at least a 95% probability that the nonlinearity
measures are significant. Figure 5c shows the same thing at
the three standard deviation level which ensures over 99%
probability that the nonlinearity measure is significant. It
should be noted that only the relative value of the integrated
significance should be compared over the solar cycle (as the
significance may be sharply peaked and average to less than
1). Figure 5d shows occurrences of time delays for different
bounds on the significance. We have also displayed the
sunspot number in Figures 5a, 5b, and 5c for comparison.
There is an obvious solar cycle effect. There tend to be
minima in significance around the peak in the sunspot
number. Maxima in the nonlinearity appear approximately
2 years prior to minimum sunspot number.

3.2. Cumulant-Based Significance

[27] We performed a similar analysis of Kp using the
cumulant-based cost defined earlier. For this particular
analysis, we Gaussianized the data and computed surrogate
data sets using the CAAFT procedure. We show the same

Figure 4. Analysis of Kp data from 1974 to 1976 (near a solar minimum) using the difference between
linear predictability and mutual-information based predictability as the discriminating statistic. The
results are similar to the analysis of the solar minimum shown in Figure 3. See color version of this figure
in the HTML.
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solar maximum as computed with the mutual information
measure in Figure 6. In Figure 6a we show the cost obtained
when cumulants are kept to second order. In Figure 6b we
show the cost obtained when cumulants are kept to fourth
order. Figures 6c and 6d show the cumulant-based signif-
icance based on second-order cumulants (SL) and fourth-
order cumulants (SNL), respectively. A second example is
shown in Figure 7.
[28] Several features are of interest. First, the linear

significance measure shows virtually no difference between
the measured data and the surrogate data. This result
indicates that the method used to construct the surrogates
preserves the underlying linear dynamics in accordance
with the null hypothesis. Second, although the fourth-order
cost does not track the mean of the surrogates, it does lie for
the most part within the spread of the surrogates, and
therefore we cannot conclude that there is any indicator of
nonlinearity.

[29] On the other hand, for the solar minimum discussed
earlier we find a similar indicator of nonlinearity. Figures 8–9
are in the same format as Figure 6 for the years 1994–1996
and 1974–1976. As for the case of solar maximum, the linear
cost of the data and surrogates is in excellent agreement. On
the other hand, the fourth-order cost reveals a significant
difference from the surrogate data. For 1994–1996 the
appearance of a broad range of nonlinearity extending up to
75 hours is in accordance with our earlier findings based on
the mutual-information statistic shown in Figure 3, although
the peak maximum is shifted to longer timescales. For 1974–
1976 the peak significance is much sharper, stronger, and
peaks around 50 hours as in Figure 4.
[30] We also performed an analysis for the years 1932–

2003 using the cumulant-based significance as shown in
Figure 10. For this case, the solar cycle dependence of the
nonlinearity is even more obvious than for the mutual-
information based statistic. The peak occurs roughly 2 years

Figure 5. The solar cycle dependence of the mutual-information based significance is shown for the
historical Kp time series. (a) The maximum significance for each 3-year window of data; (b) integration
of all positive significance larger than 2; (c) integration of all positive significance larger than 3; and (d) a
histogram of all significance measures larger than 2 for all historical Kp. The data are grouped into several
significance ranges. Statistically, large significance appears to peak around 30–50 hours. When the
significance is larger, the peak is tightly clustered around 50 hours. For reference, the sunspot number
(scaled for clarity) has been displayed in Figures 5a–5c with a light line. Note that minima in the
nonlinearity coincide with maximum sunspot number and the maximum nonlinearity occurs
approximately 2 years before the minimum sunspot number. See color version of this figure in the HTML.

A04211 JOHNSON AND WING: SOLAR CYCLE DEPENDENCE

8 of 20

A04211



prior to minimum sunspot number. Although the peak
significance does vary from solar cycle to solar cycle,
within the solar cycle the value of the significance and the
time delay remain roughly the same. We also performed a
statistic on the occurrences of various time delays binned
according to the significance measure. The most significant
events appear to have a time delay around 25–50 hours,
although the peak is broad. At higher significance, the peak
shifts up to around 50 hours.

3.3. Comparison of M-I and Cumulant Results

[31] Qualitatively, the mutual information approach and
the cumulant-based approach present similar results.
Figures 1–2 and 6–7 each indicate that for those solar
maxima there is no detectable nonlinearity in the data. On
the other hand, Figures 3–4 and 8–9 each indicate that just
prior to solar minimum there is a significant nonlinearity. In
comparing Figures 3 and 8, it should be noted that both
discriminating statistics indicate a strong broad nonlinearity

ranging up to 75 hours with weaker nonlinearity up to
150 hours (�1 week). In contrast, the nonlinearity shown
in Figures 4 and 9 is more sharply peaked near 50 hours
and is qualitatively similar.
[32] Figures 5 and 10 indicate a solar cycle dependence.

The sunspot number is shown in these plots for reference.
Maxima and minima in sunspot number are clearly seen in
the data for these years with an 11 year period. The solar
cycle proceeds in the following manner: just prior to solar
minimum, a band of sunspots forms at midlatitude on
the solar surface and rapidly reaches a peak in number.
The sunspot bands gradually move to lower latitude over the
course of the solar cycle and eventually disappear following
the emergence of a new band of sunspots at midlatitude. At
the time of solar minimum, sunspot bands at both midlati-
tude and low latitude are found. The solar wind plasma also
changes character during the solar cycle. Recent satellite
observations from Ulysses indicate that in the declining
phase near solar minimum, most of the energy from the

Figure 6. Analysis of Kp data from 1980 to 1982 (near a solar maximum) using the cumulant-based
cost as the discriminating statistic. (a) The cost based on keeping cumulants to second order; (b) the cost
based on keeping cumulants to fourth order; (c) the linear significance (based on Figure 6a); and (d) the
nonlinear significance (based on Figure 6b). That the surrogate data constructed by the CAAFT method
captures the linear properties of the data well is indicated by a linear significance that is generally less
than 1. For this data the nonlinear significance of the actual data does not differ appreciably from the
surrogate data. In Figures 6a and 6b the mean of the surrogate is shown with a dotted line and the
standard deviation are shown as dashed lines. See color version of this figure in the HTML.
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solar wind source goes into a steady high-speed polar solar
wind. The fast flows arise from large coronal holes that cover
the polar regions at this time during the solar cycle. At low
latitudes, the solar wind is much slower and intermittent
[McComas et al., 2000]. On the other hand, during solar
maximum, the global three-dimensional structure of the
solar wind is completely different. Near maximum, highly
variable flows are observed at all heliolatitudes. These
flows arise from a mixture of sources including streamers,
coronal mass ejections, and small low-latitude coronal holes
[Neugebauer et al., 2002].
[33] The maxima of the nonlinear significance occurs

just prior to the reemergence of sunspots at midlatitude at
the time of high-speed polar streams. Both the mutual-
information based and cumulant-based measures show
this behavior. The cumulant-based measure seems to yield
more uniform results with less variation, while the
mutual-information based measure seems to have greater
variation in the peak amplitudes. The peaks in nonlinearity
near 1964 and 1985 appear to be more emphasized with
the cumulant-based measure than the mutual-information
based measure.

[34] The binned delays also provide an interesting com-
parison. In both cases the total distribution of nonlinearity
with significance greater than 3 appears to peak around 25–
50 hours. However, the mutual-information based signifi-
cance seems to provide a much more sharply peaked
distribution than the cumulant-based significance. In both
cases, higher significance nonlinear correlations tend to
peak around 50 hours.
[35] While there are many similarities in the results, the

differences likely rise from the statistical nature of the
analysis. In computing the mutual-information based
measure, we considered 3-year windows of data, which
provided approximately 8760 data points from which to
construct the probability distributions. For histogram
estimation of the probability distribution function it is
proposed that log2 N + 1 + log2(1 + k̂

ffiffiffiffiffiffiffiffiffi
N=6

p
) is the

proper number of bins for histogram estimation, where N
is the number of data points and k̂ is the kurtosis of the
data [Venables and Ripley, 1994]. This gives 18 data bins,
which we have found to give the best statistics. Indeed, using
the actual binning of Kp into 28 discrete bins provides far
noisier statistics and the nonlinearity cannot be identified. The

Figure 7. Analysis of Kp data from 1999 to 2001 (near a solar maximum) using the cumulant-based
cost as the discriminating statistic. The format is the same as for Figure 6. Note that as for the 1980–1982
solar maximum, there is no evidence to suggest any difference in the discriminating statistic from the
surrogate data which was obtained from the CAAFT method. See color version of this figure in the
HTML.
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best binning choice also tries to divide the data equally among
the bins, which tends to wash out features in the higher
Kp values. On the other hand, the cumulant-based signifi-
cance does not require binning of the data, as it is based on
moments of the distribution.Moreover, we also Gaussianized
the data, which also provides a cleaner signal for the discrim-
inating statistic. Because the cumulant-basedmeasure ismore
reliable for limited and noisy data sets, we are inclined to trust
that statisticmore than themutual informationwhere there is a
discrepancy between them.

3.4. Is the Nonlinearity Imposed by the Solar Wind?

[36] Having established that there is a nonlinearity in the
Kp data, it is natural to ask whether the nonlinearity is
intrinsic to the solar wind or whether it is the result of the
nonlinear interaction between the solar wind and the mag-
netosphere. To examine this question, it is useful to examine
the solar wind data. It is commonly believed that VBs and
the dynamical pressure are drivers of magnetospheric activ-
ity. The history of these variables from November 1963

through November 1999 has been presented by Papitashvili
et al. [2000]. In the last two solar cycles, the maxima of VBs

occurred shortly after the peak sunspot number, while the
minima coincided with minimum sunspot number. The
dynamical pressure rises abruptly over 1 to 2 years begin-
ning near solar maximum, then slowly decreases until the
next solar maximum [Papitashvili et al., 2000; Richardson
et al., 2001].
[37] To evaluate the intrinsic nonlinearity in the solar

wind, we examine data taken from the WIND satellite. The
data has been propagated from the satellite location to the
Earth and is computed in the GSM coordinate system.
Because there is missing data in this time series, it is not
straightforward to apply the CAAFT method to construct
surrogate data. The following procedure was used to con-
struct the surrogate data sets. First, the autocorrelation for
the original data set was computed from available data. This
procedure only requires pairs of data points separated by
time t which ranges in our calculation up to an arbitrary
cutoff. Once the autocorrelation function is computed, we

Figure 8. Analysis of Kp data from 1994 to 1996 (near a solar minimum) using the cumulant-based cost
as the discriminating statistic. The format is the same as for Figure 6. Note that although the linear
properties of the Kp time series are well reproduced by the surrogates, the discriminating statistic
indicates that there is significant nonlinearity that has not been captured. Note that there is a broad range
of large significance with a noticeable peak around 75 hours. The broad extent of the large significance is
similar to Figure 3, although the maximum significance appears to be shifted to 75 hours. See color
version of this figure in the HTML.

A04211 JOHNSON AND WING: SOLAR CYCLE DEPENDENCE

11 of 20

A04211



obtain the Fourier transform which is the power spectrum of
the original time series. The power spectrum could also be
obtained using Fourier techniques developed for unevenly
sampled data [Press et al., 1992, section 13.8]. From the
power spectrum we take the square root of the Fourier
coefficients and multiply by random phases. The inverse
Fourier transform then provides surrogate data which is
sorted and mapped to the original data set. The surrogate
data has the same linear properties as the original data set.
The proof of this assertion lies in the comparison of the
linear significance of the original data (with its data gaps)
and the surrogate data sets.
[38] In Figure 11 we plot the linear and nonlinear cost of

the VBs time series for 1995. When comparing this figure
with Figure 8, notice the significant differences in the
timescale for the decay of correlations. The magnetosphere
requires about twice as long to become decorrelated than the
solar wind. Moreover, the nonlinear cost of the magneto-
sphere decays over a far longer timescale (1 week) com-
pared with the falloff of the solar wind (which basically
shows no substantial correlations beyond 2 days). There is a
relatively strong nonlinearity in the solar wind detected up
to around 25 hours. The nonlinearities at 80 and 180 hours

barely rise above the 3 sigma significance compared with
the large significance levels seen in the Kp data over the
extended period. Moreover, the peaks at large t are ques-
tionable in light of the small value of the cost. The large
sigma value occurs because all the surrogates basically
show no correlation beyond about 30 hours, and therefore
the spread of the surrogates is small, leading to an overly
enhanced significance. The spread in the solar wind data
should be contrasted with the spread in the Kp surrogates,
which remains relatively constant over the entire range of t.
[39] The dynamic pressure shown in Figure 12 for 1995

has a longer correlation time than VBs but there is no
indication of the existence of nonlinear correlations over the
entire range of correlation time considered. It is not readily
apparent why the short correlation time nonlinearity of VBs

is not also seen in the dynamical pressure. It should also be
noted that because the correlations do not decay so rapidly
the spread of surrogates remains reasonably large and no
spurious peaks are found at long correlation time.
[40] At solar maximum, basically the same pattern is seen

in the solar wind data with strong nonlinearity in VBs at
short correlation time. The absence of any apparent solar
cycle nonlinearity that matches the magnetospheric nonlin-

Figure 9. Analysis of Kp data from 1974 to 1976 (near a solar minimum) using the cumulant-based cost
as the discriminating statistic. For this case, the significance is more sharply peaked than for Figure 8 and
similar to the significance based on the mutual-information based statistical measure shown in Figure 4.
See color version of this figure in the HTML.

A04211 JOHNSON AND WING: SOLAR CYCLE DEPENDENCE

12 of 20

A04211



earity leads us to conclude that the nonlinearity detected in
Kp is not the result of an intrinsic nonlinearity in the solar
wind that is being filtered by the magnetosphere. It seems
more likely that the nonlinearity is the result of the nonlin-
ear interaction between the solar wind and magnetosphere
that results from intrinsic nonlinear behavior of the magne-
tosphere responding to the solar wind driver.

3.5. Cross-Significance of Solar Wind and
Magnetosphere Data

[41] So far, we have only considered dependencies be-
tween the input and output for single variables (Kp, VBs,
and dynamical pressure). In this section, we generalize the
approach to consider the nonlinear correlations between
multiple variables. In this case, we are interested in under-
standing the nonlinear coupling between the solar wind and
magnetospheric dynamical systems. Price and Prichard
[1993] examined a similar question using a variety of

statistics and concluded that VBs and AE exhibited some
evidence for deterministic nonlinear response using two
different discriminating statistics. We therefore consider
coupling between a solar wind variable such as VBs and
Kp. For this comparison, we will consider the contribution
to the higher-order cumulants for (1) {VBs(t � t), Kp(t)},
(2) {VBs(t � t), VBs(t)}, and (3) {Kp(t � t), Kp(t)} as
shown in Figure 13. As we have seen previously, the higher-
order cumulants provide a measure of nonlinearity relative
to a set of surrogates. For simplicity, in this analysis, we
Gaussianize the variables and construct the surrogates by
scrambling the data. We plot difference between the
second- and fourth-order cumulants against the correlation
time. The cumulants are normalized to a common factor.
[42] We present our analysis for 1995 in Figure 13, which

is near a solar minimum and was examined previously in
Figures 8 and 11. The first item to be noted is that the
difference between the fourth-order cost and second-order

Figure 10. The solar cycle dependence of the cumulant-based nonlinear significance is shown for the
historical Kp time series. (a) The maximum significance for each 3-year window of data; (b) integration
of all positive significance larger than 2; (c) integration of all positive significance larger than 3; and (d) a
histogram of all significance measures larger than 3 for all historical Kp. The data are grouped into several
significance ranges. Statistically, the significance peaks around 40–50 hours. When restricted to larger
significance events the peaks remain at approximately the same time delay. For reference, the sunspot
number (scaled for clarity) has been shown in Figures 10a–10c. Note that minima in the nonlinearity
coincide with maximum sunspot number and the maximum nonlinearity occurs approximately 2 years
before the minimum sunspot number. See color version of this figure in the HTML.
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cost is qualitatively representative of the nonlinear signifi-
cance when the costs were compared against surrogate data
sets. This is the obvious consequence that the surrogate data
basically have the same second-order cumulant as the
original data and the fourth-order cumulant statistically
vanishes. It is clear that the VBs nonlinearity has shorter
correlation time than the Kp nonlinearity. Moreover, the
cross-correlation between VBs and Kp peaks around 3 hours
and then tracks the VBs nonlinearity up to around 25 hours.
The peak around 3 hours is similar to timescales obtained
from linear prediction filters that are dominated by the linear
magnetospheric response [Bargatze et al., 1985]. On the
other hand, the nonlinear cross-correlation does not appear
at all like the Kp nonlinearity, which has timescales on the
order of 50 hours. This result suggests that the Kp nonlin-
earity is related to internal magnetospheric dynamics and
not to inherent nonlinearity in the solar wind driver.

3.6. Solar Cycle Dependence of the Nonlinearity

[43] Our study seems to indicate that the magnetospheric
dynamics captured by the Kp index exhibits a nonlinearity.

Although the nonlinearity does not appear to be intrinsic to
the solar wind, it does appear to be related to the solar cycle,
as evidenced by the solar cycle dependence of the signifi-
cance. It is natural to consider whether the nonlinearity may
be related to the strength of the solar wind driver, which
determines the nonlinear dynamical properties for analogue
models of the magnetosphere [e.g., Klimas et al., 1992;
Horton et al., 1999].
[44] Owing to the strong linear response of the mag-

netosphere to solar wind drivers [Bargatze et al., 1985;
Vassiliadis et al., 2002], it is reasonable to consider the
Kp level as an indicator of the strength of the driver. We
performed a linear cross-correlation study comparing the
monthly sunspot number with the monthly average of the
Kp index since 1932. The results are shown in Figure 14.
First, it is apparent that Kp is highly correlated on
average with the 11 year solar cycle over the history of
the Kp index with a short 1- or 2-year lag time. (It should
be noted that solar cycle 21 has an unusually large 4-year lag
time). The maximum anticorrelation occurs with a time lag
of 6 years, indicating that the smallest monthly average Kp

Figure 11. Analysis of VBs data from 1995 (near a solar minimum) using the cumulant-based cost as
the discriminating statistic. (a) The linear cost keeping cumulants to second order, (b) the nonlinear cost
keeping cumulants to fourth order, (c) the linear significance comparing with the surrogate data, and
(d) the nonlinear significance. The mean of the surrogate data is shown in dotted and the spread with
dashed lines. The main feature is the existence of a nonlinearity at correlation times between 5 and
30 hours. See color version of this figure in the HTML.
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tends to occur 6 years following solar maximum (that is, at
solar minimum). Although not plotted, the minima and
maxima autocorrelation for the sunspot number basically
occur at the same lag as the cross-correlation of Kp and the
sunspot number. This result shows that magnetospheric
activity is strongest just following the solar maximum and
gradually weakens approaching solar minimum. It seems
reasonable to conclude that the primary driver of this activity
is strongest around solar maximum and becomes weaker
approaching solar minimum.
[45] On the other hand, the cumulant-based significance

shown in the dashed curve of Figure 14 appears to be
anticorrelated with the sunspot number with a time lag of
approximately 4.5 years. The mutual-information based
significance has a slightly shorter time lag. If the strength
of Kp is considered as a proxy for strength of the primary
solar wind driver, this result indicates that the primary solar
wind driver is not in phase with the nonlinearity detected by
the statistical analysis presented in this paper.
[46] As mentioned in section 3.3, the appearance of

nonlinearity in the descending phase of the solar cycle
occurs around the time when high-velocity streams are
observed at high latitude with respect to the ecliptic plane

of the solar system. There is also an increase in solar
wind velocity at low latitudes during the descending
phase to solar minimum [Luhmann et al., 2002]. It should
be noted however that the total ram pressure near the
Earth (considered to be a primary driver) actually
decreases at this time due to an decrease in density
[Richardson et al., 2001; McComas et al., 2003]. Because
the primary drivers of magnetospheric activity would
appear to be decreasing at this time, it seems plausible
that the solar wind velocity acts as a secondary driver
with increased importance. The solar wind speed is, in
fact, believed to have a significant driving effect on
magnetospheric activity as evidenced through correlations
between the solar wind speed and electron fluxes in the
magnetosphere [Vassiliadis et al., 2002].
[47] To examine the relationship between the solar

wind velocity and the nonlinearity detected in the
descending phase of the solar cycle, we have examined
the relationship between the solar wind speed measured
by IMP8 and a measure of nonlinear significance (taken
from Figure 10b) in Figure 15a. The average velocity
(computed with a 100-day window) is compared with
yearly significance computed with a 3-year sliding win-

Figure 12. Analysis of dynamic pressure data from 1995 (near a solar minimum) using the cumulant-
based cost as the discriminating statistic following the same format of Figure 11. The main feature is the
absence of any appreciable nonlinearity. Note that the strong nonlinearity seen in VBs at small correlation
time is absent in the analysis of the dynamical pressure. See color version of this figure in the HTML.
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dow, and it can be seen that the speed and significance
are somewhat correlated (although the fact that some
features are not correlated does indicate that the relation-
ship may be more complicated). The linear cross-correla-
tion between the mutual-information based significance
and the solar wind speed demonstrates that they are best
correlated with time lag smaller than 1 year (that is, they
both peak around the same time during the solar cycle).
We therefore conclude that although the nonlinearity is
not well correlated with the maximum of Kp activity, it is
closely correlated with increased solar wind speed during
the descending phase prior to solar minimum.
[48] This finding raises a number of interesting questions.

First, the fact that the nonlinearity detected in our study
(Figures 5 and 10) appears to maximize just prior to solar
minimum (when the primary driver is weaker) and to
minimize around solar maximum (when the primary driver
is stronger) seems somewhat counterintuitive. Indeed,
studies of the analogue model of Klimas et al. [1992]
found regular periodic behavior of the model magneto-
sphere for a weak steady driver but chaotic model
behavior for a strong intermittent driver. The increase of
CMEs and solar wind drivers such as VBs and dynamic
pressure around solar maximum would seem to be the
natural conditions for increased nonlinear behavior. Such
nonlinearity was not detected in our analysis.

[49] On the other hand, Horton et al. [1999] presented
a study of a complex dynamical system known as the
WINDMI model for the solar wind driven magneto-
sphere-ionosphere system. The solar wind driving poten-
tial was used as a forcing parameter in the model. As
forcing was increased, the low-state fixed point lost its
stability leading to period doubling bifurcations and
chaos. However, at stronger forcing, the system eventu-
ally returned to stability [Horton et al., 1999]. Horton et
al. [1999] suggested that the inverse bifurcation corre-
sponded to storm-like magnetospheric states. It may well
be that around the time of solar maximum, when the
magnetospheric driver is stronger, the system is over-
driven and responds more linearly. Such behavior is
typical of a driven, damped pendulum. When weakly
driven, the pendulum exhibits linear behavior. At larger
amplitudes, the pendulum enters a chaotic regime where
the dynamics are highly nonlinear. When overdriven, the
pendulum again exhibits linear behavior.
[50] On the other hand, in the descending phase of the

solar cycle just prior to solar minimum, the primary driver is
weaker but the velocity is larger. The increased solar wind
velocity appears to be related to a significant nonlinear
internal magnetospheric response. We suggest that when the
primary solar drivers are large, the magnetosphere locks on
to the solar wind and the linear response to the solar wind
dominates dominates internal magnetospheric dynamics. In
the descending phase of the solar cycle prior to solar

Figure 13. Higher-order cumulants obtained from the
following input-output pairs: {VBs(t � t), Kp(t)} (dotted)
{VBs(t � t), VBs(t)} (dashed), and {Kp(t � t), Kp(t)}
(solid) for 1995. The difference between the fourth-order
cumulant measure and the second-order cumulant measure
is shown as a function of correlation time, t. The cumulants
are all normalized to a common factor and the reader is
referred to Figures 8 and 11 for comparison with surrogate
data. Note that the cross-correlation between the solar wind
VBs data andKp tracks theVBs nonlinearity between 10 hours
and 25 hours. On the other hand, the high significance
peaks in the Kp nonlinearity do not appear to be related
to the intrinsic solar wind nonlinearity. This result
suggests that the Kp nonlinearity is the result of internal
dynamical behavior of the magnetosphere. See color
version of this figure in the HTML.
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Figure 14. Linear cross-correlation, l of the sunspot
number, NSS(t), with Kp (t + t) and the cumulant-based
integrated significance from Figure 10b as a function of
correlation time, t in years. It is apparent that the Kp index
is closely related to the sunspot number, while the
significance is somewhat anticorrelated. If the Kp index is
taken as a proxy for the strength of the magnetospheric
driver, it is apparent that the driver follows the solar cycle
(maximum at solar maximum and minimum at solar
minimum). It should be noted that the maximum signifi-
cance correlation typically occurs 2 years prior to solar
minimum. See color version of this figure in the HTML.
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minimum, when the magnetosphere is more weakly driven
by the solar wind, the internal magnetospheric dynamics
related to increased solar wind velocity can play a more
important role.

3.7. Physical Mechanisms Responsible for the
Nonlinearity

[51] It is also of interest to identify the physical mecha-
nism responsible for the nonlinear dynamical behavior. The
typical timescale for the magnetospheric nonlinearity
detected in our analysis is on the order of 1 to 2 days. The
nonlinearity typically decays away on the order of 1 week.

This timescale ismuch longer than the coherence time of solar
wind drivers or coupling processes related to global Geotail
Alfvén oscillations (approximately 1 hour) or M-I coupling
mediated byAlfvénwaves (approximately 10min) [Horton et
al., 1999].
[52] On the other hand, the timescales are consistent

with relaxation processes that are associated with dis-
turbed magnetospheric events. Recovery from storms
typically last up to a week in accordance with the decay
of the nonlinear significance. Moreover, the 1–3 day
timescale for nonlinear response is well in accordance
with relaxation processes that are responsible for recovery
of the magnetosphere. A similar analysis of Dst data
indicates very similar behavior of the nonlinear response
with a nonlinear response peaked around 1–2 days. By
examining 300-hour windows for the cumulant based
significance, we also found that large significance typi-
cally accompanies large negative excursions of the Dst

index. These factors suggest that the nonlinear peaks may
be associated with recovery of the ring current following
storms. Moreover, electron fluxes out to geosynchronous
orbit are also observed to be correlated with solar wind
speed on the timescale of 1 to 2 days [Vassiliadis et al.,
1999].
[53] While the Kp index was not designed to provide

the best measure of the ring current, it does respond to
changes in the ring current. The ring current at the time
of storms is built up through injection of particles from
the magnetotail and outflows from the ionosphere. During
the recovery phase of storms, the ring current decays due
to various loss mechanisms, such as adiabatic drifts
through the dayside magnetopause, charge exchange,
wave-particle interactions, Coulomb collisions, and colli-
sions at low altitude with the atmosphere [Daglis et al.,
1999; Jordanova, 2003, and references therein]. The
primary loss mechanism for the storm-time ring current
is charge exchange which has a lifetime of hours to days
[Tinsley, 1976]. Radial diffusion due to ULF waves and
VLF waves play an important role in the relaxation of
energetic electron populations that build up at the time of
storms and typically have lifetimes on the order of days
[Elkington et al., 2003; Shprits and Thorne, 2004].
Moreover, ground observations indicate that ULF waves
have a higher occurence rate during periods of high solar
wind speed [Kokubun et al., 1989; Engebretson et al.,
1998]. It has been speculated that these waves are
Kelvin-Helmholtz waves generated by the flow of the
solar wind past the magnetospheric boundary [Cahill and
Winckler, 1992; Mann et al., 1999]. If the waves result
from a velocity driven instability, it is reasonable that
they are related to the inherent nonlinear magnetospheric
response which is more correlated with solar wind veloc-
ity than with solar wind pressure. Electromagnetic ion
cyclotron may also contribute to relaxation of the ring
current. Khazanov et al. [2002] and Jordanova [2003]
have shown that wave growth of electromagnetic ion
cyclotron waves near the He+ and O+ cyclotron frequen-
cies can also be a significant source of ion loss due to
wave-particle scattering into the loss cone. Such waves
are typically excited by temperature anisotropies that
develop as the result of (1) compression of the magne-
tosphere and (2) differences in gradient and curvature
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Figure 15. (a) The solar wind speed and the significance
obtained in Figure 10b. The velocity has been averaged over
100-day windows. (b) The correlation is peaked at zero time
delay indicating that the appearance of the nonlinearity is
well correlated with the appearance of high-speed velocity
streams. It should be noted that other variables such as VBs
and dynamical pressure are not closely related temporally to
the significance. See color version of this figure in the
HTML.
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Figure 16. Performance of the Costello NN over two solar cycles from 1974 to 1998. The True Skill
Statistic (TSS) and Gilbert Skill (GS) scores have the following interpretation: a value of 1 indicates a
perfect forecast, a value of 0 indicates a random forecast, and negative values can also indicate
anticorrelation between the forecast and the data. The results indicate that the Costello network could use
improvement, especially for active conditions. Moreover, the variation of the scores over the solar cycle
indicates that the neural network performs much better at solar maximum than at solar minimum. This
result is not surprising given our finding that the dynamics involve more nonlinearity at solar minimum.
See color version of this figure in the HTML.

A04211 JOHNSON AND WING: SOLAR CYCLE DEPENDENCE

18 of 20

A04211



drift as a function of pitch angle. The timescale for EMIC
induced proton diffusion is 0.8, 4.3, and 48 days for EMIC
amplitudes of 0.1, 0.035, and 0.01 nT [Albert, 2003].
EMIC waves in the equatorial region are commonly found
with amplitudes as large as 1 nT [Labelle and Treumann,
1992]. It should be noted that oxygen, hydrogen, and helium
decays may be somewhat different leading to multiple-phase
decays as well.

3.8. Relevance of Nonlinearity to Kp Predictive Models

[54] The existence of significant nonlinearity in Kp dy-
namics due to internal magnetospheric dynamics could
potentially complicate predictability of magnetospheric dy-
namics based on solar wind input. The importance of this
internal response has been recognized and included in
empirical predictive models [Burton et al., 1975] and has
also been incorporated into neural network models using
recurrent neural networks which allows for a nonlinear
memory capacity [Wu and Lundstedt, 1996, 1997].
[55] In the context of our statistics-based findings it is

interesting to consider the results of the Costello neural
network (available at http://www.sec.noaa.gov/rpc/costello/
index.html) [Costello, 1997], which is purely driven by the
solar wind inputs: V, IMF jBj, and IMF Bz. We examined the
performance of the Costello neural network over the course
of two solar cycles (1975–2001). The model was evaluated
by comparing the neural network predictions with the data
using the skill scores defined in the work of Detman and
Joselyn [1999] and the results are shown in Figure 16.
Although the results are fairly accurate during quiet times
(Kp < 5), they are less accurate during moderate or active
times (Kp > 5). This behavior is also consistent with the
previous evaluation of Costello model [Detman and
Joselyn, 1999]. The correlation coefficient between the
forecast and official Kp is 0.75.
[56] The most interesting feature of this plot is that there

is better predictability at solar maximum than at solar
minimum. This result is consistent with our findings that
the system behaves more linearly at solar maximum than at
solar minimum. One would expect that a more linear system
would have better predictability. In a companion paper,
Wing et al. [2005] have analyzed four neural network
predictors of Kp and found that the network trained with
solar wind data spanning two solar cycles also exhibits this
same solar cycle dependence. Wing et al. [2005] have also
shown that keeping past history of Kp improves predict-
ability for short-term forecasts and significantly reduces this
solar cycle dependence. This result suggests that an internal
response may be necessary to capture the nonlinear relax-
ation of the magnetosphere during solar minimum.

4. Conclusions

[57] In this paper we have introduced two discriminating
statistics that can be used to detect the presence of nonlinear
correlations in a multivariate system. Our analysis of the Kp

data indicates that the dynamics of the Kp variable may be
captured statistically with a linear AR model at solar
maximum, while a few years prior to solar minimum
when sunspots first appear at midlatitude, the Kp variable
exhibits a significant nonlinearity. This nonlinearity
appeared regularly during the course of seven solar cycles

spanned by the Kp data set. The nonlinearity seems to
peak around 30–50 hours and gradually decreases over
the course of a 1 week correlation time. The highest
significance nonlinear correlations seem to have a time-
scale on the order of 50 hours.
[58] The overall timescale of the nonlinearity (on the

order of a week) is the same time associated with recovery
from storms. The peak timescale, 1–2 days, seems to be a
timescale associated with charge exchange and wave-
particle interactions associated with ring current relaxation.
[59] Our examination of the solar wind data seems to

indicate that the intrinsic nonlinearity of the solar wind
variables has a much smaller correlation time that vanishes
rapidly compared with the long correlation time of the Kp

index. Therefore it is reasonable to conclude that the
nonlinearity is not the result of the magnetosphere filtering
an intrinsic solar wind nonlinearity, but rather that the
nonlinearity results from the internal dynamical response
to different solar wind drivers.
[60] Although magnetospheric activity is strongest shortly

after solar maximum, the nonlinearity is not detected at
that time. The absence of nonlinearity may be related to
the fact that the system is strongly driven and the linear
magnetospheric response to the driver suppresses the
internal magnetospheric nonlinearity. On the other hand,
when the magnetospheric activity is smaller around solar
minimum, the internal magnetospheric nonlinearity is
detected and internal dynamics are more important. The
nonlinearity appears to be closely associated with increased
solar wind speed. Solar wind speed is also correlated with
electron flux levels on the same timescale as the nonlinearity
detected in our analysis [Vassiliadis et al., 2002]. Increased
solar wind speed is associated with increased ULF wave
activity in the magnetosphere, which leads to efficient
radial diffusion of energetic electrons near geosynchronous
orbit on timescales consistent with our analysis [Elkington
et al., 2003]. These results seems consistent with the
finding that the Costello neural network model shows
greater predictability of Kp at solar maximum (most linear)
than at solar minimum (most nonlinear) when only external
drivers are considered.
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