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[1] Pc1-2 ULF waves are strongly associated with the presence of various ions in the
magnetosphere. We investigate the role of heavy ion resonances in nonuniform plasmas
near the equatorial region. By adopting the invariant imbedding method, the coupled
plasma wave equations are solved in an exact manner to calculate the resonant absorption
at the ion-ion hybrid resonance. Our results show that irreversible mode conversion occurs
at the resonance, which absorbs the fast wave energy. It is found that waves near the
resonances appear with linear polarization, and their amplitude and frequency are sensitive
to the properties of the heavy ion plasma composition. We examine how these
resonances occur for various H+-He+ populations in detail by performing an accurate
calculation of the mode conversion efficiency. Because the multi-ion hybrid resonance
locations in cold plasmas are determined by simple parameters, such as the fraction of the
ion number density of each species and the magnetic field, we suggest that it is possible to
monitor heavy ion composition by examining the peak frequencies of linearly
polarized wave events in either electric field or magnetic field spectral data.
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1. Introduction

[2] Pc1-2 waves play an important role in understanding
electromagnetic phenomena near the cyclotron frequencies
of multi-ion plasmas in space. The presence of heavy ions
such as He+ and O+ significantly modifies the dispersion
relation in the sense that new wave properties arise in the
multi-ion plasma, which not present in a single-ion plasma.
The effect of heavy ions on low-frequency dispersion
relations was summarized by Rauch and Roux [1982] who
showed that additional resonances, crossover, and cutoff
frequencies involving themultiple ion species are introduced.
[3] Buchsbaum [1960] first introduced the concept that

the addition of a second species of heavy ions introduces a
resonance (referred to as the Buchsbaum-Bers resonance)
where the wave number perpendicular to the background
magnetic field becomes infinite. This resonance is a princi-
pal resonance that occurs in addition to the upper and lower
hybrid resonances found in single-ion plasmas. He showed
that the resonance is associated with the antiphase motion
between two ion species, and the resonance frequency is
located between the cyclotron frequencies of the two ions.
A new multi-ion resonance is added with each additional

ion species. Smith and Brice [1964] also showed that for
parallel propagation there is a frequency between each pair
of ion cyclotron frequencies where the right- and left-hand
polarized modes satisfy the same dispersion relation called
the crossover frequency. In an inhomogeneous plasma,
significant transfer of energy may occur between the right-
and left-hand polarized modes near the local crossover
frequency near parallel propagation [Johnson et al., 1995].
[4] The dispersion relation of heavy ion waves in the

terrestrial magnetosphere has been studied in detail over the
last few decades. Observational studies clearly indicate the
presence of two ions (H+ and He+) and the three ions (H+,
He+ and O+) in the wave dispersion. Studies of the observed
waves have included ground-based [e.g., Arnoldy et al.,
1988; Engebretson et al., 2002] and space-based [e.g.,
Anderson et al., 1992a, 1992b; Fraser and Nguyen, 2001]
observational signatures as well as correlation studies based
on multipoint measurements [Bossen et al., 1976; Gendrin
et al., 1978; Young et al., 1981; Perraut et al., 1984; Fraser
et al., 1989]. For instance, the stop bands of He+ [Dowden,
1966; Fraser, 1972] and O+ [Fraser and McPherron, 1982;
Inhester et al., 1984] have often been used to identify the
presence of each heavy ion. The kinetic effects of finite
temperature on the generation and propagation of Pc1-2
wave events have also been studied extensively [e.g., Mauk
and McPherron, 1980; Mauk et al., 1981; Young et al.,
1981; Roux et al., 1982; Gendrin et al., 1984; Kozyra et al.,
1984; Horne and Thorne, 1997; Summers and Thorne,
2003].
[5] However, there are some interesting features in satel-

lite observations which still remain unanswered. According
to the statistical studies of satellite observations such as of
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Anderson et al. [1992a, 1992b] and Fraser and Nguyen
[2001], it is evident that the wave events near the equatorial
region have unique features. One property is that wave
events with linear polarization are frequently observed
[Young et al., 1981; Fraser and McPherron, 1982; Fraser,
1985; Anderson et al., 1992b, 1996; Fraser and Nguyen,
2001]. The dispersion relation of heavy ions indicates that
any branch of the wave mode should be predominantly left-
hand (L) or right-hand (R) polarized except for a few
exceptions near the crossover frequency or at oblique
propagation near the multi-ion hybrid resonances [e.g.,
Rauch and Roux, 1982; Fraser, 1985]. Because wave
surveys involve a wide range of observed frequency relative
to the ion cyclotron frequency, it is highly unusual that a
significant number of wave events are linearly polarized.
[6] Another interesting feature is that the wave properties

appear to be sensitive to the local time [e.g., Anderson et al.,
1992a, 1992b; Fraser and Nguyen, 2001]. For instance,
Anderson et al. [1992b] shows that the early morning region
(AM) is dominated by linearly polarized events, while the
noon and dusk region (PM) contain a significant amount of
R and L events in addition to the linearly polarized events.
The peak frequencies as well as the polarization states are
strongly dependent on the local time, which requires an
explanation why the AM and PM regions have different
characteristics from each other.
[7] It is also known that heavy ions can significantly

affect ULF wave phenomena in other planetary environ-
ments such as Jupiter (which has a significant source of
Iogenic S2+ and O+ originating from Io’s volcanically
generated SO2 atmosphere). These heavy ions populate
the inner Jovian magnetosphere [Bagenal et al., 2004] and
affect low-frequency ULF wave propagation in the Io torus
[Glassmeier et al., 1989]. Heavy ions should also be
important for understanding ULF waves observed at Mer-
cury, which has a significant exospheric source of Na+ [e.g.,
Glassmeier et al., 2003, 2004; E.-H. Kim et al., Field line
resonance at Mercury’s magnetosphere: A simulation study,
submitted to Journal of Geophysical Research, 2008].
[8] In this study, we solve the full coupled wave equa-

tions for wave propagation in a simplified one-dimensional
inhomogeneous multi-ion (H+ and He+) plasma with param-
eters typical of the Earth’s equatorial magnetosphere near
geosynchronous orbit. We first discuss the wave equations
and the dispersion relation of heavy ion waves and then
introduce the basic properties of wavefields at the heavy ion
resonances. In order to solve the coupled full wave equa-
tions in a cold plasma limit, we extend a theoretical
technique called the invariant imbedding method (IIM),
which enables us to obtain the resonant absorption in an
exact manner without taking a local approximation for the
plasma profiles near wave coupling regions. We present the
mode conversion at each resonance, which occurs with
linear polarization, for various wave numbers and density
population cases. These results suggest that mode conver-
sion at the heavy ion resonances may explain the significant
fraction of linearly polarized wave events that have been
observed. We also discuss electrostatic and electromagnetic
nature of the resonances and the basic properties of both ion
and electron resonances in the full wave equations. Finally,
we suggest that it may be possible to use wave behavior
near heavy ion resonances to monitor heavy ion populations

using wave polarization and peak frequency in either
electric or magnetic field data.

2. Model and Equations

[9] Previous observations [Anderson et al., 1991, 1992a;
Anderson and Fuselier, 1993; Fraser and Nguyen, 2001]
indicate that Pc1-2 waves are found over a broad range of
radial distance (3.5 < L < 10) in the equatorial magneto-
sphere. We start with a brief introduction to the dispersion
relation of heavy ion plasma and the coupled equations. In
order to solve these equation in an exact manner, we extend
the invariant imbedding method (IIM), which has recently
been developed. Then we introduce the box-like model used
in this study, and present case studies for a number of
different heavy ion density profiles.

2.1. Dispersion Relation and Wave Equations

[10] The wave equations are derived in general from the
following two time-dependent Maxwell’s equations,

r� E ¼ � @B

@t
;

r� B ¼ moJþ
1

c2
@E

@t
¼ � iw

c2
� � E; ð1Þ

which can be written as by either E or B by assuming e�iwt:

r� r� Eð Þ ¼ w2

c2
� � E ¼ 0; ð2Þ

r � ��1 � r � B
� �

¼ w2

c2
B ð3Þ

where c is the speed of the light and � is the dielectric tensor
in a plasma. In a cold fluid plasma where the magnetic field
is assumed to be constant (Bo = Bo ẑ), the dielectric tensor
and the Stix tensor elements S, D and P are given by

� ¼
S �iD 0

iD S 0

0 0 P

0
B@

1
CA;

S ¼ 1�
X
j

w2
pj wþ inð Þ

w wþ inð Þ2�w2
cj
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X
j

w2
pjwcj

w wþ inð Þ2�w2
cj

n oaj aj ¼
qj

jqjj

� 
;

P ¼ 1�
X
j

w2
pj

w wþ inð Þ ; ð4Þ

where wpj, wcj and qj are the plasma frequency, cyclotron
frequency and charge of jth species, and n is the collision
frequency of the medium.
[11] In a uniform plasma, if the wave vector is assumed to

be k = k?x̂ + kk̂z = k(sin qx̂ + cosẑ), the dispersion relation in
terms of the refraction indices n = kc/w, nk = kkc/w and n? =
k?c/w is given by

tan2 q ¼ n2?
n2k

¼ � P n2 � Rð Þ n2 � Lð Þ
Sn2 � RLð Þ n2 � Pð Þ : ð5Þ
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where R = S + D and L = S � D. In general, the condition of
resonances is satisfied when n goes to infinity: either n?!1
or nk ! 1. In both cases, equation (5) becomes tan2 q =
�P/S. If we assume that inhomogeneity lies in the x
direction perpendicular to the background magnetic field,
the resonance would occur when n?(k?) goes to infinity,
which is equivalent to S = 0. In the single-ion case, the
condition S = 0 has only two resonances: the upper hybrid
resonance, which is associated primarily with the motion
of electrons, and the lower hybrid resonance, which
involves a combined motion of both electrons and ions
(in phase). However, in the multi-ion case, an resonances
(Buchsbaum-Bers) appear for each new species of ion,
which is associated with the out-of-phase (or in-phase)
motion among the different ions. It should also be noted
that for field-aligned propagation, the location S = 0 also
corresponds to a cutoff condition for a refracted wave
packet and leads to wave reflection and bouncing wave
packets between S = 0 locations. Mode conversion for
field-aligned propagation has been discussed elsewhere
[e.g., Johnson et al., 1995; Johnson and Cheng, 1999].
[12] Under a reasonable assumption of wpe � wce in

space, the Buchsbaum-Bers resonance frequency(wbb) for
two ions (i = 1, 2) is approximated as

w2
bb ¼ wc1wc2

wc2A1 þ wc1A2

wc1A1 þ wc2A2

; ð6Þ

where Aj = nj/ne the fraction of the ion density occupied by
the jth ion species and ne = n1 + n2 is the electron density. It
should be noted that wbb is determined only by the magnetic
field (easily measured) and the relative population of each
ion species, which constrains the background ion composi-
tion if the location of the resonance can be identified
through wave observations.
[13] When the frequency is below the ion cyclotron

frequency and electron inertial effects are ignored (Sn?
2 �

Pnk
2 and RL = S2 � D2 � PS) in the dispersion relation, it is

possible to derive a simplified the dispersion relation for
perpendicular propagation of compressional waves can be
approximated as

n2? �
L� n2k

� �
R� n2k

� �
S � n2k

� � : ð7Þ

This approximate dispersion relation has a resonance when
n? ! 1 (where the approximation obviously breaks
down). This resonance is referred to as the ion-ion (bi-ion)
resonance which occurs at the frequency, wii, determined
from S = nk

2 in equation (7), which corresponds to the
Alfven resonance in the low frequency limit (w � wcj) such
as in MHD. The relationship between the Buchsbaum-Bers
resonance and the ion-ion hybrid resonance will be
discussed later in Discussion 4.2.
[14] In an inhomogeneous plasma where we assume one-

dimensional inhomogeneity in the radial direction (x) near
the equatorial region, the plasma wave equations are given
by two dependent variables, which satisfy two second-order
coupled differential equations. When B = Bôz and kk = kk̂z is
assumed, the dependence on z of all wave functions can be

taken as being through a factor eikk
z . Then, after straightfor-

ward calculations from Maxwell’s equation (1), we have
two coupled equations in terms of Ey and By as follows:

d2y
dx2

� dE xð Þ
dx

E�1 xð Þ dy
dx

þ w2

c2
E xð ÞM xð Þy ¼ 0; ð8Þ

where

y ¼
Ey

cBy

� 
;

E ¼
1 0

0 P xð Þ

� 
; ð9Þ
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0
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Here EM is given by

EM ¼

S2 xð Þ � D2 xð Þ
S xð Þ �

c2k2k
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i
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On the plane of incidence (xz plane), Ey and By represent TE
and TM modes in vacuum in the sense that they are normal
to the plane of incidence, respectively. It is sometimes
useful, for convenience, to renormalize equation (10) by
multiplying rows of by a factor. For instance, in the uniform
region marked by ‘‘1,’’ where the Stix elements are denoted
by S1, D1 and P1, we change E and M with the wave
equation unchanged as follows:

E ¼
1 0

0
P xð Þ
P1

0
@

1
A;

M ¼

S2 xð Þ � D2 xð Þ
S xð Þ �

c2k2k

w2
i
ckkD xð Þ
wS xð Þ

�i
ckkD xð Þ
wS xð Þ P1 1�

c2k2k

w2S xð Þ

" #
P1

0
BBBB@

1
CCCCA: ð11Þ

In this study, we will solve equation (8) with E (x) andM (x)
given by equation (11) in an exact manner without making
any local approximations for the tensor elements.

2.2. Invariant Imbedding Equations

[15] The invariant imbedding method (IIM) is a well-
known tool that has been used for solving transport equa-
tions in many research areas such as radiation transfer
[Chandrasekhar, 1960], optical electromagnetic waves
[Klyatskin, 1994], electron localization in solids [Rammal
and Doucot, 1987], ocean waves [Klyatskin et al., 1998],
compressional MHD wave [Lee et al., 2002], and Langmuir
waves in unmagnetized plasmas [Kim and Lee, 2005]. This
method enables us to focus on the exact reflection and
transmission rather than the details about local properties
inside the inhomogeneous medium [Bellman and Wing,
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1992], which can provide a powerful tool in determining the
mode conversion rate in complicated inhomogeneous plas-
mas [Lee et al., 2002; Kim and Lee, 2005].
[16] Recently, Kim et al. [2005a] generalized the invariant

imbedding theory of wave propagation and derived new
invariant imbedding equations for the propagation of an
arbitrary number of coupled waves of any kind in arbitrarily
inhomogeneous stratified media, where the wave equations
are effectively one-dimensional. They established the valid-
ity and the usefulness of their results by applying this
method to the propagation of circularly polarized electro-
magnetic waves in one-dimensional photonic crystal chiral
media. It has also been demonstrated that this new version
of IIM is very useful in solving the coupled plasma wave
equations in a one-dimensional inhomogeneous medium
[Lee et al., 2006; Kim and Lee, 2006]. We adopt this
method in this study to solve the wave scattering/absorption
problem for waves propagating in an inhomogeneous,
multi-ion plasma. According to Kim and Lee [2006],
equation (8) may be solved by adopting the invariant
imbedding equations, which enables us to efficiently calcu-
late the matrix reflection and transmission coefficients
inside the inhomogeneous media without making any local
approximations to simplify the differential equation.
[17] We assume that the inhomogeneous medium of

thickness X lies in 0 � x � X between two uniform regions,
where both E and M are functions of x. We assume that the
waves are incident from the right (region 1) where x > X and
transmitted to the left (region 2) where x < 0 in all
subsequent calculations [Lee et al., 2002]. For convenience,
the wave equation (8) can be transformed as follows, which
is derived in Appendix A.

d2F
dx2

� d ~E xð Þ
dx

~E �1
xð Þ dF

dx
þ ~E xð ÞH2 ~M xð ÞF ¼ 0; ð12Þ

where ~E and ~M are defined in Appendix A, and

F xð Þ ¼ F11 F12

F21 F22

� 
: ð13Þ

Each component of Fij in equation (13) represents the ith
component when the jth component is an incident wave.
Thus the first column of the matrix F represents the wave
functions when the first eigenstate wave is incident, and the
second column represents the wave functions when the
other eigenstate wave is incident.
[18] Since the waves are incident from region 1 where x >

X and transmitted to region 2 where x < 0, we have the wave
functions in the two uniform regions as follows:

e�iH x�Xð Þ þ eiH x�Xð Þr Xð Þ if x > X

e�iQxt Xð Þ if x < 0

�
; ð14Þ

where H and Q are diagonal matrices satisfying Hij = hidij
and Qij = qidij where hi and qi are the x component wave
numbers in region 1 and region 2, respectively, for the ith
wave as shown in Appendix A. The multi-ion plasma
eigenmodes in uniform plasmas are discussed in detail by
[Andre, 1985].

[19] The reflection and the transmission coefficients
should satisfy the following first-order differential equa-
tions, respectively, which are derived by Kim and Lee
[2006],

dr

dX
¼ i r Xð Þ ~E Xð ÞH þ ~E Xð ÞHr Xð Þ
� �
� i

2
r Xð Þ þ I½ � ~E Xð ÞH � H ~M Xð Þ

� �
r Xð Þ þ I½ �; ð15Þ

dt

dX
¼ it Xð Þ ~E Xð ÞH � i

2
t Xð Þ ~E Xð ÞH � H ~M Xð Þ

� �
r Xð Þ þ I½ �:

ð16Þ

The IIM provides a tool to calculate how the coefficients
change when the barrier’s width, X, changes. We solve the
first-order differential equations (15) and (16) numerically,
using appropriate initial conditions and obtain the reflection
and transmission coefficients as functions of X. The
invariant imbedding equations should satisfy the following
initial conditions at X = 0:

r 0ð Þ ¼ C2t 0ð Þ � I

t 0ð Þ ¼ 2 C2 þ H�1C2Q
� ��1

: ð17Þ

where C2 the linear transformation matrix from the plasma
wave eigenstates of region 2 to the eigenstates of region 1.
The derivation is presented in detail in Appendix A.
[20] Reflectivity R, transmissivity T and absorption A are

given by

Rij ¼
hi

hj
jrijj2; Tij ¼

qi

hj
jtijj2

Aj ¼ 1� R1j þ R2j þ T1j þ T2j
� �

; ð18Þ

where i denotes a reflected or transmitted wave component
and j denotes an incident wave component. This absorption
is associated with the loss of incident energy flow, and
results either from resonant absorption or dissipation while
the waves as they propagate through the inhomogeneous
region. We will consider the absorption of the fast
compressional wave in this study.

2.3. Models

[21] In this study, we consider the region near the
geostationary orbit (L = 6.6), for convenience, which tends
to have abundant Pc1-2 activity. A one-dimensional box-
like model is assumed with parameters representative of the
equatorial magnetosphere. In order to focus on how varia-
tions in the heavy ion population affect the propagation of
Pc1-2 waves, we assume that the background magnetic field
is constant (Bo = Bo ẑ) and the total number density of ions
is constant. Thus the magnetic field intensity is given by
Bo = 0.31 � 10�4/6.63 T ’ 108 nT. The number densities,
cyclotron frequencies, plasma frequencies of the jth species
of charged particles are given by nj, fcj and fpj, and so on.
For instance, when nH = 10/cm3, fcH = 1.65 Hz and fpH =
662.6 Hz for protons, respectively. The electron density is
equal to the total ion density (ne = Snj).
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[22] In this paper, we consider the two-ion plasma
consisting of H+ and He+ with various ion density profiles.
First, two different types of density profiles are examined:
step-like and bump-like cases. For each profile, we con-
sider how mode conversion depends on wave number and
gradient scale of the background density. Second, we
compare our mode conversion calculations with the mode
conversion in Budden’s problem. Third, the effect of total
plasma density on the mode conversion process is exam-
ined over a range ne = 0.5–103/cm3 characteristic of
plasma sheet!plasmasphere. Finally, it is shown how the
relative abundance of heavy ions affects the mode conversion.
[23] In addition to the cases mentioned above, we also

examine each case when nH and nHe are switched, which
corresponds to a reversal of heavy ion density gradient.

3. Mode Conversion at Resonances

[24] Figure 1 shows the density models of H+ and He+,
where the box has a scale of X = 1 RE in the radial direction.
The total density is constant as ne = nH + nHe = 10/cm3, but
the relative ion population is assumed to vary significantly.
In order to focus on the importance of the heavy ion
concentration, we assume a large composition variation in
this model. Each density variation is given by almost 100%
of the total density in Figure 1a. For instance, nH/ne (dotted
line) varies from 0.999 to 0.001 when nHe/ne (dashed line)
varies from 0.001 to 0.999. The density variation becomes
step-like over the different gradient scales marked by (1, 2, 3)
which are given by L = 0.2, 0.5 and 1.0 RE, respectively.
Since the incident wave is from region 1 of x > X, the
propagation is from a H+-rich plasma to a He+-rich
plasma. In Figure 1b, a bump-like He+ density variation
is prescribed where nHe/ne (dashed line) varies from 0.001
to 0.3 with the maximum density located in the middle of
the crest. The gradient scales (1, 2, 3) here are given by
0.4, 1.0 and 2.0 RE, respectively. We assume that fast
compressional waves are incident radially inward from the
right side (x > X) of the box.

[25] In addition to the profiles in Figure 1, we also
examine each case when nH and nHe are switched. Then,
in the step-like profile of Figure 1a, the incident wave is
from He+-rich plasma to H+-rich plasma. In the bump-like
profile of Figure 1b, the bump is assumed in the H+ density.

3.1. Dependence on Gradient Scales and Wave
Numbers

[26] Figure 2 shows the resonance frequency profile and
the resonant absorption when the ion densities are given by
Figure 1a. The left column of Figure 2 shows the frequency
profiles of Buchsbaum-Bers and ion-ion hybrid resonances
for different kk = 2p/lk. As the density variation in Figure 1a
is monotonic in a step-like profile, the resonance frequency
also becomes monotonic. Since fbb(= wbb/2p) is determined
only by B and the relative ion composition ratio as shown in
equation (6), it remains the same for different lk. However,
the condition of the ion-ion hybrid resonance, S = nk

2, should
depend on kk, and the resonance frequency becomes
different for three values of lk. For relatively large lk
(�1 RE), the resonance frequencies are almost identical, but
become slightly different as lk decreases.
[27] The right column of Figure 2 shows the resonant

absorption A defined in section 2.2, which is calculated
using the invariant imbedding equations. When lk varies
over 0.3 to 2.0 RE, the absorption maximizes around 0.25 at
both edges near each ion cyclotron frequency. The first peak
is located near fcHe = 0.25 fcH, and the second peak is near
fcH. Since the resonance frequency given by equation (6)
gets close to fcHe (fcH) in the H-He plasma only if nHe/ne (nH/
ne) becomes 0, Figure 2 shows that the resonant absorption
becomes significant only when the plasma has a very small
abundance of either ion species. The first peak near fcHe
occurs where the local nHe population is only a few percent,
and the second peak near fcH occurs where the local nH
population is only a few percent.
[28] The resonant absorption in Figure 2 shows that the

mode conversion efficiency is not very sensitive to the field-
aligned wave number over the range, lk = 0.3–2.0 RE,

Figure 1. The density models of H+ and He+. The total density is constant as ne = nH + nHe = 10/cm3.
The ion density profiles are given by nH (dotted line) and nHe (dashed line): (a) the three different gradient
scales marked by 1, 2, and 3 are assumed to be L = 0.2, 0.5, and 1.0 RE, respectively, in the step-like
cases, and (b) three different bump sizes marked by 1, 2, and 3 are assumed to be 0.4, 1.0, and 2.0 RE,
respectively, in the bump-like cases.
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which reasonably fits the scale of Pc1-2 pulsations. The
absorption feature remains the same even for the larger lk in
unpublished calculations. For relatively short wavelength
lk = 0.3 RE in Figure 2a, the absorption range becomes
only slightly extended compared to the cases of larger
wavelengths in Figure 2b and 2c. However, Figure 2 does
suggest that the resonant absorption strongly depends on
the gradient scales. The frequency range of resonant
absorption widens as the gradient scale becomes smaller
(from 3 to 1) becoming widest for a sharp gradient.
[29] When nH and nHe are switched (in the profiles of

Figure 1a), Figure 3 shows that the resonance frequency
now decreases in the direction of the incident wave propa-
gation, and the resonant absorption becomes greatly
enhanced, which reaches 1.0. It indicates that the wave
propagating from He+-rich to H+-rich plasma becomes sig-
nificantly absorbed into the resonance over a wide range of
frequencies except for the nearby edges close to each ion
cyclotron frequency. If the two absorption profiles in Figures 2
and 3 are compared with each other, they tend to be opposite
to each other in terms of the peak locations and the

dependence on gradient scales, even though the absorption
peak values are different with 0.25 and 1.0, respectively.
[30] Figure 4 shows the case of the bump-like profiles

presented in Figure 1b. As the density variation of nHe in
Figure 1b has a crest, the resonance frequency is also bump-
like. The mode conversion rate is not so sensitive to the
field-aligned wavelength again as shown in Figures 2 and 3.
However, the absorption peaks in Figure 3 are found to
reach about 0.5, which double the absorption of Figure 2. In
addition, the frequency range of absorption appears with a
single peak near the lower range, which becomes close to
fcHe for weaker gradients. The absorption frequency range
tends to broaden for sharper gradients, which is consistent
with the results of the step-like cases in Figure 2.
[31] Figure 5 shows the resonant absorption when nH and

nHe are switched in Figure 1b, which corresponds to the
bump-like density profile of H+. Now the resonance fre-
quency has a well. The absorption is nearly complete (1.0)
as in Figure 3 over most frequencies lying within the
resonance band for all three gradient scales. However, it is
interesting to note that the absorption has some spiky

Figure 2. The left column shows the frequency profiles of Buchsbaum-Bers and ion-ion hybrid
resonances in the step-like profile shown in Figure 1a for different field-aligned wavelength l?, when ne =
10/cm3 is assumed. The horizontal axis is normalized by L, which represents each gradient scale in the
step-like profiles. The right column is the resonant absorption for each case. The line segment labeled fbb
is the range of possible resonance frequency shown in the left column. The different scales of L = 0.2,
0.5, and 1.0 RE in Figure 1a are marked by 1, 2, and 3, respectively.
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variations near fcH with an harmonic feature, which drops
down to about 0.5.

3.2. Mode Conversion Efficiency

[32] In the results presented above, we solved the full
wave equations including both fast ion waves and electron
inertial waves in the cold plasma limit. However, our results
are mainly associated with the ion waves, which have
relatively large wavelength such that thermal are often
negligible. In the cold plasma limit, it is well known that
the absorption of the fast wave can be approximated as
Budden problem [Budden, 1985; Swanson, 1985] in many
cases [e.g., Ngan and Swanson, 1977; Perkins, 1977;
Swanson, 1985; Ram et al., 1996]. In this section, we adopt
this approximation and examine the properties of mode
conversion efficiency above in terms of a simple Budden
problem.
[33] If n? is calculated from equation (5) in a uniform

plasma, we have

n2? ¼ 1

2S
a� bð Þ ð19Þ

where

a ¼ P þ Sð Þd � D2

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4PS Dþ dð Þ D� dð Þ

p
d ¼ S � n2k: ð20Þ

At frequencies below the ion gyrofrequency, these two
modes are characterized by two different spatial scales
corresponding to electron waves with large n? (with spatial
scale of the electron skin depth) and ion waves with small
n? (with spatial scale on the order of VA/f), respectively. The
different role of electrons and ions is examined and
discussed in detail later in section 4.2, where we discuss
how the Buchsbaum-Bers resonance and ion-ion hybrid
resonance are associated with electron and ion effects in
the dispersion relation. If we apply the same assumption of
Sn?

2 � Pn?
2 and RL = S2 � D2 � PS for the ion-ion

hybrid resonance when the effect of electron inertia becomes
less important, we can expand equation (19) in terms of
jPdj � 1 as follows:

2Sn2? � P þ Sð Þd � D2 � jPdj 1þ Sd � D2

Pd
þ
2S D2 � d2
� �
Pd2

" #
:

ð21Þ

Figure 3. The same profiles as in Figure 2 when nH and nHe are switched in Figure 1a.
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Whether Pd is positive or negative, the solution of small n?
is reduced to

n2 � d2 � D2

d
¼

L� n2k

� �
R� n2k

� �
S � n2k

� � ; ð22Þ

which corresponds to the dispersion relation presented in
equation (7).
[34] To approximate the solutions near the resonance in

an inhomogeneous plasma, we assume linear profiles in x
from the Taylor expansion such as

d � kx

D � d2 � D2 � kc x� að Þ ð23Þ

where x = 0 and x = a are the location of resonance and
cutoff, respectively. Then equation (22) becomes

n2? � kc x� að Þ
kx

¼ kc

k
1� a

x

� �
; ð24Þ

which is equivalent to the Budden equation:

d2y

dx2
þ k20 1� a

x

� �
y ¼ 0 ð25Þ

where k0
2 = kc/k and x is the normalized coordinate obtained

by multiplying w/c.
[35] Since k and kc in equation (23) satisfy d

0 = S0 = k and
D0 = kc, we have the following relations near the resonance

k20 ¼ D0

d0

a ¼ �D
kc

¼ � D
D0 : ð26Þ

This relation is equivalent to the expression previously
derived by Jacquinot et al. [1977]

k20 ¼
d
dx

L� n2k

� �
R� n2k

� �
d

dx
S � n2k

� �

a ¼ �
L� n2k

� �
R� n2k

� �
d

dx
L� n2k

� �
R� n2k

� � : ð27Þ

[36] In Appendix B, we derive the expression for k0a in
our model where the background magnetic field and the
electron density are assumed to be constant and gradients
are only due to variation in ion concentration.

Figure 4. The left column shows fbb and fii in a bump-like profile in Figure 1b for differentl? when ne = 10/cm3

is assumed. The different bump sizes of 0.4, 1.0, and 2.0 RE in Figure 1b are marked by 1, 2 and 3,
respectively.

ð27Þ
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[37] As derived in Appendix B, k0a satisfies

jk0aj / w5=2 1

n0He

n3=2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f1 � f2ð Þ f2 � 16f1ð Þ

p
�����

����� ð28Þ

where

f1 ¼
1

1� Y 2
H

f2 ¼
1

1� Y 2
He

Yj ¼ wcj=w: ð29Þ

In general, jk0aj tends to remain relatively large, but
equation (28) suggests that it can be significantly reduced to
a small value only if (1) the total electron density ne
becomes relatively small, (2) the density gradient n0He
becomes large, or (3) the frequency becomes close to either
wcH (f1 ! 1) or wcHe (f2 ! 1). In fact, the relation (28)
based on the Budden problem is consistent with many
features in Figures 2–5.
[38] When the incident wave propagates from a H+-rich

to a He+-rich plasma region with a monotonic density
variation like the step-like profile in Figure 1a, the Budden
equation (25) has a k2(x) profile topologically equivalent to

the profile shown in Figure 6a. The wave propagates from
the right to left region, meets the cutoff point at x = a
and the resonance at x = 0 in time. When nH and nHe are
switched, the incident wave propagates from He+-rich to
H+-rich plasma and k2(x) should have a reflected profile
with respect to the y axis. Then the problem becomes
equivalent to the case that the incident wave propagates
from the left region in Figure 6a. In the Budden problem,
it is well known that the reflection and transmission
coefficients are

TI ¼ e�h

RI ¼ � 1� e�2h� �
AI ¼ 1� R2

I � T2
I ¼ e�2h 1� e�2h� �

h ¼ pk0a
2

ð30Þ

for case where the wave propagates from a H+-rich to a He+-
rich plasma, and

TII ¼ e�h

RII ¼ 0

AII ¼ 1� R2
II � T2

II ¼ 1� e�2h ð31Þ

Figure 5. The same profiles as in Figure 4 when nH and nHe are switched in Figure 1b.

ð29Þ

ð30Þ
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when the wave propagates from a He+-rich to a H+-rich
plasma.
[39] The absorption in the first case can reach a peak

value of AI (max) = 0.25 when e�2h = 0.5 or k0a = ln2/p �
0.22. When h or k0a becomes either significantly large or
small, the absorption, AI, becomes negligible. This result
explains several features shown in Figure 2. First, it
explains why the peak value reaches 0.25 because AI

(max) = 0.25. It also explains why the absorption peak
occurs near either wcH or wcHe because k0a in equation (28)
can only be small enough to give maximum absorption
(0.22) if w � wcH (f1 ! 1) or w � wcHe (f2 ! 1) as noted
in condition 3 earlier. Finally, condition 2 explains why
mode conversion becomes more efficient over a broader
range when the density gradients become sharper because
k0a is proportional to the gradient scale length.
[40] For the second case where the incident wave prop-

agates from a He+-rich to a H+-rich plasma, the wave can
reach the resonance region directly without cutoff, and no
reflected waves exist. For this case, when h� 1 AII (max) =
1.0, in contrast to the previous case where the wave
approaches the resonance through the evanescent region.
This result explains why the absorption is found to be
perfect over a broad range of frequencies in Figure 3 where
conditions 1, 2, and 3 for small k0a are not satisfied. It is
also interesting to note that the absorption becomes less
effective when the gradient becomes large, which reduces
k0a (condition 3).

3.3. Effects of Multiple Resonances

[41] When the density variation is no longer monotonic
and has a bump-like or well-like profile, resonances occur at
multiple locations where the wave frequency matches the
resonance condition. Since both reflection and transmission
occur at each resonance, the addition of resonances affects
the total mode conversion efficiency which will involve
transmitted and reflected waves propagating in the addi-
tional layer between the two neighboring resonances.
[42] The bump-like enhancement of nHe in Figure 1b

allows the same type of fbb as shown in Figure 4. For a
given frequency, the resonance can occur at the two
locations on each side. When the incident wave propagates
from H+-rich to He+-rich plasma region like in Figure 1b,

Figure 6b shows the case of two resonances, which occur in
our bump-like nHe distribution. Since reflection and trans-
mission should depend on the direction of propagation, it
can be approximated by a three-layered problem marked by
1, 2, and 3, respectively in Figure 6b.
[43] If we define r̂ij and t̂ij as the reflection and transmis-

sion coefficients at each boundary when the wave propagates
from the jth layer to ith layer, total reflection and transmission
coefficients can be written in terms of r̂ij and t̂ij:

r̂ ¼ r̂21 þ t̂21r̂32 t̂12e
ib̂ 1þ r̂12r̂32e

ib̂ þ r̂12r̂32e
ib̂

� �2
þ � � �

� �

¼ r̂21 þ
t̂21r̂32 t̂12e

ib̂

1� r̂12r̂32eib̂

t̂ ¼ t̂21 t̂32e
i
b̂
2 1þ r̂12r̂32e

ib̂ þ r̂12r̂32e
ib̂

� �2
þ � � �

� �

¼ t̂21 t̂32e
i
b̂
2

1� r̂12r̂32eib̂
: ð32Þ

In case of the propagation from H+-rich to He+-rich region
in Figure 1b, r̂ij and t̂ij are:

t̂21 ¼ T0 ¼ e�h

r̂21 ¼ R0 ¼ � 1� e�2hð Þ
t̂32 ¼ T1 ¼ e�h

r̂32 ¼ R1 ¼ 0

t̂12 ¼ T2 ¼ e�h

r̂12 ¼ R2 ¼ 0;

ð33Þ

where we can assume that h at the two resonances is the same
because of symmetry k2(x) = k2(�x). From equations (32)
and (33), we obtain

r̂ ¼ � 1� e�2h� �
t̂ ¼ e�2he

ib̂
2

A ¼ 1� ĵrj2 � ĵtj2 ¼ 2e�2h 1� e�2h� �
ð34Þ

where A has a maximum of 0.5 at e�2 h = 0.5. The maximum
absorption increases by a factor of 2 at the same h compared
to that of the step-like case. The transmitted wave after the
first resonance is absorbed again at the second resonance
with each amount of 0.25, respectively. In this case, the effect

Figure 6. The radial wave number variation and the coefficients of reflection and transmission in the
Budden problem when the incident wave propagates from a H+-rich to a He+-rich plasma region: (a) a
single resonance in a monotonic step-like profile in Figure 1a and (b) two resonances in a bump-like
profile in Figure 1b.

ð34Þ
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of multiple reflections inside region 2 in Figure 6b disappears
because r̂32 = 0 at the second resonance. This result explains
why the absorption peak can reach 0.5 in Figure 4. The
dependence on the gradient scale is also consistent with the
prediction of equation (28), which shows that the absorption
becomes small when the gradient becomes zero near the top
of the bump.
[44] When nH and nHe are switched and the incident

wave propagates from a He+-rich to a H+-rich plasma in
Figure 6b, the resonance frequency profile becomes well-
like in Figure 5. In this case, the k2(x) profile is reflected
about k2(x) = ko

2 (shown as a dotted line in Figure 6b).
Then all coefficients should be changed as follows:

t̂21 ¼ T0 ¼ e�h

r̂21 ¼ R0 ¼ 0

t̂32 ¼ T1 ¼ e�h

r̂32 ¼ R1 ¼ � 1� e�2hð Þ
t̂12 ¼ T2 ¼ e�h

r̂12 ¼ R2 ¼ � 1� e�2hð Þ:

ð35Þ

From equation (32), we have the total reflection and
transmission coefficients:

r̂ ¼ �x 1� xð Þeib̂

1� 1� xð Þ2eib̂

t̂ ¼ xei
b̂
2

1� 1� xð Þ2eib̂

A ¼ 1� ĵrj2 � ĵtj2

¼ 1�
1þ z2
� �

1� zð Þ2

1þ z4 � 2z2 cos b̂
ð36Þ

where

x ¼ e�2h

z ¼ 1� x2 ¼ 1� e�4h

b̂ � 2

Z x R2ð

x R1ð Þ
k xð Þdx: ð37Þ

Here b̂ in both equations (34) and (37) is the phase shift that
results from the roundtrip travel path between the two

resonance locations x(R1) and x(R2). In Figure 5, equation
(28) indicates that h should be significantly large (�1) near
the minimum resonance frequency since neither f1 nor f2 is
large and the gradient is also very small, which corresponds
to x ! 0, z ! 1. Then equation (36) is reduced to A = 1,
which is consistent with the result in Figure 5. Since this h is
sufficiently large, the absorption remains perfect until the
frequency approaches fcH or f1 ! 1. The minimum of A
that is expected from equation (36) occurs when costb̂ = 1 is
satisfied:

Amin zð Þ ¼ 1�
1þ z2
� �
1þ zð Þ2

ð38Þ

Since z is still relatively close to 1, we have Amin ! 0.5
where b̂ = 2np is satisfied. Thus near fcH, it is expected that
harmonic structure arises with the absorption varying from
1 to about 0.5. This feature is consistent with the result of
Figure 5 in the sense that such harmonic variation occurs
when the frequency increases up to fcH. Our analogy with a
three-layered problem suggests that such harmonic varia-
tions (which in this case range from 0.5 to 1) are possible in
the absorption coefficient because of the interference
between the forward and backward waves that propagate
between the two resonances.

3.4. Dependence on Electron and Heavy Ion Densities

[45] The mode conversion efficiency discussed in section
3.2 indicates that the absorption should strongly depend on
frequency, ion density gradients as well as electron density.
In this section, we examine the resonant absorption for
different electron and heavy ion densities. In the step-like
case of Figure 1a, Figure 7 shows how the resonant
absorption occurs over different background electron den-
sities from 0.5 to 1000 cm�3. Here the gradient scale and lk
are assumed to be 0.3 RE and 2.0 RE, respectively, which
cover the same range of values in Figure 2.
[46] Figures 7a and 7b shows the absorption when the

wave is incident from a H+-rich (He+-rich) to a He+-rich
(H+-rich) plasma. Figure 7a indicates that the absorption
becomes relatively effective when the total density
decreases. When the density increases, the absorption

Figure 7. The resonant absorption in a step-like profile of Figure 1a for different ne: (a) when the
incident wave propagates from a H+-rich to a He+-rich plasma and (b) when the incident wave propagates
from an He+-rich to a H+-rich plasma, where nH $ nHe.

ð36Þ
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becomes significant only near each cyclotron frequency of
H+ and He+ ion, respectively. This feature is well under-
stood if we consider the role of ne in equation (28). In order
to obtain large absorption, jk0aj should reach such a small
value as 0.22 and it prefers a relatively low ne, which is
consistent with the result in Figure 7a. When ne increases,
jk0aj in equation (28) can be small only when either f1 !1
(w � wcH) or f2 ! 1 (w � wcHe) is satisfied. It is evident
that the absorption in Figure 7a tends to be limited to each
ion cyclotron frequency for relatively large ne.
[47] Figure 7b shows that the absorption variation

becomes roughly opposite to that in Figure 7a. As discussed
in detail in section 3.2, if ne increases and jk0aj becomes
sufficiently large in equation (28), the absorption becomes
perfect in most frequencies in equation (31). When the
density decrease in Figure 7b, it is evident that the absorp-
tion becomes gradually reduced from both ion cyclotron
frequencies where jk0aj is relatively small. However, as
shown in Figures 3 and 7b, this type of absorption always
remains important over the intermediate frequency range
between the two cyclotron frequencies.
[48] Figure 8 shows the absorption in the bump-like case

of Figure 1b. Figures 8a and 8b shows the absorption when
there is the density bump in nHe(nH), respectively. The size
of the inhomogeneous bump is assumed to be 0.6 RE and
lk = 2.0 RE is used. The variation of d nj/ne is from 0.001 at
both edges to 0.3 at the top of the crest, which is the same as
in Figure 4. In Figure 8a, the absorption occurs over a large
frequency band when the density is small, but becomes
restricted again to w � wcHe when the density increases.
This is consistent with condition (28) that small values of
jk0aj are required to have large absorption. Since the
maximum composition of He+ ions is 30% in this bump-like
profile unlike 100% in the step-like case above, the
resonance frequency cannot reach wcH. Since f1 ! 1
(w � wcH) is impossible, there is no absorption elsewhere
as discussed in section 3.3. It is also confirmed that the
absorption peak maximized around 0.25 and 0.5 for
various background density values in Figures 7a and 8a,
respectively, consistent with our estimate based on the
Budden solution.
[49] The harmonic structure caused by the interference

between the forward and backward waves propagating

between the two resonances has dependence on both the
electron density in Figure 8b and the gradient scale in
Figure 5. Between the two neighboring peaks, db̂ � 2p
should be satisfied. If we assume that keff and XR =
x(R1) � x(R2) are the effective wave number and distance
between the two resonances, we can approximate b̂ as 2
keffXR, which is reduced to

db̂ ¼ 2 dkeff XR þ keff dXR

� �
� 2p ð39Þ

Here keff and XR should be proportional to k0 and the total
size of the bump, respectively. For instance, if the density
profile of the H+ bump is fixed by XR, the harmonics would
be determined simply by the wave numbers and we obtain
dkeffXR � p. From Appendix B, we have

k0 ¼

ffiffiffiffiffiffi
D0

d0

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 16f1

4f1 � f2
2D0YHe

s
/

ffiffiffiffiffi
ne

w

r
: ð40Þ

Thus dkeffXR � p and equation (40) give dw / w3/2/ne
1/2,

which shows that dw between the neighboring harmonics is
inversely proportional to ne

1/2. It is consistent with the
feature in Figure 8b that dw increases for relatively small ne.
[50] Up to now, we have assumed that the incident waves

start from the region of either H+ or He+ dominant plasmas
in both step-like and bump-like cases. It is interesting to
examine the mode conversion process when the incident
wave is from the region of H+-He+ mixture. In Figure 9, we
assume such cases where NH+ is the background H+ density
in the region of incident waves. The H+ density drops by dN
across the step-like profile in Figure 9a, or has a dip of dN
across the bump-like profile of He+. In the previous cases in
Figure 1, NH+ = 1.0 and dN = 1 were used in the step-like
profile, and NH+ = 1.0 and dN = 0.3 were used in the bump-
like profile.
[51] Figure 10a shows how the absorption occurs in

Figure 9a when NH+ ranges from 0.5 (50% H+ and 50%
He+) to 1.0 (100% H+) where dN = 0.5 is assumed. The
gradient scale is assumed to be 0.3 RE for convenience. The
cutoff frequency and the maximum and minimum resonance
frequencies are given by fco, f bb

max and f bb
min, respectively.

Figure 8. The resonant absorption in a bump-like profile of Figure 1b for different ne: (a) when the
incident wave propagates from a H+-rich to a He+-rich plasma and (b) when the incident wave propagates
from a He+-rich to a H+-rich plasma, where nH $ nHe.
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The absorption becomes significant in Figure 10a only
when NH+ is close to either 1 or 0.5, which indicates that
relatively large absorption arises only if either side of the
uniform regions, where the incident waves or transmitted
waves propagate, is composed of almost purely H+ or He+

ions. For instance, the absorption becomes negligible (<0.1)
if NH+ < 0.90, and the peak occurs approximately only for
NH+ > 0.95. The other absorption peak occurs when NH+ �
0.5 or NH+ � dN � 1 is satisfied. This indicates that the
absorption becomes significant only when any region has
relatively small amount of minority ions.
[52] Figure 10b shows the absorption when nH and nHe

are switched. Thus the incident wave is from He+-rich
plasma and NH+ ranges from 0.5 (50% H+ and 50% He+)
to 0 (100% He+). It should be noted that complete absorp-
tion occurs even though the background plasma is almost an
arbitrary mixture of H+ and He+ unlike Figure 10a. There
are exceptions near the H+ dominant region near fcHe, which
is already confirmed in the previous sections. Therefore it is
expected that the resonant absorption is effective only if the
incident wave propagates from the region of relatively large
nHe to the region of relatively small nHe.

[53] Figure 11a shows the absorption of Figure 9b when
NH+ ranges from 0.3 (30% H+ and 70% He+) to 1.0 (100%
H+) where dN = 0.3 is assumed. In Figure 11a, the
absorption becomes important (larger than 0.1) only for
NH+ > 0.9, which is consistent with the feature in Figure 10a.
The bump-like profile also prefers a small amount of
minority ions in exciting a significant resonant absorption.
Unlike Figure 10a, the absorption becomes negligible where
the plasma is composed of purely He+ ions or NH+ � dN =
0.3. This feature is understandable because its location
corresponds to the top of the crest in the He+ density profile
where the density gradient vanishes and consequently jk0aj
is large (equation (28)).
[54] Figure 11b shows the absorption in the bump-like

profile when nH and nHe are switched (in Figure 9b). The
incident wave is from the He+-rich plasma, but has a dip in
the middle where NHe+ drops by dN = 0.3. Thus NH+ ranges
from 0 (100% He+) to 0.7 (70% H+ and 30% He+).
Complete absorption occurs except in the region where
jk0aj is small, where harmonic variations resulting from
wave interference between the resonances can be seen. Both
Figures 10b and 11b suggest that complete absorption

Figure 9. The (a) step-like and (b) bump-like density models where NH+ and dN are the residual H+

density and its variation in the region of incidence, respectively. The total ion density is kept constant.

Figure 10. The absorption for profiles shown in Figure 9a for different NH+. The gradient scale is
assumed to be 0.3 RE and dN = 0.5 is assumed. The cutoff frequency and the maximum and minimum
resonance frequencies are given by fco, f bb

max and f bb
min, respectively: (a) when the incident wave

propagates from a H+-rich to a He+-rich plasma and (b) when the incident wave propagates from a
He+-rich to a H+-rich plasma where NH+ $ NHe+ in the profile shown in Figure 9a.
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occurs whether the density profile is bump-like or step-like.
When a wave is incident from a region of relatively large
nHe to the region of relatively small nHe, a significant
absorption should always be expected.
[55] We assumed relatively large variation of the ion

population in our density model. It may be the case that it
is not common to see such large variation over a radial
distance of 0.5 RE except at the plasmapause, etc., even
though the heavy ion population variation sometimes
becomes significant near geostationary orbit [e.g., Fraser
et al., 2005]. However, it should be noted that the resonance
frequency not only varies because of changes in the ion
population but also because of variation in the magnetic
field. Indeed, even if the relative ion population ratio is
maintained to be constant, the magnetic field from L = 6.6 to
L = 6.1 over the same distance of 0.5 RE should change
more than 25%, which results in the similar variation of the
resonance frequencies as shown in Figures 1 and 2. Thus
the resonance frequency in the magnetosphere varies in
almost the same manner as presented above suggesting that
our results should be applicable to the magnetospheric
phenomena.

4. Discussion

4.1. Electrostatic and Electromagnetic Property

[56] Magnetic field observations of Pc1-2 waves suggest
that the wave events are primarily electromagnetic in nature
rather than electrostatic. For convenience, we can estimate
the ratio of each electric and magnetic field component by
assuming the dispersion relation in a homogeneous plasma,
where equation (2) becomes

S � n2k �iD nkn?

iD S � n2 0

nkn? 0 P � n2?

0
@

1
A Ex

Ey

Ez

0
@

1
A ¼ 0: ð41Þ

Here P ’ 1 � wpe
2 /w2 ’ �wpe

2 /w2 � 1 when ion waves (w �
Wi) are considered, and P � 1 when an electron wave such

as the upper hybrid wave is considered. From equation (41),
we have

Ey

Ex

¼ iD

n2 � S
Ez

Ex

¼
nkn?

n2? � P

ð42Þ

and the magnetic field components are determined by
equation (1) such as cB = (�nkEy, nkEx � n?Ez, n?Ey)
and then we have the ratio of B components from
equation (42):

By

Bx

¼
nkEx � n?Ez

�nkEy

¼
1� n2?

n2? � P

�iD

n2 � S
Bz

Bx

¼ n?Ey

�nkEy

¼ � n?

nk
: ð43Þ

When the inhomogeneity lies perpendicular to Bo, the
cold plasma assumption implies that n? increases to
infinity near the resonance point. However, in reality, this
value is limited by kinetic effects such as Landau
damping or the finite gyroradius effect and dissipation.
To maintain the validity of the cold fluid approach, the
ion and electron waves are restricted by the condition,
k?rci < 1 and k?rce < 1, respectively, where rci or rce are
the gyroradius of ions and electrons. If the temperature is
assumed to be about the order of 10 eV for both
background cold ions and electrons, we obtain rci � 4 km
and rce � 0.1 km, which provide k?max and l?min and
the mode conversion would be modified by kinetic effects
beyond this limit. Thus n?max is also determined by
k?maxc/w < c/wr in each case.
[57] Let us consider the behavior near a resonance after

an impulse, In the case that we neglect kinetic limitations
and assume n? ! 1 in equations (42) and (43), we obtain
the growth of Ex and the damping of both Ey and Ez from

Figure 11. The absorption for profiles shown in Figure 9b for different NH+. The bump size is assumed
to be 0.6 RE and dN = 0.3 is assumed: (a) when the incident wave propagates from a H+-rich to a He+-rich
plasma and (b) when the incident wave propagates from a He+-rich to a H+-rich plasma where NH+ $
NHe+ in the profile shown in Figure 9b.
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equation (42), also the damping of Bx from Ey, and the
damping of By because By/Bx ! P/iD as well as the
damping of Bz because Bz ! (iD/cnk)Ez. Thus only Ex

grows, and all the other components are damped at the
resonance, which corresponds to the feature of the cold
upper hybrid waves in numerical experiments [e.g., Kim et
al., 2005b]. Although that simulation applies to a different
frequency range, the same approximations apply, namely,
that P, which has the largest value of all the tensor elements
S, D and P, becomes negligibly small compared to n?max

2 .
Near the geostationary equatorial region in our model, upper
hybrid waves are expected to satisfy

n2?max

P
�

c

wrce

� 2

1�
w2
pe

w2

� 2:6� 104 � 1; ð44Þ

which validates our assumption above that n? is large
enough to neglect all the other terms.
[58] However, when ion waves are considered in the

geostationary equatorial region, we have n?max2 /P � (c/
wperci)

2 � 0.17 � 1, which is the opposite to the case of
electron waves above. This difference significantly modifies
the ratio of By in equation (43)

By

Bx

� � n2 � S

iD
¼ �Ex

Ey

; ð45Þ

indicating that By grows in time just like Ex. In fact, the
relative ratio of n?max

2 /P is important in determining
whether the resonant response can be electrostatic or
electromagnetic. This feature suggests that the radial electric
field (Ex) and the azimuthal magnetic field (By) are likely to
be excited at the heavy ion resonance, which is similar to
the case of shear Alfven modes in MHD waves. Unlike the
electron waves, the electromagnetic waves are expected to
occur with relatively strong linear polarization as long as
n?max
2 /P � 1 is satisfied.

4.2. Buchsbaum-Bers Resonances vs. Ion-Ion
Hybrid Resonances

[59] It is useful to discuss the relative roles of the
Buchsbaum-Bers (BB) resonance (S = 0) and the ion-ion
hybrid (II) resonance (S = nk

2). It should be noted that the
BB resonance has no k dependence, which means that there
is no propagation in the cold plasma limit. By definition, it
should have an electrostatic nature in that the electric field
parallel to the k? grows, while the other components damp
via the mode conversion. On the other hand, the II
resonance has kk dependence, which allows propagation
along the magnetic field lines with electromagnetic nature
just like shear Alfvén waves in MHD. Thus the two
resonances can be distinguished in the cold plasma limit by
the electrostatic (BB) or electromagnetic (II) nature,
although the two resonance locations are close to each
other when nk (or kk) becomes relatively small.
[60] When electron inertial effects are included in a cold,

fluid model, there is a fourth-order system of equations
supporting two different modes (each forward and back-
ward propagating) and the only resonance is the BB
resonance and there is no resonance at S = nk

2. However,
when electron inertial effects are ignored, only one of the
modes (an ion mode) can be described with a resonance at
the II resonance location and there is no resonance at S = 0.
In order to understand the role of the II resonance, it is
necessary to consider the fourth-order equation. It should be
noted that away from these resonances, there are two modes
in the system with far different scales, a compressional ion
Alfvén-like mode and a short-scale electron inertial mode. If
we go back to the full wave dispersion relation of
equations (19) and (21), we find the two modes of large
and small n?, respectively:

n2? �
l
P þ Sð Þd � D2

S
� d2 � D2

d
d2 � D2

d
;

8>><
>>: ð46Þ

where the second mode is the ion wave that was derived in
equation (22). The first mode, where the first term is very

Figure 12. The density models and the resonance frequency profiles for (a) two ions and (b) three ions. In the
three-ion case of b, fb1 and fb2 are the resonances of the H

+-He+ branch and the He+-O+ branch, respectively.
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large compared to the second term near the resonance, is an
electron inertial wave, which can be approximated as

n2? � P þ Sð Þd � D2

S
� Pd

S
: ð47Þ

It should be noted that when P is large, the electron inertial
mode is heavily damped everywhere except between the
BB and II resonances and therefore that mode is only
important in a small region near the two resonances.
Equation (47) shows that the resonance of electron waves
is determined by S = 0, where equation (47) becomes n?

2 �
�Pnk

2/S. This is equivalent to the original resonance
condition of tan2 q = �P/S from equation (5), where the
BB resonance is defined. Strictly speaking, the BB resonance
(S = 0) implies a resonance of the electron inertial scale waves
rather than that of ions in the sense that n? should be so large
that the wavelength becomes too small to represent the wave
motion of ions.
[61] When we completely neglect the effect of electron

inertia, the full wave equations are reduced to the second-
order differential equation of the ion waves, which is similar
to the Budden problem near the resonance. Thus the II
resonance takes energy from the fast wave at S = nk

2 and
launches a resonant wave along the magnetic field lines.
The second mode in equation (46) allows a sufficiently
small n? or large wavelength for the ion motion when the
leading term of equation (47) is removed. Since the
dispersion relation n?

2 � (d2 � D2)/d has no dependence
on P (associated with the electron inertia), it is evident that
the resonance of d = 0 or S = nk

2 is composed of ion motion.
Thus the II resonance represents the resonance of ion waves.
[62] A solution of the fourth-order dispersion relation

including the effect of electron inertia shows that near the
II resonance location the two approximate solutions given
above break down because the spatial scale of the modes
becomes comparable. The ion and electron branches couple
at the II resonance location giving rise to two complex
conjugate solutions with wavelength comparable to the ion
mode. No resonance occurs for either mode at the II
resonance location. However, the modes are strongly cou-
pled in that region (S � nk

2) leading to mode conversion
from the ion wave to the electron inertial wave. Some of the
wave Poynting flux remains in a transmitted ion wave
which propagates unaffected through the S = 0 resonance.
On the other hand, the mode-converted electron inertial
wave carries wave Poynting flux into the principal
resonance S = 0 where it is absorbed in the cold plasma
limit. We have found that this energy absorption is the same
as the energy absorption that occurs at the II resonance
when electron inertial effects are ignored provided that there
is a principal resonance (S = 0) allowed by the profile,
which suggests that the electron inertial wave carries all the
mode converted wave energy to the principal resonance. On
the other hand, if there is only an II resonance without a BB
resonance for a given profile, the ion waves are mode-
converted at the II resonance to electron inertial waves that
propagate away from the II resonance region without any
resonant absorption. This property of the solutions explains
why the absorption only exists over the frequency range of
S = 0 rather than S = nk

2 in Figures 2–5, even though the ion

waves have a resonance at S = nk
2. It is expected that the

electron inertial waves between the II resonance and the BB
resonance are essentially dispersive waves associated with a
resonance field-aligned mode S = nk

2. As the waves carry
energy into the S = 0 resonance, it would be expected that
they become electrostatic in nature.
[63] In a realistic warm plasma, it is expected that the

waves would not become fully electrostatic in nature for
several reasons. First, there would be a kinetic limit for large
n? and second, if field-aligned propagation is faster than
dispersion across the magnetic field, the wave energy could
be absorbed at some other location. If we examine the
dispersion relation (47) of the electron wave (the waves
including P dependence), we can assume that n? is large,
although it will be bounded because of kinetic physics. For
instance, n?max can be limited by the finite gyroradius,
which is estimated in section 4.1 as n?max

2 /P � (c/wperci)
2 �

0.17 � 1 for 10 eV ions near the geosynchronous orbit.
Then we have a dispersion relation near the resonance from
n?
2 � Pd/S in equation (47):

S �
n2k

1� n2?
P

�
n2k

1þ k2?c

w2
pe

; ð48Þ

since P � = �wpe
2 /w2. As k? becomes large, S ! 0

consistent with the resonance condition. When k? is so
small that the wavelength becomes larger than the electron
inertia length, we have S = nk

2, where it couples with the II
resonance. This dispersion relation describes dispersive
electron inertial waves that mode convert from fast waves at
the II resonance and radiate energy away to the BB
resonance location. This feature is similar to the nature of
the inertial Alfven wave since S ! c2/VA

2 in the low
frequency limit where VA is the Alfven speed. Therefore the
relationship between the two resonances in the cold plasma
limit can be understood. Since our results suggest that the
ion-ion hybrid resonance S = nk

2 or equation (48) is likely to
act as a real resonance for relatively small n? or n?

2 /P, the
electromagnetic resonances II resonant waves are expected
to propagate along the magnetic field lines with dispersion
across the magnetic field due to electron inertial effects.
This result is found to be consistent with the characteristics
of statistical observations near the equatorial region [e.g.,
Anderson et al., 1992b; Fraser and Nguyen, 2001].

4.3. Resonance Frequency and Heavy Ion Composition

[64] When wpe � wce is satisfied, the resonance condition
(S = 0) is determined only by the magnetic field intensity
and the population ratios among the multiple ions. Figure 12
shows how two- and three-ion cases have resonance fre-
quencies, which suggest that from this resonance is possible
to infer the relative concentration of each ion in the
background plasma. If two ions are involved, a measure-
ment of the resonance frequency fbb directly provides the
composition ratio. If more ions are involved, we would find
an additional branch satisfying S = 0 in Figure 12b. Each
resonance would be located in between each band of ion
cyclotron frequencies such as fb1 (He+ branch) and fb2 (O+

branch), respectively, in Figure 12b. The resonance frequen-
cy varies in a simple manner in that it increases (decreases)
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as its heavier ion composition increases (decreases). In
Figure 12a, fbb decreases as nHe/ne decreases in x. In Figure
12b, it is clear that fb1 and fb2 tend to vary by the density
variation of He+ and O+, respectively. This feature could be
used to monitor the heavy ion population by investigating
Pc1-2 wave events near the ion cyclotron frequencies. It
should be noted that near the resonance the wave solutions
would be linearly polarized, which correspond to Ex and By

in our model above. Thus when linearly polarized Pc1-2
events are found around each cyclotron frequency of ions in
space, we could use the peak frequencies to determine the
abundance of heavy ions near the location of the observation.
[65] Our results showed that the resonant absorption

should significantly depend on the direction of incident
waves relative to the density gradient. If the fast wave
propagates from the source region into the region where the
resonance frequency profile (or the heavier ion population)
increases, relatively small absorption occurs only when the
minority ions are a few percent and the frequency should be
close to each ion cyclotron frequency. If the fast wave
propagates into the region where the resonance frequency
(or the heavier ion population) decreases, it is strongly
absorbed except for the case of a small relative density of
minority ions. For instance, if the source is located at x > X
in Figure 12b, only fb2 would have strong absorption since
this branch is decreasing in the direction of the incident
wave propagation. If the source is located at x < 0, fb2 would
have strong absorption as long as the least population of
minority ions are more than a few percent.
[66] It is expected that several observational features of

Pc1-2 waves could be explained by our results. For in-
stance, Anderson et al. [1991] showed a puzzling case of
Pc1-2 waves in the magnetosheath plasma consisting of
He+, He2+, O+ where the polarization becomes left-handed
above fHe2+ and linearly polarized below fHe2+. Our results
indicate that such a differential polarization pattern could
happen if the He2+ density decreases and O+ increases
toward the wave source region. When the source frequency
is broadbanded, the waves would be linearly polarized
below fHe2+ because of the strong resonant absorption, while
the waves above fHe2+ would remain either left-handed or
right-handed polarized.
[67] Another consequence of this study for a realistic

magnetospheric geometry can be inferred from the topology
of the resonant frequency profiles. If one considers fixed
plasma concentrations and magnetic field variation, the
resonance frequency is proportional to the magnetic field
so the resonance profile would be topologically similar to
the case of Figure 2 for waves propagating inward (to
smaller L) and Figure 3 for waves propagating outward
(note waves are launched from the right). Therefore it would
expected that waves propagating outward would be
absorbed most efficiently.

4.4. Effects of Warm Plasmas

[68] In our model we assumed the cold plasma limit. In a
high b plasma it would be important to also include kinetic
effects. Mode conversion of fast Alfven waves at the ion-ion
hybrid resonances has been extensively examined with
models that include thermal effects [e.g., Swanson, 1976;
Jacquinot et al., 1977; Perkins, 1977; Lapierre, 1983;

Brambilla and Ottaviani, 1985; Riyopoulos and Tajima,
1986; Lashmore-Davies et al., 1988; Fuchs et al., 1995].
The mode conversion in warm plasmas indicates that the II
resonance typically leads to the electron heating via the
excitation of ion Bernstein waves [e.g., Swanson, 1976;
Brambilla and Ottaviani, 1985; Lashmore-Davies et al.,
1988;Majeski et al., 1994; Fuchs et al., 1995]. As discussed
in the previous sections 4.1 and 4.2 above, our fluid model
is restricted to relatively large scale phenomena (>rci).
[69] The small-scale response at the resonance requires a

kinetic treatment. For instance, the finite gyromotion and
resonant motion of each ion species directly affects the
motion of electrons near the singularities of ion resonances
in the fluid equations. In addition, to approximate the effect
of warm plasma, the wave equations can be modified by
replacing equation (4) by the kinetic dielectric tensor
including the correction term of finite gyroradius as the
first-order approximation [Swanson, 1976]. These subjects
are left as future work. Since the region in our model lies in
a relatively cold regime (b � 0.01), it is expected that our
results can be applied to most wave events in observations,
although the exact nature of the resonant absorption needs
to be clarified by a kinetic approach.

5. Conclusion

[70] In order to focus on basic properties of the wave
coupling at the heavy ion resonances, we have considered
the cases of two ions for simplicity in this study. When more
ions such as O+ are involved, there are more branches of
resonances as indicated in Figure 12b. The resonant absorp-
tion would become rather complicated in the sense that the
gradient of each resonance frequency can be positive and
negative at the same time and there are many cases in the
choices of minority ions. However, our result suggest that
the absorption can be reduced to that of Budden problem
near each resonance once the heavy ion density profiles are
given, which would enable us to understand the effect of
more ion cases.
[71] We have also assumed that the background magnetic

field is constant and the total density of ions or electrons is
constant in order to focus on the role of heavy ion
composition. In fact, the condition of the resonant absorp-
tion (equation (28)) would depend on both the gradient of
magnetic field and electron density to some extent. It
remains as a future work to study such additional effects
of more ions, rB as well as rne.
[72] The presence of heavy ions invokes a new resonance,

which is composed of the hybrid ion motions. Unlike the
electron wave resonance, this heavy ion resonance is found
to have strong electromagnetic nature. These resonances are
expected to occur with the linear polarization near the multi-
ion hybrid resonances, which could be important in deter-
mining the heavy ion composition in space.

Appendix A: Derivation of the Coupled Wave
Equations in Multi-ion Plasmas

[73] The coupled equations of equation (8) are written in
terms of Ey and cBy, which represent the eigenstates in
vacuum. If the uniform plasmas are introduced at both sides
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of x > X (region 1) and x < 0 (region 2), and the nonuniform
region lies within 0 � x � X, we can change equation (8)
into the wave equations in terms of the eigenstates of
plasma waves as follows:

d2f
dx2

� d ~E xð Þ
dx

~E �1
xð Þ df

dx
þ ~E xð ÞH2 ~M xð Þf ¼ 0 ðA1Þ

where

f ¼ C�1
1 y ¼ C�1

1

Ey

cBy

� 
;

~E xð Þ ¼ C�1
1 E xð ÞC1;

~M xð Þ ¼ D�1
1 C�1

1 M xð ÞC1;

D1 ¼ C�1
1 M1C1;

H2 ¼ w2

c2
D1 ¼

h21 0

0 h22

 !
: ðA2Þ

Here C1 is the linear transformation matrix from the plasma
wave eigenstates of region 1 to the vacuum TE and TM
modes. D1 and H are the diagonal matrix, where hj
represents the x component wave number of the jth
eigenstate in region 1. Thus equations (A1) and (11) show
that both ~E1 and ~M1 become the unit matrix in region 1.
The boundary conditions for f(x) in equation (A1) are given
by

f xð Þjx�� ¼ f xð Þjxþ�

1

~E xð Þ
df
dx

����
x��

¼ 1

~E xð Þ
df
dx

����
xþ�

: ðA3Þ

In order to decompose the wave function in terms of the
coupling components, we can extend equation (A1) as

d2F
dx2

� d ~E xð Þ
dx

~E �1
xð Þ dF

dx
þ ~E xð ÞH2 ~M xð ÞF ¼ 0 ðA4Þ

where

F xð Þ ¼ F11 F12

F21 F22

� 
: ðA5Þ

Here Fij is the ith component when the jth component is an
incident wave. In region 1, the wave equation (A4) is
simplified as follows:

d2F1

dx2
þ ~E1H

2 ~M1F1 ¼
d2F1

dx2
þ H2F1 ¼ 0 ðA6Þ

where ~E1 and ~M1 are the unit matrix. When the incident
wave is given by plane waves in region 1, there are reflected
waves in the same region and transmitted waves in region 2.
If the incident waves have a unit amplitude and the reflected
waves are determined by the reflection coefficient matrix r
in region 1, we have

F1 xð Þ ¼ e�iH x�Xð Þ þ eiH x�Xð Þr Xð Þ ðA7Þ

where

e�iH x�Xð Þ ¼ e�ih1 x�Xð Þ 0

0 e�ih2 x�Xð Þ

 !
;

r Xð Þ ¼
r11 r12

r21 r22

� 
: ðA8Þ

Here rij(X) is the reflection coefficient of the ith component
when the jth component is an incident wave.
[74] In region 2 (x < 0) which is the uniform region of ~E2

and ~M2, equation (A4) becomes

d2F2

dx2
þ ~E2H

2 ~M2F2 ¼
d2F2

dx2
þM2F2 ¼ 0: ðA9Þ

However,M2 = ~E2 H2 ~M2 is no longer diagonal, and we can
transform equation (A9) into

d2~F2

dx2
þ Q2~F2 ¼ 0 ðA10Þ

where

~F2 ¼ C�1
2 F2;

Q2 ¼ C�1
2 M2C2 ¼

q21 0

0 q22

� 
:

ðA11Þ

Q is the diagonal matrix, and qj represents the x component
wave number of the jth eigenstate in region 2. Here C2 is the
linear transformation matrix from the plasma wave
eigenstates of region 2 to the eigenstates of region 1. Thus
we can write the transmitted wave in region 2 as

~F2 xð Þ ¼ e�iQxt Xð Þ ðA12Þ

where tij(X) represents the transmission coefficient of the ith
component when jth component is an incident wave.
[75] If we remove the inhomogeneous region (X ! 0),

equation (A3) becomes the boundary conditions at x = 0
between the two uniform regions:

F1jx¼0 ¼ F2jx¼0 ¼ C2
~F2jx¼0

1

~E1

dF1

dx

����
x¼0

¼ 1

~E2

d~F1

dx

����
x¼0

¼ 1

~E2

C2

d~F2

dx

����
x¼0

: ðA13Þ

From equations (A7) and (A12), equation (A13) becomes

I þ r 0ð Þ ¼ C2t 0ð Þ
1

~E1

H I � r 0ð Þð Þ ¼ 1

~E2

C2Qt 0ð Þ: ðA14Þ

Since both ~E1 and C2
�1 ~E2�1 C2 are the unit matrix I, r(0) and

t(0) become

r 0ð Þ ¼ C2t 0ð Þ � I

t 0ð Þ ¼ 2 C2 þ H�1C2Q
� ��1

: ðA15Þ

ðA2Þ
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Both equations (A6) and (A9) satisfy the conservation of
J = dFy/dxF � Fy dF/dx,

J ¼ dFy
1

dx
F1 � Fy

1

dF1

dx

¼ dFy
2

dx
F2 � Fy

2

dF2

dx

¼ dFy
2

dx
~F2 � ~F

y
2

d~F2

dx
ðA16Þ

which should be conserved if the inhomogeneous region
is neglected and there is no absorption through mode
conversion. By putting equations (A7) and (A12) into
equation (A16), we have the following condition:

H ¼ r 0ð ÞyHr 0ð Þ þ t 0ð ÞyQt 0ð Þ: ðA17Þ

For instance, if the incident wave is assumed to be the
first kind (e�ih

1
x) in region 1,

1 ¼ jr11j2 þ
h2

h1
jr21j2 þ

q1

h1
jt11j2 þ

q2

h1
jt21j2: ðA18Þ

Thus when the mode conversion occurs in an inhomo-
geneous region, the absorption of mode conversion can
be defined by

A1 ¼ 1� jr11j2 þ
h2

h1
jr21j2 þ

q1

h1
jt11j2 þ

q2

h1
jt21j2

� 
: ðA19Þ

When the two uniform regions are identical (C2 = I), the
conditions become simplified as follows:

~E1 ¼ ~E2; ~M1 ¼ ~M2;

F ¼ ~F;

r 0ð Þ ¼ 0; t 0ð Þ ¼ I ;

Aj ¼ 1� jr1jj2 þ jr2jj2 þ jt1jj2 þ jt2jj2
� �

: ðA20Þ

Appendix B: Application of Heavy Ion
Resonances to Budden Problem

[76] In order to make an analogy with the Budden
problem, we adopt the expressions for k0 and a in an
inhomogeneous plasma, which are derived in section 3.2:

k20 ¼ D0

d0

a ¼ � D
D0

jk0aj ¼
Dffiffiffiffiffiffiffiffiffi
d0D0

p
�����

�����
ðB1Þ

where D and d are defined in section 3.2. Here the
resonance is defined by S = 0 or d � 0 and the cutoff is
defined by d = D (or D = 0), respectively. To approximate
the solutions near the resonance and cutoff, we assume the
linear profiles such as

d � kx

d � D � ~k x� að Þ: ðB2Þ

Near the resonance, the condition of jd0j � jD0j can be
applied:

D0 ¼ d20 � D2
0 � �D2

0

D0
0 ¼ 2 d0d00 � D0D

0
0

� �
� 2 d0 � D0ð Þkþ 2D0~k
� 2D0 ~k� kð Þ
¼ �2D0D

0;

ðB3Þ

which are consistent with our various profiles assumed
above in this study.
[77] From equation (4), S and D are given by

S ¼ 1� XH

1� Y 2
H

� XHe

1� Y 2
He

� X þ e

1� Y 2
e

D ¼ XHYH

1� Y 2
H

þ XHeYHe

1� Y 2
He

� XeYe

1� Y 2
e

; ðB4Þ

where Xj = wpj
2 /w2 and Yj = wcj/w. Since X0

j = n0je
2/mj�ow

2

and n0H = � n0He when the total electron density remains
constant, X0

H = � 4X0
He is satisfied:

d0 ¼ X 0
He 4f1 � f2ð Þ � k

D0 ¼ X 0
HeYHe f2 � 16f1ð Þ � k� ~k

f1 ¼
1

1� Y 2
H

f2 ¼
1

1� Y 2
He

: ðB5Þ

From equations (B3)–(B5), k0a in equation (B1) becomes

jk0aj �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2YHeX
0
He

q
����� D

3=2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f1 � f2ð Þ f2 � 16f1ð Þ
p

�����
/ w5=2 1

n0He

n3=2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f1 � f2ð Þ f2 � 16f1ð Þ

p
�����

�����: ðB6Þ
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