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Global structure of mirror modes in the magnetosheath 

Jay R. Johnson and C. Z. Cheng 
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 

Abstract. A global stability analysis of mirror modes in the magnetosheath 
is presented. The analysis is based upon the kinetic-MHD formulation which 
includes relevant kinetic effects such as Landau resonance and gradient drift effects 
related to inhomogeneities in the background density, temperature, pressure and its 
anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides 
the free energy for the global mirror mode. The local theory of mirror modes predicts 
purely growing modes in the frame of the moving plasma confined to the unstable 
magnetosheath region; however, the nonlocal theory that includes the effects of 
gradients and plasma flow predicts modes with real frequency which propagate with 
the flow from the magnetosheath toward the magnetopause boundary. The real 
frequency is of the order of a combination of the diamagnetic drift frequency and 
the Doppler shift frequency associated with plasma flow. The real frequency is not 
simply a Doppler-shifted frequency obtained from local calculation. Rather, it is 
determined from a boundary value constraint on an eigenvalue problem and can 
differ significantly from the local Doppler-shifted frequency. Without plasma flow, 
the diamagnetic drift frequency provides a wave phase velocity in the direction 
of the magnetopause so that wave energy accumulates against the magnetopause 
boundary, and the amplitude is skewed in that direction. Such a wave structure 
might be observed under conditions of small magnetosheath flow. For larger plasma 
flow (Alfv6n Mach number >_ 0.1), the flow also causes a real phase velocity in 
the direction of the flow, but the phase velocity increases from a small value 
near the bow shock to nearly the flow velocity as the wave propagates toward 
the magnetopause. As a result, wave amplitude is large where the phase velocity 
is small and small where the phase velocity is large resulting in a skew in wave 
amplitude toward the bow shock. 

Introduction 

Identification of observed compressional waves in the 
magnetosheath has been somewhat controversial. In- 
deed, many observations have found low-frequency MHD 
waves with density and magnetic field out of phase. 
These waves have been interpreted as being either slow 
modes or mirror modes. Gleaves and Southwood [1991] 
observed compressional waves in the magnetosheath 
near the magnetopause and identified them as slow 
modes because those waves had a finite phase velocity 
toward the magnetopause in a different direction from 
the flow velocity. They dismissed those waves as being 
mirror modes based on the prediction of the uniform 
plasma theory that mirror modes are purely growing 
waves in the plasma rest frame so that they should be 
observed to propagate only with the flow direction in 
contrast to their observations. However, it is commonly 
believed that strong Landau damping of the slow mode 
in the magnetosheath inhibits its growth, and there- 

Copyright 1997 by the American Geophysical Union. 

Paper number 96JA03949. 
0148-0227 / 97 / 96J A-03949 $09.00 

fore observations of waves with antiphase correlation 
between density and magnetic field were identified as 
drift mirror modes [ Tsurutani et al., 1982; Hubert et al., 
1989; Anderson et al., 1994; Denton et al., 1995]. 

More recently, the work of Song et al. [1994] and 
Denton et al. [1995] addressed mode identification in 
the magnetosheath and near the magnetopause. The 
analysis of Denton et al. [1995] identified the bulk of 
the observed waves near the magnetopause to be mirror 
modes. On the other hand, Song et al. [1994] identified 
waves throughout the magnetosheath and found that 
while fast magnetosonic and mirror mode waves appear 
to be dominant in the middle magnetosheath, fast and 
slow magnetosonic waves are dominant near the mag- 
netopause. In their argument based on uniform plasma 
theory the essential measurement that distinguishes be- 
tween the mirror mode and slow magnetosonic waves is 
the so-called Doppler ratio, which is used to determine 
whether the wave has a finite phase velocity relative to 
the bulk plasma flow. Using two satellites they were 
able to determine that compressional waves observed 
just upstream of the magnetopause have antiphase re- 
lationship between magnetic field and density. Because 
they stand in the flow and therefore have a finite up- 
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stream phase velocity in the frame of the flow, they were 
identified as slow modes. 

The one-dimensional hybrid simulation of Omidi and 
Winske [1995] provides some insight as to a possible 
resolution of this controversy. In that simulation, a fast 
shock wave propagates away from a rotational disconti- 
nuity. Mirror mode waves arise in the wake of the shock 
due to pressure anisotropy and are carried against the 
rotational discontinuity by plasma flow. Near the re- 
gion where the magnetic field increases, large amplitude 
waves appear to stand between the rotational disconti- 
nuity and the region of low plasma-/3 referred to as a 
magnetic boundary. The waves appeared to stand in 
the flow and had finite real frequency relative to the 
plasma flow. Omidi and Winske [1995] called the waves 
MIAOW (mirror and slow mode), although it appears 
that the waves are simply mirror modes that pile up 
at the magnetopause boundary. In the simulation the 
MIAOW waves were found to only occur for finite nor- 
mal magnetic field. Indeed, as stated in our Local The- 
ory section, the mirror mode exists only for co • kllvtni , 
and if there were no normal magnetic field component, 
then k. B - 0, co • kllvtni, and there is no instability. 

In this paper, we present an analysis of global mir- 
ror modes at the magnetopause based upon the kinetic- 
MHD approach which is an attempt to incorporate the 
most important ion kinetic effects into the MHD for- 
malism [Cheng, 1991; Cheng and Johnson, 1996]. The 
gyrokinetic equation, which is essentially the gyroaver- 
aged Vlasov equation, is the cornerstone of the kinetic 
part of the model for this application. Moments of the 
gyrokinetic equation are taken and provide a modified 
momentum equation and Ohm's law. This approach re- 
tains the important kinetic effects of Landau damping 
and diamagnetic drift as well as the physics associated 
with the ion magnetic gradient and curvature drifts. We 
shall show that it is important to retain both these ki- 
netic effects and global effects associated with gradients 
in the background profiles of density, temperature and 
magnetic field. The results we obtain are in qualita- 
tive agreement with many properties of compressional 
waves observed in the magnetosheath. 

The mirror modes destabilized in the magnetosheath 
are of substantial interest because they can couple a sig- 
nificant amount of wave energy from the magnetosheath 
to waves at the magnetopause. Local mirror mode the- 
ory predicts that the mirror mode is purely growing in 
the frame moving with the plasma. In this work we 
shall study the nonlocal effects of realistic background 
gradients and plasma flow in a frame in which the bow 
shock and magnetopause are stationary and determine 
that the eigenfrequency is complex with a substantial 
real component due to particle diamagnetic drift and 
Doppler shift associated with plasma flow. The real 
frequency, however, is different from the local Doppler 
shift and therefore corresponds to a wave structure that 
moves relative to the plasma flow. Because these waves 
have a real frequency they can couple to kinetic Alfv•n 

waves near the magnetopause where this frequency is 
close to the Alfvdn resonance frequency. Mode con- 
verted kinetic Alfvdn waves may play an important role 
in transport processes at the magnetopause [Hasegawa 
and Mima, 1978; Lee et al., 1994; Johnson and Cheng, 
1•S]. 

The organization of this paper is as follows. We shall 
briefly review the mirror mode and point out the impor- 
tant consequences introduced by (1) background gra- 
dients in the equilibrium and (2) kinetic effects. We 
present the kinetic-MHD model for the mirror mode 
which includes these effects. Then, we solve for the 
global mirror eigenmodes using a one-dimensional equi- 
librium based upon typical observations and interpret 
the results. Then we present a discussion of our results 
in relation to wave observations and simulation results. 

Finally, we give a summary. 

Background Gradient and Kinetic 
Effects on Mirror Modes 

Without kinetic effects, low-frequency (co • kllVn, 
kllcs, where kll is the parallel wave number, vn is the 
Alfvdn speed, and cs is the sound speed) compressional 
magnetic field fluctuations in a plasma with flow veloc- 
ity V0 may be described by the MHD equations. With 
appropriate projections of the momentum equation, it 
is possible to isolate the predominantly compressional 
mode [Cheng, 1991, see equations (21) and (65)]. 

5/+v0'v B.SB- B. V (•2B.VB.SB) 
+V2• (ZM•z2B' 5B) (1) 

where the firehose and mirror instability parameters are 

• = i + (•ñ - •11)/2 (2) 

•-M,Z• = i + •ñ(1 -- •ñ/•11), (3) 

respectively, for bi-Maxwellian plasmas. The uniform 
plasma dispersion relation for waves without background 

flow is co2 _ •k•v• + •'M•lvk•v• which reduces in the 
isotropic limit (• = •-= 1) to the well-known compres- 
sional Alfvdn wave. In a plasma with •ñ > •11 • 1, 
•'MSZ• < 0 can lead to the well-known purely growing 
mirror instability. 

Mirror modes are unstable and can grow to large 
amplitudes because the magnetosheath is characterized 
by a large pressure anisotropy [Anderson et al., 1991; 
Paschmann et al., 1993]. Pressure anisotropy devel- 
ops in the magnetosheath because as plasma crosses 
the bow shock, the magnetic field increases and the 
flow velocity perpendicular to the magnetic field is con- 
verted into gyromotion yielding a large perpendicular 
plasma temperature. Motion along the magnetic field 
is not readily converted into thermal energy so that 
a large anisotropy develops with fiñ > fill' In the 
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magnetosheath the kinetic pressure dominates the rel- 
atively weak magnetic field so that typically 3 > 1. 
For 3ñ/311 > (1 + 1/•ñ) the plasma is unstable to the 
well-known mirror mode, and Phan et al. [1996] have 
shown that low-frequency compressional wave activity 
has a strong dependence on this condition in the mag- 
netosheath. Toward the magnetopause, the flow slows 
down and the magnetic field further increases while the 
plasma pressure decreases and becomes more isotropic. 
The plasma 3 falls to a more typical magnetospheric 
value much less than 1 which suppresses the mirror 
mode instability. 

Modifications to the simplistic uniform plasma MHD 
description of the compressional wave can be signifi- 
cant. In the magnetosheath and near the magnetopause 
it is important to consider the effects of gradients in 
the equilibrium as well as kinetic effects. The param- 
eter rMHD, which indicates regions of local instability 
when negative, has a profile which changes from pos- 
itive in the solar wind (relatively isotropic pressure) 
to negative in the magnetosheath (due to large pres- 
sure anisotropy) to positive in the magnetosphere (low 
•, less anisotropy). As a consequence, (1) describes 
a purely growing eigenmode localized in the region of 
instability. The usefulness of local theory based upon 
homogeneous plasma is somewhat questionable for this 
situation because the frequencies are determined as a 
global property and the spatial behavior of the mode 
can vary substantially over the domain of interest. 

A second source of modification to uniform plasma 
theory results because the plasma flows relative to some- 
what stationary boundaries (the bow shock and mag- 
netopause). In an infinite plasma with uniform plasma 
flow an observer at a stationary point relative to the 
moving plasma would observe the frequency in the 
plasma frame Doppler shifted by a real frequency. How- 
ever, because the structure is somewhat tied to the 
boundaries through boundary conditions, the Doppler 
shift tends not to be a constant even if the flow is uni- 

form. As a result, the global real frequency is an av- 
erage value of the Doppler shift. Furthermore, if the 
background plasma flow is nonuniform, the Doppler 
shift varies over the entire spatial domain and again the 
global real frequency turns out to be an average Doppler 
shift. Hence the effects of nonuniform plasma flow turn 
out to be important in both the MHD and kinetic parts 
of the kinetic-MHD equations, and the solutions that 
we obtain have substantially different character when 
plasma flow is increased. 

MHD wave analysis effectively deals with complicated 
boundary conditions and global gradients but fails to 
account for important kinetic effects. Hasegawa [1969] 
first provided a description of kinetic effects on the mir- 
ror mode. Moreover, an armada of studies of kinetic 
effects on mirror modes in the magnetosheath has been 
amassed using Vlasov theory based upon a homoge- 
neous background [Gary, 1992; Gary et al., 1993a,b,c; 
Gary and Winske, 1993; Denton et al., 1995]. While 

these calculations provide very useful information about 
local threshold conditions, they do not account for 
kinetic effects that involve background gradients and 
boundary conditions. On the other hand, MHD wave 
analysis effectively deals with complicated boundary 
conditions and global gradients but fails to account for 
important kinetic effects. 

If kinetic effects are included in (1), kinetic contri- 
butions arise which modify the term proportional to 
rMHD SO that rMHD must be replaced by an appro- 
priate kinetic r which contains effects of diamagnetic 
drift, wave-particle resonances, and finite Larmor radii. 
In the low-frequency limit (w << kllVtnll), the kinetic 
r reduces to rMHD. It has already been shown that 
kinetic effects strongly affect the MHD picture of the 
mirror instability. If (w -• kllVtnll), then wave particle 
resonance is important. Southwood and Kivelson [1993] 
provided an excellent physical picture of the kinetic ef- 
fects on the instability and relates the instability to res- 
onant particles with zero phase velocity. An important 
feature of the kinetic dispersion relation is that for an 
anisotropic plasma, in addition to the weakly damped 
fast magnetosonic wave found in the limit o: >> kllVthll , 
the mirror mode is found with c• << kllVtnll. For low 
frequencies (c• << kllVtnll), the kinetic mirror mode is 
reasonably approximated by the MHD description for 
the threshold condition. However, when c• ..• kllvtnll , 
the kinetic mirror mode growth rates are significantly 
reduced from the prediction of MHD theory. 

Other kinetic effects not described by uniform plasma 
Vlasov theory also arise where pressure and density gra- 
dients are important. The gradients enter into the ki- 
netic description through the diamagnetic drift. These 
effects were first described as the drift-mirror mode 

[Hasegawa, 1969] but were thought to be unimportant 
because pressure and density gradients in the magne- 
tosheath are generally small; however, we shall show 
that large localized gradients at the magnetopause can 
affect the global structure and provide a real frequency 
to the mirror mode. At the magnetopause, the diamag- 
netic drift frequency, c•, •- kñVthiPi/LMp (LMp is the 
gradient scale at the magnetopause and Pi is the ion 
gyroradius) can be significant because, for typical mag- 
netopause parameters, c•, ..• kllvtni and wave-particle 
interaction is strongly modified. 

Kinetic-MHD Eigenmode Equation for 
Mirror Modes 

An appropriate description of the mirror mode in the 
magnetosheath and near the magnetopause should at- 
tempt to account for the effects outlined in the last sec- 
tion. In particular, the model should contain the global 
profile effects which arise from inhomogeneous flow ve- 
locity, density, pressure, temperature, and magnetic 
field. Moreover, the model should contain important 
kinetic effects associated with the wave-particle inter- 



7182 JOHNSON AND CHENG: GLOBAL MIRROR MODES 

action and diamagnetic drift. The kinetic-MHD model, 
which retains all of these effects is appropriate because 
the smallest background scale (the magnetopause) is 
typically the order of 10 pi and thus satisfies the gyroki- 
netic approximation. The gyrokinetic formalism allows 
us to solve the gyroperiod averaged Vlasov equation. 
The intrinsic assumptions involved are that co << •i 
(the ion gyrofrequency), pi • Lñ, Lll where Lñ and Lll 
are gradient scale lengths parallel and perpendicular to 
the magnetic field. The wave field may have variation 
of the order of the gyroradius so that k.ñpi •0 1 is al- 
lowed and kñ >> kll. Finally, kllLl[ >> 1 and kñLñ >> 1, 
but we point out that kll Lñ • 1 is allowed. All of these 
conditions are generally met at the magnetopause for 
these waves. To focus on the effects described above, 
we take for simplicity a one-dimensional equilibrium in 
the x direction which is taken to be normal to the mag- 
netopause. 

As a first test of the importance of gyrokinetic effects 
and global structure on magnetosheath mirror waves, 
it is reasonable to consider solutions based upon a one- 
dimensional equilibrium. Although the results can be 
expected to be significantly different in two or three 
dimensions, we a primarily interested in assessing the 
importance of kinetic and nonlocal effects relative to 
the results of local theory, for which one-dimensional 
calculations should suffice. We should point out that it 
should be straightforward to generalize this model to ac- 
count for realistic two- or three-dimensional equilibrium 
profiles. All equilibrium quantities will be functions of x 
only. For simplicity, we take the magnetic field and ve- 
locity to be Bo(x)• and Vo(x)5:, respectively. We neglect 
drifts due to magnetic field gradients and curvature in 
the resonant wave-particle interaction which should not 
be important because kllvth is relatively large compared 
with the drift terms k.va. Coupling to transverse mag- 
netic fluctuations is ignored. It is usually the case that 
coupling is significant near the Alfv•n and sound reso- 
nances where co = kllvA and co = kllc8 respectively [e.g., 
Chen and Hasegawa, 1974]; however, the waves that we 
consider have low frequency: co < kllc8 and co < kllVA so 
that coupling is small throughout most of the domain. 
Obviously, if the magnetic field were to rotate so that 
k. B - 0 such coupling would be very important. We 
do expect that there will be localized coupling where 
the wave phase velocity approaches vA or c, leading to 
mode conversion to kinetic Alfv•n waves or damping 
from the sound continuum. Also, we refer the reader 
to the Discussion of Results section where we discuss 

the importance of coupling to the slow wave near the 
location r = M•. 

The global kinetic-MHD equation describing the com- 
pressional magnetic field is given by [Cheng, 1991] 

B 2 • ( ) +V0.V B.6B-B.V •¾B.VB.6B 

+V2• (rB. 8B) (4) 

with 

rB ß 5B -- r•/uz>B ß 5B + 5/5ñ, 

and the nonadiabatic pressure response 5/5 is 

- f v(vz - Vo)a/2. 
The nonadiabatic particle distribution g evolves accord- 
ing to the gyrokinetic equation which is given by 

(co q- ivll ß V q- iVo ß V)g = 

q OF (co- co,)covñ B. 5B m ,(7) 
where œ = v2/2, •2 is the cyclotron frequency, and 
co, = B x kñ . VF/(B•20F/Oœ). It is implicitly un- 
derstood that co, k.i., and co, (through k.i.) are formal 
operators corresponding to co -• iO/Ot and kñ -• -iVñ 
[Frieman and Chen, 1982]. In (7) we have dropped 
terms related to electrostatic potential as well as mag- 
netic gradient and curvature drifts. In deriving (4) we 
have also dropped terms which couple to the transverse 
magnetic field through the pressure gradient and mag- 
netic field curvature. However, (4) comains the essen- 
tial kinetic effects required to replicate the well-known 
drift mirror mode dispersion relation [Hasegawa, 1969]. 
If we assume kñpi < 1, we may expand the Bessel 
function to retain nonlocal effects in (7). Formally, if 
the wave field varies more rapidly than the background 
plasma we may replace V0. Vg by gV0. V6Bii/6Bii 
in (7). This approximation is equivalent to a WKB 
approximation in the i direction. Corrections due to 
this approximate proceedure are O(A/L), where A is the 
wavelength of the wave field and L is the background 
gradients scale. This is a reasonable approximation ex- 
cept perhaps at the magnetopause boundary. We verify 
the validity of that approximation a posteriori by com- 
paring the local kñ with the gradient scale length. From 
(6) we obtain 

•ñ T_I_ [(• •!1) 

(!3)((1 + (Z(())213/•] B. 6B (8) 
(co - iVo . V) 
11vt, 

•!1) = b x kñvtnñ 
x/•kll Vthll (w lvl vr) (lo) 

2 Tz 

(,(2) = b x kñ vt•ñ t9i (11) 
V•kllVthll k, Tñ 

•!3) _ b x kñVthll Pi (12) 
2 2/2 ' The integral operators, Is,Z5 where A - kñ pi 

are defined in the appendix and involve integrals over 
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Bessel's functions. For small kñpi, 2273//• 0o 1 and 
2Zs/A • 3. 

Boundary conditions at the bow shock and magne- 
topause are critical in determining the structure of the 
modes. Because the group velocity of the modes that 
we consider is far less than the flow velocity in the so- 
lar wind, no wave information can be carried upstream 
across the bow shock. This property is manifest in a sin- 
gularity at the location where rMZD = (Vo/vA)2 = M•. 
At that location, the group velocity of compressional 
waves propagating against the flow approaches zero. A 
careful expansion of the MHD equations near this point 
indicates that the solution can consist of two Frobenius 

solutions, one of which is a power series and the other 
dominated by a logarithmic singularity. The behavior 
of the solutions is very similar to the behavior of MHD 
solutions near the well-known field line resonance [Chen 
and Hasegawa, 1974]. In this case, however, we choose 
the coefficient of the logarithmic solution to vanish be- 
cause there is no physical mechanism which can provide 
the buildup of energy at the boundary. The remaining 
solution behaves like c(1 + r/2x + ...), where r/= w/VVo 
with r/<< 1 for a sharp boundary. In essence, this means 
that d5Bii/dx • 0 near the boundary which can be in- 
terpreted as a reflecting boundary condition. The am- 
plitude of the wave should reduce to zero in a small 
boundary layer near the bow shock when appropriate 
kinetic effects and coupling are included. We take the 
approximation d6Bii/dx • r/2 near the bow shock in 
all of our results. On the magnetospheric side of the 
magnetopause we take the boundary condition that the 
solution connects to the appropriate exponentially de- 
caying Eikonal solution which we obtain implicitly from 
the differential equation. 

Local Theory 

To get a better understanding of the physical mean- 
ing of the kinetic-MHD eigenmode equation, we can 
investigate local theory with a WKB representation, 
5Bii = 6/•e i(k'x-":t) for which V -• ik = ikñ +ikllb. We 
also assume small kñpi. The local dispersion relation 
obtained from (4), (5), and (8)-(12) becomes 

- v0/ - + 
where 

T --1 q-/•_1_ {1-/•_1_//•,, [1 q- (•- •!1)) 

-<!2)Z(<)2Zs/A - <!3)((1 + <Z(())2Z3/A)]} (14) 
From the appropriate limits it is not difficult to see that 
this dispersion relation governs propagation of compres- 
sional Alfv•n (fast magnetosonic) waves for (w- k. 
V0) > kllvt•,i and the mirror mode for (w - k. V0) < 
kllvt•,i. Without diamagnetic drift effects, the frequency 
and damping rate of the weakly damped magnetosonic 
wave are given by 

wr mk. V0 q-[ak] + (1 +/•ñ)k•_l•/2vA 

•I kñ exp[_(__ a (1 +/•ñ) kl 
(15) 

Even in a high-• plasma the damping is relatively weak 
and is negligible for kz > kll. The diamagnetic drift 
modifies the f•t magnetosonic wave dispersion relation 
so that 

(w k V0)2 2 2 •_ •* 2 2 _ __ kñv A - ' = (":- k. V0) ) 
(16) 

(the Landau damping terms are exponentially small in 
this approximation) and the magnetosonic wave is cou- 
pled with a drift wave characterized by the frequency, 

•, = x/•kllvtnll(C! •) + 3C? ) + C?)/2) . If the drift 
frequency is small, coupling between the magnetosonic 
wave and the drift wave is small, and there is a slight 
modification in the real frequency of the mode. 

Finally, it is useful to obtain the kinetic mirror mode 
dispersion relation in the low frequency limit. In this 
limit we take ((w- k. V0) < kllvt•,i,w, < kllvt•,i and 
(w/k_t. VA) 2 < w/kllvt•,i ) in (13) and (14) to obtain 

= k. V0 + Z, - v; + 
(17) 

where &, = (3W,p- •0,,•)/2 with w,, = --piVthñb X 
k. V'n/n and W,p = --pivthñ b x k. V'P/P. The first 
two terms in the dispersion relation are real frequency 
modification due to Doppler shift and diamagnetic drift 
respectively. The last term is the linear growth rate for 
the mirror mode. Without plasma flow and tempera- 
ture gradient, the dispersion relation reduces to the drift 
mirror mode given by Hasegawa [1969]. Notice that the 
stability criterion remains the same as for fluid theory; 
however, unlike fluid theory the growth rate scales with 

In (18) one can more readily see the effects of the 
Doppler shift and the diamagnetic drift in making a 
contribution to the real frequency of the mode. We can 
expect that the real frequency of the eigenmode solu- 
tions will involve some sort of average over the local 
real frequencies due to Doppler shift and diamagnetic 
drift. Although this real frequency is ultimately deter- 
mined from boundary conditions, this dispersion rela- 
tion should still be satisfied approximately for the so- 
lution with kñ = -iV'ñ5B/5B. In principle, the wave 
vector (k•) can be determined from the dispersion rela-. 
tion and compared locally with the solution. We shall 
come back to this later when we interpret the results o! 
the eigenmode equation. 

Global Analysis 

The background magnetic field, pressure, density, 
and flow velocity profiles are important for solving for 
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the global mirror modes, and we base our study upon a 
steady state configuration modeled after a typical pass 
through the magnetosheath and magnetopause [Song 
et al., 1993; Paschmann et al., 1993]. In Figure 1 
we display typical steady state radial profiles for north- 
ward IMF. Although a true steady state configuration 
requires at least two dimensions in order to properly 
model the normal gradients in the plasma flow, the ram 
pressure due to the normal component of the bulk flow 
in the magnetosheath is typically much smaller than the 
plasma and magnetic pressures and thus does not appre- 
ciably affect the gradients that enter though the plasma 
pressure and magnetic field, and thus the essential MHD 
profiles do satisfy a steady state solution to first order 
in pVo2/(P + B2/2). On the other hand, the Doppler 
effects may be reasonably modeled by specifying a small 
normal velocity profile which is meant to be similar to 
what one would expect from a two-dimensional steady 
state configuration. The region of interest is charac- 
terized by two spatial scales: Lr is the scale length of 
the unstable region corresponding to the distance over 
which rMHD < 0 and corresponds roughly to the width 
of the magnetosheath (• 2-5RE [Fairfield, 1971]), and 
L Mp, which represents the gradient scale length of the 
magnetopause (roughly about 500 km). Another im- 
portant parameter is the Mach number M•, which we 
define to be the ratio Vo/v•o, where v•0 is the Alfv•n 
velocity at • = 0. The profile of V0 is chosen to de- 
crease from the bow shock slowly to a value of zero at 
the magnetopause. The Alfv•n velocity is determined 
from the background density and magnetic field. Typi- 
cal values for magnetosheath magnetic field and density 
are roughly (40-80) nT and (10-40)cm A typical 
Alfv•n velocity based upon these numbers is 275 km/s. 

400 
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•oo 
:too 

o 

B, 50 
(nT) 

0 

P 

(nPa) 

TMH D 

2 

1.5 
1 

0.5 
0 

I I 

-0.5 0 0.5 1 

Figure 1. Model steady state profiles for the global 
mode analysis for A -- LMp/Lr - 0.05 and MA -- 
Vo/VAo = 0.1, where vA0 is the Alfv•n velocity at • = 0. 
LMp and Lr are the width of the magnetopause and 
magnetosheath, respectively. 

0.5 

-0.5 ' ' I , • • , I , , , , I , , , , I , , 
-0.3 -0.2 -0.1 0 

__ 

0• r 

Figure 2. Evolution of the eigenfrequencies (• = 
•Lr/½rvAo) of the eigenfunctions. The solid lines cor- 
respond to evolution of the roots in A with MA = 0. 
The dashed lines correspond to evolution of the roots 
in MA with A -- 0.05. Various points on these curves 
are indicated by symbols described in Table 1. 

We solve (4) and (5) using (8)-(12) with these back- 
ground profiles. The wave field is of the form 5Bii - 
5Bll (x)ei(k• y+k'z-•t). The wave solutions are displayed 
in terms of the dimensionless radial coordinate, • - 
•rx/L•-, and dimensionless frequency, • - coL•-/•rv,4o. 
In these coordinates, the bow shock is at • - -0.5 
and magnetopause at • = 0.5 and the width of the 
magnetosheath is therefore L•-/•r. The dimensionless 
frequency is chosen to be the fundamental frequency 
for standing Alfv•n waves in the magnetosheath. The 
observed frequency would be f = (10- 100)• mHz 
based upon typical values of L• and v•0 as given in 
the previous paragraph. The wave vectors in the di- 
rections perpendicular to x remain constant because of 
the one-dimensional nature of the equilibrium. These 
wave vectors are defined by k and 0 where k 2 - ky 2 + kz 2 
and 0 = tan-i(ky/kz). The results displayed here have 
k7r/L• = 5 and 0 = 30 ø . For larger values of 0, the 
mode becomes more stable. 

We want to investigate the importance of two effects 
on the eigenmode solutions. The first effect that we will 
study is that of gradients in the background magnetic 
field, temperature, and density at the magnetopause 
boundary. We shall vary the gradient scale at the mag- 
netopause from a sharp boundary for which analytic so- 
lutions can be constructed to a realistic boundary where 
the gradient scale is approximately 10 pi. The param- 
eter that controls this effect is A = LM•/Lr which 
will vary from 0 (sharp magnetopause) to 0.05 (realistic 
magnetopause). We expect that gradients will affect the 
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frequency and structure of the modes primarily through 
the kinetic effect due to diamagnetic drift frequency o•,. 
The second effect that we shall consider is that of back- 

ground flow V0. This effect will be controlled by the 
Alfv•n Mach number MA, which we shall vary from 0 
to 0.2. 

First, let us investigate the spectrum of eigenfrequen- 
cies for these modes. To illustrate the effects of back- 

ground gradient (diamagnetic drift) and background 
plasma flow we plot in Figure 2 the evolution of the 
mode frequencies as functions of the magnetopause gra- 
dient scale and the plasma flow, V0. The large 
dots on the imaginary axis correspond to eigenfunc- 
tions with A -- MA -- 0 for which we can determine 
the eigenfrequency by solving a transcendental equa- 
tion. The eigenfunctions corresponding to this spec- 
trum of eigenfrequencies can be characterized by the 
number of nodes, n, in the radial wave function (kx • 
(n q- 1)•r/L•). The nodes appear in ascending order 
starting from the damped fundamental and approach an 
accumulation point for large n. The accumulation point 
can be obtained as the root of r(o•) - 0 evaluated in the 
region of instability. To study the effects of realistic A 
and M•, we plot the evolution of the n - 2, 5, 8, 10, 15 
modes. The solid curves show the evolution of the mode 

frequency as a function of A -- LMj•/L• with V0 - 0. 
The dashed curves show the evolution of modes as a 

function of M• with A -- 0.05. Specific values of A 
and M• are indicated by symbols described in Table 1. 

Whereas for small L Mp, the modes all line up on the 
imaginary axis, as LMp increases to more realistic val- 
ues, the eigenvalues undergo excursions in the complex 
plane (illustrated by the solid curves of Figure 2) and 
are characterized by a significant real frequency. We 
interpret this real frequency to be the result of kinetic 
effects introduced by the diamganetic drift o•,. The 
effective potential of (4) is inversely proportional to r. 
Throughout most of the domain, rr >> ri; however, near 
the magnetopause boundary rr passes through zero and 
contributions from ri become very important. If we in- 
spect (14) for • << 1 with Z(•) -• ix/-• • and aJi >> a;•, 
we find that ri depends critically on diamagnetic drift 
effects and the real part of the eigenfrequency tries to 
balance a;,. If a;, were uniform the real frequency is 
identically co,, but for nonuniform diamagnetic effects, 
the real frequency arises as an averaged a;,. As the 

Table 1. Specific Values of A and M• 
Indicated in Figure 2 

Symbol A MA 
Solid circle 

Open square 
Cross 

Open triangle 

Solid triangle 

0 

0.01 

0.05 

0.05 

0.05 

0 

0 

0 

0.1 

0.2 

scale of the magnetopause is increased, the real fre- 
quency increases. Note that although o•, is only large 
near the magnetopause boundary, the frequency, which 
is a global property of the eigenmode, depends strongly 
on the profile at the boundary. In effect, information 
at the boundary is projected throughout the entire do- 
main. 

The effects of plasma flow are also presented in the 
dashed curves in Figure 2. For substantial plasma flow 
(M•t > 0.1) the higher n modes are suppressed for 
n > 8. The lower n pick up a substantial real frequency 
contribution which we interpret as resulting from an av- 
eraged Doppler shift from the plasma frame to frame of 
the calculation. To understand the origin of the rela- 
tively larger real frequency, we note that the mode is 
most unstable when the argument of the Z functions 
(o• - k. V0) is small so that o• - k. V0 • 0 and the 
wave has a real frequency close to an average value of 
k. V0. We should point out, however, that there is sub- 
stantial local deviation in this real frequency from the 
expected Doppler shift. Indeed, because the real fre- 
quency of the mode is fixed over the entire domain, the 
constancy of the locally defined kxVo is a good mea- 
sure of whether the real frequency is not observed in 
the plasma frame (at least in the regions where back- 
ground gradients are small). However, it is a property 
of the solutions that kx (defined in the WKB sense) 
oscillates about some average value, and hence locally 
there is significant deviation from the Doppler-shifted 
frequency (even up to a factor of 5 near the boundary). 
However, in an average sense, there seems to be a linear 
relationship between the real frequency and background 
flow V0. (Note that we have not included the • compo- 
nent of flow which would lead to a further Doppler shift 
in the real frequency.) 

We have shown the behavior of the eigenvalues and 
how the mode frequencies can differ significantly from 
the predictions of local theory when realistic gradients 
and plasma flow are introduced. Now let us turn our at- 
tention to the radial wave structure of the eigenmodes. 
In Figure 3 we illustrate three radial wave structures of 
the n=5 eigenmode for three different plasma flow veloc- 
ity and magnetopause boundary layer thickness. The 
location • -- -0.5 corresponds to the bow shock posi- 
tion and ß - 0.5 the magnetopause position. The dot- 
ted and dashed lines correspond to the real and imagi- 
nary part of the eigenfunctions of 5Bll , respectively. In 
all of these three cases, the real frequency is negative 
(same sign as the ion diamagnetic drift frequency). 

Because we choose a solution of the form 5Bll - 
c•Bll(X)e i(k•y+kzz-•øt) the eigenmode equation becomes 
complex, and we solve a complex equation for the real 
and imaginary parts of 5Bll. The solution of the wave 
equation would be constructed from the real or imag- 
inary part of 5Bii - (•Bll(x)ei(k•y+kzz-•øt). What does 
this mean with regard to movement of wave structure? 
For negative real frequency, it is the case that if the 
real part of the eigenfunction leads the imaginary part, 
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MA--0 
--1 

A- 0.05 

M^-0 

A- 0.05 

MA--O. 1 

--0.5 0 

X 

0.5 

Figure 3. Three radial wave structures of 5Bii (real: 
solid lines, imag: dashed lines) for the n=5 eigen- 
mode for three different plasma flow velocity and mag- 
netopause boundary layer thickness corresponding to 
three different points on the curve shown in Fig. 2. No- 
tice that the density gradients and bulk flow strongly 
modify the mode structure. Note that n indicates the 
number of nodes of the eigenfunction. 

then the mode structure travels to the left (phase veloc- 
ity is negative). Conversely, if the imaginary part leads 
the real part, the wave structure travels to the right. 
This phase velocity is a phase velocity relative to the 
frame of the solution in which the bow shock and mag- 
netopause are at a fixed location. If a satellite were to 
be stationed at some fixed point in the magnetosheath, 
it would observe wave structure to move past with the 
computed phase velocity (growing with the growth rate 
of the instability). We should also point out that the 
effective kx is not constant. 

In Figure 3a we plot the eigenfunction for a sharp 
magnetopause with zero layer width (A -• 0, Vo = 
0, • = (0, 0.73). The eigenfunction is a standing struc- 
ture which grows in time. The solution satisfies the 
local dispersion relation and has real wave vector. Note 
that the wave vector oscillates across the domain. 

In Figure 3b we plot the n = 5 eigenfunction for a 
more realistic magnetopause gradient (A = 0.05, MA = 
0,• -- (--0.1,0.81)). In this case, the eigenfunction is 
complex and the real and imaginary parts of the eigen- 
function are not in phase which is significant because • 
has a real part. Near the magnetopause where rMHD is 
small, the imaginary part of r dominates over the real 
part and leads to a phase shift in the real and imaginary 
parts of the eigenfunction. Because there is a real fre- 
quency associated with the wave, the structure slowly 
propagates as it grows. The wave amplitude is largest 
near the magnetopause. 

We can understand why the eigenmode is skewed by 
considering the local dispersion relation obtained from 
(13) and (14)in the magnetosheath region far away 

from the magnetopause boundary such that the local 
approximation is somewhat reasonable. The mode has 

largest growth with kll > ky and • < kliVA so that 
•kx 2 • -•k• (essentially the same approximation used 
to obtain (18)). In the magnetosheath, background gra- 
dients are small, and therefore the drift terms in (14) 
can be neglected. Moreover, the eigenfrequency satis- 
fies I•/kllvtnl << 1 and •r < •i. In this approxima- 
tion, it is straightforward to see that rr • rMHD • 0 
and Ti • -x/•(•ñTñ/T[[)•r/k[[vtn with 
The local wave vector should then satisfy 
which has the solution k• • •ko(1 + i•), where ko = 

For 0, > 0 
• > 0. By inspection of the eigenfunction, k• ( 0 
(the imaginary part of the eigenfunction leads the real 
part), and hence the eigenfunction has the spatial be- 
havior, exp(-ikox+5kox), which increases in amplitude 
in the positive x direction. Because the real frequency 
is a consequence of the diamagnetic drift at the magne- 
topause, this growth can be interpreted to result from 
coupling of the wave with the diamagnetic drift associ- 
ated with the pressure gradient. The diamagnetic drift 
causes the waves to drift with phase velocity toward the 
magnetopause boundary where the phase velocity slows 
and the wave amplitude is enhanced. Although the dia- 
magnetic drift is only large near the magnetopause, its 
effects are globally transmitted throughout the entire 
spatial domain leading to a slowly propagating mirror 
mode with real frequency. 

Finally, in Figure 3c we plot the eigenfunction when 
the plasma flow is included (A = 0.05, MA -- 0.1,• -- 
(-0.2, 0.7)) the real frequency of the mode is some com- 
bination of an averaged k. Vo and •,. The real and 
imaginary parts of the eigenfunction are again out of 
phase with the imaginary part of the eigenfunction lead- 
ing the real part of the eigenfunction so that the phase 
velocity is toward the magnetopause. However, the so- 
lutions are skewed toward the bow shock. The behavior 

of the amplitude can be understood from the disper- 
sion relation resulting from (13) and (14). The argu- 
ments in the preceding paragraph apply equally well 
to this case with w -• a• - k. Vo and the small fre- 
quency approximation I(w- k. Vo)/kllvtn I << 1. As 
in the previous case, r• is dominated by r•r) < 0, 
but ri• -x/-•(•ñTñ/T[i)(o• - k.Vo)/kllvta. Inspect- 
ing the solution, we find that the real part of the 
n=5 mode local wave vector varies in such a way that 
k. Vo/w• m (2.5-5) throughout most of the domain and 
the sign of both w and k. Vo is negative. This means 
that ri < 0 which is opposite from the case without flow. 
As before, the local wave vector is k• m +ko(1 +i5) with 
• - -ri/2r,• < 0 and ko > 0. By inspection of our solu- 
tion, the real wave vector is dominantly negative, hence 
the mode has a spatial behavior, exp(-ikox + 5koX) so 
that the mode decays with increasing values of x. 

In review, we found that the solution has phase ve- 
locity directed toward the magnetopause, but the eigen- 
mode has larger amplitude near the bow shock which 
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decreases in the direction of the magnetopause. In the 
frame of the moving plasma, the wave travels upstream 
against the flow and we found analytic solutions which 
predicted the spatial behavior of the amplitude. In 
order to better understand why wave energy is larger 
toward the bow shock, we checked the phase veloc- 
ity which we obtain from the eigenfrequency and local 
wave vector, determined from the eigenmode solution 
and defined by Wr/kxr. We found that the phase ve- 
locity increases gradually from the bow shock toward 
the magnetopause. It is well known from geometrical 
optics that where a wave travels slowly its amplitude 
is larger and vice versa. Physically, the global mirror 
mode extracts energy from the unstable domain (where 
•'MHD < 0) in the magnetosheath. However, because 
the wave phase velocity is faster downstream than up- 
stream, the wave carries more energy away from the 
downstream region than from the upstream region, or 
equivalently, the wave retains less energy in the down- 
stream plasma region, and thus more wave energy re- 
mains upstream. 

Discussion of Results 

Our calculations support the idea that compressional 
waves observed in the magnetosheath are global mirror 
modes. First, we demonstrated that diamagnetic drift 
effects resulting from a realistic magnetopause profile 
produces a significant real frequency in the global mir- 
ror mode with an increase in amplitude near the mag- 
netopause boundary. Moreover, there is a finite real 
phase velocity directed toward the magnetopause. The 
observations of Song et al. [1994] found the compres- 
sional wave phase velocity directed away from the mag- 
netopause in the frame of the moving plasma, while the 
observations of Gleaves and Southwood [1991] seemed 
to indicate that compressional waves propagate toward 
the magnetopause. Second, when the plasma flow is 
introduced, the global mirror mode develops a phase 
velocity in the direction of the flow but is slower than 
the flow velocity. The result is that the wave would 
be observed to propagate toward the bow shock in the 
frame of the moving plasma and would have a finite real 
frequency in the plasma frame. The results also would 
seem to indicate that mirror mode wave activity should 
be stronger in the middle magnetosheath than near the 
magnetopause boundary which is consistent with obser- 
vations by Song et al. [1994]. The essential result of this 
work is that finite real frequency is associated with the 
global mirror mode due to nonlocal effects and the wave 
has a finite phase velocity relative to the plasma flow. 

In general, the actual wave structure at the magne- 
topause will consist of a large number of modes because 
the growth rates for the modes are approximately the 
same (see Figure 2). It is expected that finite Lar- 
mor radius effects will suppress the modes with suffi- 
ciently large kx and that there will be some range of kx 
with maximum growth. We expect that the observa- 
tions will consist of many such modes with different kx. 

As a result, there will be substantial beating between 
the waves leading to mirror mode wave structures with 
shorter spatial scale which would be comparable with 
the scales that are observed. The theory predicts a skew 
in the amplitude toward the magnetopause for small ra- 
dial plasma flow and a skew toward the magnetosheath 
for large radial plasma flow. These results should of 
course be tempered by the understanding that nonlin- 
ear effects, perhaps to a significant degree, control the 
amplitudes of these waves. However, it is not unlikely 
that the general trend of the instability might be ob- 
served. These are predictions from the theory that can 
be compared with the observations in order to deter- 
mine whether further refinements might be required for 
the theory. 

The result of the one-dimensional hybrid simulation 
of Omidi and Winske [1995] differs from our analysis in 
a number of ways. Their analysis, for example, does 
not include the effect of diamagnetic drift because the 
wave vector k is only along V(P, B, n). Moreover, the 
background model that they use is not in steady state 
and therefore has time-dependent boundary conditions. 
It seems that the real frequency of the MIAOW waves 
results from the plasma flow effect because there is no 
diamagnetic drift effects in the simulation. 

Our one-dimensional analysis can still be improved 
by including coupling between the compressional and 
transverse components of the perturbed magnetic field 
which becomes essential near the shear Alfv•n and slow 

magnetosonic resonances. If the flow velocity is large 
and/or the diamagnetic drift is small, (4) contains a 
singularity where •-(x) = M•. For an isotropic plasma, 
this singularity occur at MA = I and results because 
compressional waves cannot propagate against bulk flow 
which exceeds the Alfv•n velocity. On the other hand, 
in anisotropic plasmas with no flow, the same singular- 
ity occurs where • = 0 which corresponds to the tran- 
sition between a region unstable to mirror mode and a 
region stable to mirror mode such as at the plasma de- 
pletion layer. If the density and pressure gradients are 
sufficiently large, the singularity is resolved by diama- 
gentic drift effects. Moreover, in anisotropic plasmas 
this singularity also corresponds to the slow magne- 
tosonic resonance condition. Therefore it is likely that 
coupling to the sound wave will be important near that 
location. If the flow speed is sufficiently large, the res- 
onance location will be shifted upstream. When the 
flow speed becomes too large no solution is found when 
r -- M• because the diamagnetic effects no longer re- 
solve the singularity. Resolution of the singularity in- 
volves coupling to the transverse magnetic field that we 
have neglected. In our future work we will include full 
coupling to the transverse magnetic field which resolves 
the singularity. 

Summary 

In this paper we have presented an eigenmode analy- 
sis of the global mirror mode at the magnetopause using 



7188 JOHNSON AND CHENG- GLOBAL MIRROR MODES 

the kinetic-MHD model which accounts for both kinetic 

effects and global effects due to background gradients. 
The analysis demonstrates the following: 

1. Magnetopause gradients and plasma flow lead to a 
substantial real part of the eigenfrequency for the global 
mirror modes which is of the order of a combination 

of the Doppler shift frequency associated with plasma 
flow and diamagnetic drift frequencies. However, the 
frequency differs significantly from the local Doppler 
shift associated with the eigenmode structure. 

2. Pressure and density gradients at the magnetopause 
modify the wave structure because of diamagnetic drift 
effects. The real frequency associated with the diamag- 
netic drift frequency provides a wave phase velocity in 
the direction of the magnetopause. For small flow, the 
phase speed decreases toward the magnetopause and en- 
ergy accumulates against the magnetopause boundary 
and the amplitude is skewed in that direction. 

3. Bulk plasma flow also imparts a real phase veloc- 
ity to the mode structure in the direction of the flow. 
However, this phase velocity is smaller than the flow 
velocity and the wave structure lags behind the flow. 
Moreover, the wave phase speed increases from the bow 
shock toward the magnetopause eventually approach- 
ing the flow velocity. As a result, the wave amplitude 
is large in the region where the phase velocity is small 
(near the bow shock) and is small where the phase ve- 
locity becomes large (toward the magnetopause), and 
thus the wave amplitude is skewed in the direction of 
the bow shock. 

4. Boundary conditions are important because they 
impose restrictions that determine the global solution 
far away from the boundary and determine how the 
waves propagate within the region of instability. 

5. The kinetic-MHD formalism is useful when it is 

important to consider both global scale gradients and 
kinetic effects. 

One obvious direction for future consideration is an 

extension to obtain mirror mode solutions based on 

a two-dimensional magnetosheath-magnetopause con- 
figuration which includes the two-dimensional plasma 
flow and the effects of curvature. Another important 
area for further consideration is coupling between the 
compressional and transverse components of the per- 
turbed magnetic field which becomes essential near the 
shear A1D6n and slow magnetosonic resonances. Be- 
cause these modes have a real frequency, they can cou- 
ple strongly with the kinetic A1D6n wave near the lo- 
cation where the real frequency matches the local shear 
Alfv6n resonance frequency which will occur if the back- 
ground magnetic field rotates. Such coupling could lead 
to enhanced particle transport across the magnetopause 
boundary layer. 

Appendix: Integrals Over Products 
of Bessel Functions 

In the kinetic-MHD equations, the wave fields are 
multiplied by Jo and J1 so that integrals over the 

product JoJ1 are frequently encountered. Integrals of 
this type may be evaluated through differentiation on 
the well-known integral 6.633.1 from Gradshteyn and 
Ryzhik [1963]: 

fo øø exp(-as c2) [Jo (,•sc)] 2sods c - 

1 

2oz exp(-A2/2øz)Iø(A2/2øz)' (A1) 
where Io is the modified Bessel function. 

Kinetic effects for the core plasma involve three inte- 
grals 

exp(-sc2) Jo (,•sc)J1 (,•sc)sc2 dsC 

exp(--sc2) Jo (/•sc)J1 (,Xsc)sC4dsC 

exp(-sc2) Jo (,•sc)J• (,Xsc)sC•dsC. 

(A2) 

(Aa) 

(A4) 

Using the relationship 

Oo(z) 
Oz : --JI(Z), (A5) 

we find that 

(A6) 

(A7) 

(A8) 

We find through differentiation using the rules 

OIn(Z) 
2 aT ---- In--1 (g)2r- In+ 1 (Z) (A9) 

2--nln(Z) -- In--l(Z)- In+l(Z) (A10) 
z 

with the auxiliary definition 

that 

Fn(z) - exp(-Z)In(z) (All) 

•[ro - rl] (A12) 
27a = ,X • {[1 - x2/2]ro- [1- x2]r/2} (i13) 
Z5 = 3,X /•4 •- {[1 - 11A2/12 + /6]Fo 

-[1 - 9,X=/4 + ,X4/2]F•/3} (A14) 
where the argument of Pn is ,X2/2. 

The limiting forms of these expressions are of inter- 
est. The power series representations (in A) of these 
functions is 

272 -- -•(1 - ax2/4+ 5A4/16 +. (A15) 4 " 
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l (1 - 9A•'/8 + 514/8 q- (A16) Z3 -- ... 
Za = 3-•A(1 - 319'/2 + 2514/24 +... (A17) 

2 

The asymptotic expansions for large I are 
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