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Abstract. The formation, temporal behavior, and spatiM structure of field 
line resonance (FLR) layers formed by shear Alfv6n waves standing along auroral 
magnetic field lines between the ionospheres are investigated when the layer develops 
transverse structure on the scale of the ion Larmour radius. Using a new numerical 
model including full ion Larmour radius correction in dipole magnetic geometry with 
reMistic distributions of b•ckground pl•sm• temperature •nd density, the following 
is shown: (1) Hot magnetospheric ions significantly retard the development of a 
parallel electric field in ion gyroscMe dispersive Alfv6n waves. (2) A fundamental 
FLR forming near L = 7.5 can contract to a transverse scale size of several hundred 
of meters in the direction perpendicular to the geomagnetic field at ionospheric 
altitudes, with a parallel electric field sufficient to produce a kV potential drop 
along the resonance field line from the ionosphere up to • 4 RE altitude, in 
the region where the wave dispersion is due to the finite electron inertia. (3) A 
plasma density depletion in the lower auroral magnetosphere (• 2-5 Rs geocentric 
distance) enables the formation of a nonradiative fundamental FLR. (4) Dispersive 
FLRs for the higher harmonics are more radiative at the equatorial magnetosphere 
than the fundamental mode. 

1. Introduction 

Many theoretical studies of dispersive Alfv6n waves 
in the space plasma have been performed since the sem- 
inal studies by ttasegawa [1976] and Goertz and Boswell 
[1979] showed that these waves have a component of the 
electric field parallel to ambient magnetic field lines suf- 
ficient to accelerate electrons into the ionosphere. This 
feature of dispersive Alfvdn waves suggests that they 
may be responsible for some classes of auroral arcs, 
produced by sheet-like fluxes of precipitating electrons 
with energies from 100 eV up to tens of keV [Swift, 
1975; Davis, 1978; McFadden e! al., 1986; Boehm e! al., 
1990; Samson e! al., 1991], and a number of such mod- 
els have been developed [ttasegawa, 1976; Mallinckrodt 
and Carlson, 1978; Lysak and Dum, 1983; Haerendel, 
1983; Goertz, 1984; Ternerin e! al., 1986; Chrnyrev e! 
al., 1988; Seyler, 1990; ttui and $eyler, 1992; Samson 
e! al., 1992; Kletzing, 1994; Wei e! al., 1994; Trondsen 
e! al., 1997]. 

In spite of considerable theoretical efforts in recent 
years to connect dispersive shear Alfv6n waves to the 
formation of discrete auroral arcs at subkilometer scales 
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transverse to the magnetic field two fundamental ques- 
tions remain [Borovsk•, lSS3]. (1) Alfv•n 
waves generated on auroral field lines? (2) How do these 
waves contract to transverse scales sufficiently small to 
produce subkilometer scale arcs? Of related interest are 
the conditions that allow Alfv•n waves with a period in 
the range of 10-500 s to produce extremely narrow and 
intense electric fields and currents, less than 1 km wide 
in the north-south direction and extended up to 1000 
km in the east-west direction (referenced to the iono- 
spheric height). 

Intense, transversely localized fields are frequently 
measured on polar-orbiting satellites [Kletzing et al., 
1983; Dubinin et al., 1985; Chmyrev et al., 1988; Wei- 
met and Gurnett, 1993; Marklund et al., 1995; Mishin 
and FSrster, 1995; Aikio et al., 1995; Karlsson and 
Marklund, 1996] and rockets [Boehm et al., 1990] and 
are thought to be the lower magnetospheric signatures 
of auroral arcs and black aurora. Because the periods 
of ULF Alfv6n waves are compatible with fundamen- 
tal field line oscillations and the timescale of particle 
bounce motion along auroral field lines, their behavior 
can be an important indicator of the plasma parame- 
ters and electromagnetic activity of the magnetosphere 
along the entire magnetic flux tube. Therefore quan- 
titative modeling of processes leading to generation of 
dispersive Alfv•n waves in the magnetosphere, including 
their propagation through strongly inhomogeneous me- 
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dia, interaction with the ionosphere, and ability to ac- 
celerate particles, is important for understanding a va- 
riety of problems associated with magnetosphere-iono- 
sphere coupling. 

One mechanism for exciting a shear Alfv•n wave 
in the magnetosphere involves mode coupling between 
the shear mode and an externally driven, large-scale 
MHD surface wave, which is a localized incompressible 
mode in a plasma with an isolated transverse gradi- 
ent of the background Alfv•n speed [Hasegawa, 1976; 
Goertz, 1984]. Another possible mechanism involves 
coupling between the shear mode and the compres- 
sional wave, which propagates transverse to the am- 
bient magnetic field [Chen and Hasegawa, 1974; South- 
wood, 1974; Inhester, 1987]. For either mechanism a 
large-amplitude response occurs on the L shell where 
the frequency of the large-scale "driver" matches one of 
the field line eigenfrequencies, determined by the length 
of the magnetic field line and the distribution of back- 
ground Alfv•n speed along it. Energy is transferred 
from the external driver to a shear Alfv•n wave stand- 

ing along geomagnetic field lines on this L shell. This 
process is called field line resonance (FLR). More than 
2 decades of observations have confirmed the basic phe- 
nomenon (see Samson et al. [1992] for references), with 
more recent measurements providing a good correlation 
with the occurrence of small-scale auroral arcs [Samson 
e! al., 1991, 1996; Xu e! al., 1993]. 

As energy is transferred from the external driver to 
the field line resonant oscillation, the amplitude of the 
resonant oscillation increases while its effective trans- 

verse scale size decreases until dispersion becomes im- 
portant. At this point the resonance begins to radiate 
dispersive Alfv•n waves which propagate energy away 
from the resonance layer in the perpendicular direc- 
tions. This mechanism can saturate the growth in am- 
plitude of the resonant oscillation and limits the con- 
traction of its transverse structure. 

Owing to the intrinsic inhomogeneity of the mag- 
netospheric plasma and geomagnetic field, two types 
of dispersion can affect small-scale Alfv•n waves that 
propagate between the equatorial magnetosphere and 
ionosphere. In the relatively cold, low-altitude plasma, 
where the Alfv•n speed is much larger than the electron 
thermal speed, the dispersion is due to the finite elec- 
tron inertia (inertial dispersion) [Goertz and Boswell, 
1979; Lysak and Carlson, 1981]. In the hot, equato- 
rial magnetospheric plasma where the Alfv•n speed is 
less than the electron thermal speed and where elec- 
tron inertial effects can be neglected, the dispersion is 
due to the finite plasma temperature (kinetic disper- 
sion) [Hasegawa, 1976]. 

An important difference between these two types of 
dispersion is the fact that the transverse group veloc- 
ity of a kinetic Alfv•n wave is opposite to that of an 
inertial Alfv•n wave. As a consequence of this effect, 
a small-scale FLR radiates inertial Alfv•n waves along 
the transverse gradient of v• at low altitude [Goertz 
and Boswell, 1979], whereas it radiates kinetic Alfv•n 
waves in the opposite direction in the equatorial mag- 
netosphere [Hasegawa, 1976]. It was shown by $treltsov 

and Lotko [1995] (hereinafter referred to as SL95) that 
the opposing inertial and kinetic dispersions on different 
parts of the magnetic flux tube can cause small-scale, 
dispersive Alfv•n waves to be trapped inside the reso- 
nance layer. When this occurs, the dispersive FLR is 
termed "nonradiative," and it can reach significantly 
larger amplitude and contract to much smaller trans- 
verse scale than radiative FLRs. 

The fine structure of dispersive, nonradiative FLRs 
for the first three odd harmonics was investigated on 
the basis of a linear, reduced, two-fluid MHD model 
[Chmyrev e! al., 1988] in a "box" geometry (with con- 
stant ambient magnetic field and electron temperature) 
by $treltsov and Lotko [1996] (hereinafter referred to as 
SL96) and in a dipole magnetic field geometry with real- 
istic magnetospheric parameters by 5'trelisov and Lotko 
[1997] (hereinafter referred to as SL97). These inves- 
tigations show that FLRs can become nonradiative on 
auroral L shells. While these previous studies neces- 
sarily included the combined dispersive effects of finite 
electron inertia and finite plasma thermal energy, ki- 
netic dispersion is provided entirely by the finite elec- 
tron temperature via the parallel electron equation of 
motion. In fact, auroral field lines typically thread the 
magnetospheric region where the ion temperature ex- 
ceeds the electron temperature, so one expects disper- 
sive effects of the finite ion Larmor radius to influence 

the dynamics of a contracting FLR. In this paper, the 
two-fluid MHD model of SL97 is extended in dipole ge- 
ometry to include finite ion Larmor radius effects. It is 
shown that such effects can have a profound influence 
on the ability of the dispersive Alfv•n wave to develop 
a parallel electric field in the equatorial magnetosphere. 
As a consequence, it is shown that the parallel electric 
field of a dispersive FLR is confined largely to the lower 
magnetosphere where electron inertial dispersion is ac- 
tivated. 

2. Model 

As in the earlier work by SL97, this study will con- 
sider parameters appropriate to the formation of disper- 
sive FLRs on geomagnetic field lines passing through 
the inner edge of the nightside plasma sheet (about 
L = 7-8). Interest in this particular region is moti- 
vated by the fact that (1) it maps along dipolar mag- 
netic field lines to the ionosphere near 70 o geomag- 
netic latitude, where large-amplitude, small-scale trans- 
verse electric fields are predominantly measured by low- 
altitude satellites [Bennett e! al., 1983; Karlsson and 
Mark!und, !996], and (2) a statistical survey of magne- 
tospheric ULF waves by Zhu and Kivelson [1991] has 
shown that dominantly toroidal magnetic oscillations 
with characteristics indicative of fundamental or odd 

harmonic FLRs are most intense near the inner edge of 
the premidnight plasma sheet. 

Plasma in this region is assumed to be magnetized, 
low /• (/• - 8•rP/Bo • • 1, here P is the plasma gas 
pressure), collisionless, and initially free from any bulk 
motion or electric currents. In such a plasma, mag- 
netically incompressible (shear) Alfv•n waves and com- 
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pressible fast mode waves essentially decouple from the 
slow mode [ttasegawa and Uberoi, 1982; Kouznetsov and 
Lotko, 1995]. Near the resonant surface the plasma re- 
sponse is primarily magnetically incompressible [ttase- 
gawa and Uberoi, 1982], so coupling between the shear 
and compressible waves may be neglected in the vicinity 
of the resonant surface as well. This fact significantly 
simplifies the model, reducing it to only three scalar 
equations coupling the electric potential •b, the paral- 
lel component of the vector potential (flux function) 
All , and the disturbed part of the quasi-neutral plasma 
density n•. 

The azimuthal variation of solutions is ignored as 
a first approximation because observations show that 
FLRs and associated auroral structures are narrow in 

latitude and practically homogeneous in local time [Gre- 
enwald and Walker, 1980; Samson et al., 1991]. Two- 
dimensionality eliminates the strong convective and ma- 
gnetic nonlinearities in the model, and only weak non- 
linear terms associated with the density perturbation 
survive. The density nonlinearities are at least of the 
next order of smallness compared with other terms in 
the model equations and are therefore negligible for the 
amplitudes of solutions considered in this paper. Fur- 
ther details of the validity of the linear model are dis- 
cussed by SL96. Some nonlinear effects that arise in 
the three-dimensional dynamics of large-scale FLR in 
the Earth's magnetosphere are treated by Rankin et al. 
[1993, 1995]. 

The linearized, two-dimensional model that is inves- 
tigated in the paper includes the electron parallel mo- 
mentum equation 

m• no-•- + enoE]l + D.Vp• - 0 (1) 
the density continuity equation 

On• 
+ V.n0vll,l• - 0 (2) Ot 

and the current continuity equation combined with the 
ion momentum equation 

two-fluid MHD model [e.g., Chrayrev et al., 1988], and 
its derivation requires some additional explanation. 

2.1. Full Larmour Radius Correction 

The current continuity equation, neglecting the dis- 
placement current, is: 

V.jll + V.jx - 0 (4) 

In the model the parallel current, Jll - Jll I•, is carried 
by electrons only [Chmyrev et al., 1988]. The perpen- 
dicular current, j•_ - eno(v•.i - v•.,), appears from a 
small difference in perpendicular velocities of ions and 
electrons. This difference, in turn, arises from (1) ion 
inertia and (2) the small-scale size of dispersive waves 
transverse to the geomagnetic field. 

It was shown by Kadomtsev [1965] that when the 
transverse scale size of the electromagnetic wave be- 
comes comparable with the ion Larmour radius, the 
electric drift of the ion guiding center is determined by 
the effective electric field which is smaller than electric 

field in the center of the Lapmop circle by a factor of 
-s 2 2 Io(s)e , where s - Pi k.t. and I0 is a modified Bessel 

function. This effect combined with the effect of finite 

ion mass leads to the next expression for the Fourier 
transform [.•(kñ) - f•'(r)e-ik•-'rdr] of the perpen- 
dicular current [Cheng, 1991]: 

~ c 2 I 1- Io(s)e -• 0 •,a. (5) J• - 4•r v• s 0--• 
This form of the perpendicular current is obtained un- 
der the assumption that the scale size of the solution 
(.. l/kñ) is much smaller than the scale size of inho- 
mogeneities in the background VA and Pi transverse to 
the ambient magnetic field. 

To express the perpendicular current in the spa- 
tial domain, some approximation of the term [1- 
Io(s)e-*]/s must be made before the inverse Fourier 
transform from (5) can be taken. Depending on the 
magnitude of s, three different situations are possible. 

First, if s = 0, then [1- Io(s)e-S]/s = 1, and (4) 
becomes 

c 2 ( vl_•A 1) 0 --V. + E -0 

Here the subscripts II and 2_ denote vector components 
in the directions locally parallel and perpendicular to 
B0, respectively; v, is the electron speed; no is the back- 
ground •quasi-neutral plasma density; E•_ - -V•_•b; 
Ell - -b. Vq•- (11c)Onll/Ot; l• - B0/B0; p, - n•T,; 
T, and T/ are background electron and ion tempera- 
tures, respectively; Jll- -enovll* - -(c/4•r)V•AII; 

,-rd / 2. 1/2 
Pi -- -t i /m i Wci is ion Larmour radius; and 

The current continuity equation (3) includes the dis- 
placement current, important when the Alfvdn speed 
approaches the speed of light, and full ion Lapmop radius 
correction. It is significantly different from the classical 

c 2 1 0 

v.11, + - 0 (6) 
Equations (1), (2), and (6) form a classical reduced 

two-fluid MHD model (sometimes called Strauss equa- 
tions). It has been intensively investigated in the con- 
text of dispersive Alfvdn waves and instabilities in toka- 
mak plasma by Strauss [1976], Morrison and Green 
[1980], Morrison and Hazeltine [1984], Hazeltine and 
Meiss [1985], as well as in the magnetospheric plasma 
by Lysak and Dum [1983], $eyler [1988, 1990], Chmyrev 
e! al. [1988, 1992], SL95, and SL97. 

Second, if s << 1, then [1- Io(s)e-•]/s • 1 -(3/4)s 
[Hasegawa, 1976]. It leads to an alternative expression 
for (4): 

c2 l/ 32/• V.jii•) + •-•V.V-•A 1 + •Pi X71 •E.L -- 0 (7) 
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Figure 1. Approximations of the ion kinetic term in 
the expression for the perpendicular current (5). 

Third, if s is of the order of or larger than unity, then 
[1 - Io(s)e-S]/s •, 1/(1 + s). This is the so-called Padd 
approximation [Johnson and Cheng, 1997]. In this case, 
(4) will take the form 

c 2 1 0 

(1 - p•V•_) V.jlll• + •-•V' V--•A •E•_ - 0 (8) 
Figure i demonstrates that the Padd approximation 

of the term [1- Io(s)e-S]/s is suitable for the entire 
range of s; it is almost as accurate as the approximation 
used by Hasegawa [1976] when s _• 0.25 (both approxi- 
mations give a relative error here of less than 5%), and 
it is still reasonable for larger values of s (the relative er- 
ror there is about 6%), where the other approximation 
cannot be applied at all. The model, including finite 
Larmour radius correction in the same form as (8), was 

developed from different assumptions by Hazeltine et 
al. [1987]. 

Finally, to get (3) from (8) the divergence of the dis- 
placement current should be included for cases when vA 
is not negligible compared with the speed of light. Such 
a situation can occur on auroral field lines in the lower 
magnetosphere (see Figure 2) when the plasma density 
becomes very small for example, in an auroral plasma 
cavity [Persoon et al., 1988]. 

2.2. Dispersion Relations 

Parameters of the background plasma and magnetic 
field can change by a factor of 100-1000 along an auroral 
field line from the ionosphere to the equatorial magne- 
tosphere. This strong inhomogeneity complicates the 
derivation and analysis of the dispersion relation for 
long, parallel wavelength Alfv•n waves propagating or 
standing on auroral field lines [Lysak and Lotko, 1996]. 
The dispersion relations given below are used only for 
qualitative explanation of the behavior of small-scale 
dispersive waves observed in the subsequent numerical 
experiments. To this end, the resonant magnetic flux 
tube is divided into three parts depending on the ratio 
between A 2 - c2/wp2 e and p2 _ pi2(l+Te/•) _ pi2+p•2 
(Figure 2); for purposes of the dispersion analysis only, 
the plasma is taken to be weakly (parametrically) inho- 
mogeneous in each region. 

At low altitudes (region I in Figure 2) the plasma is 
relatively cold, A 2 >> p2, and VA here is not necessarily 
small compared with the speed of light. The dispersion 
relation deduced from the model in this region is 

• v• (1 ••)-• w 2 - kll 1 + •lc• + (9) 
The parallel electric field here is proportional to k]_A 2, 
and it can be written in terms of the scalar potential •b 
as 

1.3'10 3 

1.3'10 t 

1.3.10 -t 

1.3.10 -3 

I -• II 

1 3 5 

III 

1.3,10-5 - • ' ' ' ' 0 
7 9 
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42 

Distance along resonance field line (R•) 

Figure 2. Profiles of the background p2 _ •(1 + T, ITi), A 2 - c2lw•2i (solid curves), and 
va - Bo/v/4•'nomi (long-dashed curve) along tile resonance field line from the ionosphere to the 

,r, 1/2 1 equatorial plane Here Pi - :•i /mi/2 . w•i is ion Larmour radius; T• and T/ are electron and 
ion temperatures, respectively; and w•i is ion cyclotron frequency. 
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Because A 2 ~ l/n0, from (10) one may expect the 
strongest parallel electric fields and hence particle ac- 
celeration to occur at low altitudes when the plasma is 
very tenuous, e.g., in an auroral plasma cavity [Persoon 
et al., 1988]. 

In the near-equatorial magnetosphere (region III in 
Figure 2) the electron thermal speed is larger than 
Alfvdn speed and A2 << p2. The dispersion relation 
of the model here is 

w 2 - k•v• (1 + k}p 2) (11) 
Here the parallel electric field expressed via the scalar 
potential •b is 

Ell- ikl] 1 + kS p7 0 (12) 
Expression (12) shows that in the hot magnetospheric 
plasma the parallel electric field of the dispersive Alfvdn 
waves increases with increasing electron temperature 
and decreases with the increasing ion temperature. This 
means that in the equatorial magnetosphere the parallel 
electric field of dispersive Alfvdn waves should be very 
small because magnetospheric ions in the near-Earth 
plasma sheet are typically hotter than electrons. This 
result is also in good agreement with the finding by 
Lysak and Lotko [1996] that hot ions reduce Landau 
damping of small-scale dispersive Alfvdn waves, which is 
connected with the parallel electric field of these waves. 

In the intermediate region II in Figure 2, where A 2 m 
p2 and v• << c, the dispersion relation of the model is 

The parallel electric field in this region is 

Ell- ikll (1 + kñp i) k]_ps - k-•l v-•k•_A2 c) (14) 
There are at least two points of interest in the behavior 
of the dispersive Alfv&t wave in this particular region. 
The first one is the reversal of sign of the perpendicular 
component of the wave group speed vgñ at the transi- 
tion point where •2 = p2. Indeed, from (13) it is easy 
to see that 

dw 

vgz = dk.• 
p2 _ A2 

kzkllv'4 (1 + k2•p2)1/2(1 q- k•_•2) 3/2 (15) 
Thus an oblique wave propagating toward higher L 

k•_p• q5 (16) Ell- -ikll 1 + k•_p• 
This field originates from the kinetic treatment of hot 
ions and does not appear in one- or two-fluid MHD de- 
scriptions of small-scale Alfvdn waves. Actually, (13) 
and (14) state that in the homogeneous magnetized 
plasma with background parameters such that A• = p•, 
small-scale Alfvdn waves with any finite kx will prop- 
agate exactly along the ambient magnetic field lines, 
satisfy the classical dispersion relation for shear Alfvdn 
waves, and carry parallel electric field defined by (16). 

Hot ions also modify Ell in the region where vA = 
(without ion correction, Ell = 0 at this point) and where 
the electron Landau damping of the wave, which is the 
main mechanism of the wave energy dissipation in the 
collisionless plasma near this point, might occur. Un- 
fortunately, owing to the complexity of the problem, 
Landau damping has not been investigated for the situ- 
ation when the parallel wavelength is much larger than 
the parallel scale size of plasma inhomogeneity or of 
the transition region (the situation of particular inter- 
est here). Nevertheless, because the wave spends only a 
small fraction of its period in the transition/dissipation 
region [Lysak and Lotko, 1996], Landau damping of the 
dispersive Alfvdn waves is not expected to dominate the 
global wave dynamics, so that the main features of nu- 
merical results given in section 4 are preserved. 

2.3. Background Parameters 

The part of the nightside magnetosphere modeled in 
the paper is confined by L = 7.25 and L = 7.75 magnetic 
shells. The conducting ionosphere at 320 km altitude, 
near the F layer density maximum, forms the top and 
bottom boundaries of the domain. In this region, (1)- 
(3) are investigated in orthogonal dipolaf coordinates 
(L, T, it), defined in terms of spherical polar coordinates 
(r, •, 0) as [Radoski, 1967; Cummings et al., 1969] 

7' COS 0 
L- , •, tt-• 

RE sin2 0 r 2 ' 

with corresponding metric factors: 

RE sin3 0 
hL-- (1+3cos 20)•/2' he - r sin 0, 

/.3 

h•= (1+3cøs 20)•/2' 
Here R• - 6400 km is the Earth radius. The unit 
vector L is locally perpendicular to the magnetic shell, 
directed outward from the Earth; ½ is directed locally 

shells near the equator, for example, will begin moving eastward perpendicular to meridional planes; and • is 
toward lower L shells after passing through the transi- directed locally along B0 (see SL97, Figure !). 
tion region. This effect makes possible the confinement The dipole background geomagnetic field varies as 
of dispersive Alfvdn waves in the resonance layer and en- 
ables the formation of nonradiative FLR layers (SL95). 

The second point is that in the transition region 
the phase speed is close to that predicted by classi- 
cal dispersion relation for one-fluid, shear Alfvdn waves as 
0•2 2 2. -- kllVA, however, this wave has a parallel electric 
field: 

B0 - 31,000 • (1 + 3sin 2 0) •/• nT (17) 
The background plasma density no(L, it) is modeled 

no(L, lu) - n00(tt)[1 + n0• (L)n02(tt)] (18) 
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Here n00(P) determines the density profile along the 
resonant field line (L - 7.5)' 

n00(P) = 99995.5 e -20(r-1'05) q- 4.08 r -3 q- 0.99 

- 0.67 [e-(;--•) 2 - e-(*•:•) 2] cm -a (19) 
Expression (19) provides plasma density of 105 cm -a at 
the altitude 320 km, 0.96 cm -a at geocentric distance 2 
RE, 0.5 cm -a at geocentric distance 3 RE, and 1 cm -a 
in the equatorial magnetosphere at geocentric distance 
7.5 RE. The density model therefore includes a plasma 
density depletion, which is often observed at radial dis- 
tance 2-5 RE in the nightside auroral zone [Persoon et 
al., 1988]. 

The function n01(L) -- tanh[(L- 7.5)/0.04375] de- 
termines the plasma inhomogeneity in the direction 
transverse to the resonant field line, and n02(p) = 
0.5/exp(4œ/œ) 2 (here œ - œ(p) is the distance along 
the resonant field line measured from the equator and 
œ • 18.6 is the total length of the resonant field line) 
determines the distribution of the transverse plasma in- 
homogeneity along the resonant field line. This choice 
of no2(p), in effect, confines the transverse gradient in 
density to the near-equatorial magnetosphere where a 
field line resonance will be stimulated. 

Observations of the localized density gradients like 
one modeled here, in the outer ring current/near-Earth 
plasma sheet region, are reported in the literature [Hug- 
hes and Grard, 1984; SL95]. These observations are 
discussed in more detail in SL95. The dependence of the 
spatiotemporal properties of the FLR solutions on the 
parameters of the density gradient and on its location 
was investigated by SL97. 

The background electron temperature is modeled in 
the paper as 

T,(L, y) - (4.08 r -a + 0.99)[1 + TI01(L)/102(•)] 
here r is the same geocentric distance as used in (19). 
The background ion temperature is modeled as 7}(L, p) 
= (T•,/T**)T,(L,p). Here T** - 150 eV and 7}, - 500 
eV are constants estimated in the nightside equato- 
rial magnetosphere near L - 7.5 using an empirical 
model by Moore et al. [1987] and Active Magneto- 
spheric Particle Tracer Explorers/Ion Release Module 
(AMPTE/IRM) data. That choice of the function for 
T, and 7} provides the equilibrium requirement that 
B0.V'(n0T,) - 0 in the hot, higher-altitude, magneto- 
spheric plasma. It also provides a gradual reduction of 
the plasma temperature in going from.. the equator line 
to the ionosphere along the flux tube. For these parame- 
ters of the background plasma and magnetic field in the 
nightside equatorial magnetosphere near L - 7.5, the 
plasma • there is equal to 0.05, so the low-• assump- 
tion of the model is satisfied. Of course, the plasma 
• can be larger in this region if a small population of 
energetic particles with low density will be taken into 
account. Although these particles make the plasma • 
larger, they basically do not affect the Alfvdn waves 
which are carried by the cold, dense core plasma. Be- 

cause the higher-energy particles have small density, 
they have a small effect on the analysis, and the rel- 
evant • for the problem is that of the core plasma given 
above. This specification of functions for Bo, no, Ti, T,, 
and their magnitudes in the equatorial magnetosphere 
provides distributions of v•t, ,X 2, and p2 along the reso- 
nant field line as shown in Figure 2. 

3. Numerical Computations 

To investigate numerically spatiotemporal behavior 
of the small-scale, dispersive FLR on auroral magnetic 
field lines, it is convenient to rewrite (1)-(3) in the di- 
mensionless form: 

0 
(20) 

Ot -BoV• •00 (21) 

0____V. ( 1 1) ot + - 

-(1 - p•V•;) BoV• ( 1 (22) 

where 

6- me B•, 
mi 4•rn, Te, 

1 0 1 0 

•; v• - h• Op' hL OL' 

1 O ( h• V•AII - hœh•, OL hœh• 
Oh•AII ) 

(1 1) v. 

1 •11 hLh•h•, OL v-• q- • hL OL' 
Dimensionless variables include [Chmyvev e! al., 1988] 

cs- t - t /o• •. ; 1•. - 1•. ; 111- 111; T, - 
Od ci* ' 

Te, c . 4'- T•,q•; Ai I_•AII ' 
e eVA. 

Here T,,, wci., cs., vA., and n, are constants estimated 
in the nightside equatorial magnetosphere at radial dis- 
tance 7.5 

.... main comput-*;"-- •' •:'• ...... • ......... ' ' O•t•l•JllO, l [1111. UI. UIII.;12 OC, bWCCII bills mo- 

del and the two-fluid MHD model considered by SL97 
is the fact that now, owing to the ion kinetic modifi- 
cation of the current continuity equation, n• cannot be 
expressed as V. (l/v• + 1/c 2) VLc). As a result, the 
model cannot be reduced further to only two equations 
and the entire set of (20)-(22) must be solved. 

Otherwise, the numerical algorithm applied here is 
the same as that described in SL97. A fourth-order 

"predictor-corrector" method is used to time advance 
the numerical solution. The Adams-Bashforth (AB) 
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four-step method is used as a "predictor" and the Ada- 
ms-Moulton (AM) three-step method is used as a "cor- 
rector" [Burden and Faires, 1989]. In this approach, 
new values of •5 and nl at each time step are obtained 
on the inner grid nodes from the predictor (AB) part of 
the algorithm. Then these new values are used to calcu- 
late All from the corrector (AM) part. This "splitting" 
of the computation in time improves accuracy and sig- 
nificantly reduces the amohnt of numerical operations 
compared with a total predictor-corrector scheme for 
the entire system (20)-(22). 

Owing to the simple rectangular geometry of the com- 
putational domain in the orthogonal dipolar coordinate 
(L,/•), spatial differential operators in (20)-(22) are ap- 
proximated using a finite difference approach. To get 
better resolution without additional computational ex- 
pense, •5, n l, and All are approximated on grids shifted 
along field lines. The computational grid for •5 and nx 
contains 101 levels along field lines, including both iono- 
spheric boundaries. The grid for All contains 100 levels 
along field lines and starts a half step above the iono- 
spheric boundary. In the L direction both grids have 
151 equally spaced levels, including both lateral bound- 
aries. Details of the numerical algorithm, particularly 
the techniques for calculating All and •5 at each time 
step from the corresponding elliptic equations, are given 
in the appendix. 

Without significant loss of generality, the ionospheres 
in the calculations described below are treated as per- 
fectly conducting plates, where the tangential electric 
field vanishes and the electric potential function •5 is 
set equal to zero. This ideal ionospheric boundary con- 
dition is a reasonable approximation because the Ped- 
ersen conductivity of the auroral ionosphere is typi- 
cally much larger than the Alfv6n conductivity [Vickrey 
et al., 1981; Spiro et al., 1982]; consequently, Alfv6n 
waves are almost perfectly reflected by the ionosphere 
[Mallinckrodt and Carlson, 1978]. 

In the two-dimensional simulations described below, 
a FLR on L = 7.5 magnetic shell is excited by a gen- 
erator localized on the right/tailward lateral boundary 
(L = 7.75) of the computational domain within a re- 
gion 4-12/12 about the equator. A generator of this type 
can be considered as a model of electromagnetic distur- 
bances confined to the nightside plasma sheet, for ex- 
ample, disturbances that might arise during the growth 
phase of a substorm. To excite the fundamental or any 
odd-harmonic FLRs, the perpendicular electric field of 
the generator should be symmetrical to the equator, so 
the boundary condition for •5 is set as 

45(/•, t) - 450 sin(cot) e (23) 

The boundary condition for the flux function All on 
the right boundary is calculated from (20) as a surface 
wave solution (second-order derivatives in L far from 
the resonant shell are negligible), 0tAll = 

Both •b and All are kept equal to 0 on the left/earthward 

lateral boundary. Because energy is pumped into the 
resonance layer via the long-range field of the surface 
wave [Hasegawa, 1976; SL1], it is unimportant, from a 
numerical point of view, which lateral boundary, left or 
right, is driven. 

Because the geomagnetic oscillations with very dis- 
crete, monochromatic frequencies are permanently ob- 
served in the auroral region on the ground [Samson et 
al., 1992; Rankin et al., 1993], as well as on the satellites 
[Hughes and Grard, 1984], the investigation presented 
in this paper are restricted by the case of the monochro- 
matic driver only. So the frequency co of the generator 
(23) is taken to be the eigenfrequency of the solution 
to the classical, one-fluid MHD eigenvalue problem for 
a toroidal ULF wave standing on the L = 7.5 dipole 
magnetic shell [Radoski, 1967; Cummings et al., 1969; 
Cheng et al., 1993]. In particular, to find the eigenfre- 
quencies of FLR, the next second-order, ordinary differ- 
ential equation for the function •' = h•Eœ/h•, modi- 
fied from Cummings et al. [1969] by including relativis- 
tic correction (displacement current), is solved with an 
appropriate boundary condition (Eœ = 0) on the iono- 
spheres: 

1 1 1 0 ( 10.T) + 
-3- •.• •' - 0 (24) 

For the parameters of the background plasma and 
magnetic field given above, the eigenfrequencies of the 
first three odd harmonics obtained from (24) on L = 7.5 
are found to be 11.4 mHz for the fundamental mode, 
49.8 mHz for the third harmonic, and 88.2 mHz for the 
fifth harmonic. 

These harmonic eigenfrequencies are higher than FLR 
frequencies at 1.3, 1.9, or 2.6 mHz reported from the 
ground-based observations [Samson et al., 1992]; but 
because dispersive, harmonic FLRs usually produce ve- 
ry narrow, multiple electromagnetic structures, there is 
almost no chance that their magnetic field/frequency 
can be measured on the ground owing to the strong 
attenuation of small-scale signals by the atmosphere- 
ionosphere system [Hughes and Southwood, 1976]. At 
the same time, because geomagnetic FLRs with fre- 
quencies up to 80 mHz are statistically measured on 
satellites at high latitudes [Andersen et al., 1990; Hug- 
hes and Grard, 1984], we find it reasonable to mention 
these frequencies here for completeness. 

4. Results and Discussion 

Numerical investigation of the model described by 
(1)-(3) shows that for the background plasma and mag- 
netic field parameters given in section 2.3, FLR for the 
fundamental mode becomes nonradiative on L = 7.5. 
In our terminology, nonradiative FLR. means that the 
temporal variation of the FLR amplitude is localized 
transverse to the geomagnetic field to the vicinity of the 
resonance location. As an example, the profile of Eœ 
across the magnetic field lines in the equatorial plane 
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Figure 3. Profiles of the perpendicular electric field Eœ of the fundamental field line resonance 
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geomagnetic field in the equatorial magnetosphere. 

for the nonradiative fundamental FLR at time 2557 s 

is shown in Figure 3 by the thick solid curve labeled 
ELi. For comparison, the profile of EL of the third- 
harmonic FLR, which is radiative under the same back- 
ground conditions, is plotted in Figure 3 at time 293 s 
by the thin curve labeled ELa. The main conclusion 
that follows from the comparison of these two curves 
is that the nonradiative FLR produces much more nar- 
row, localized, and intense electromagnetic structures 
than FLRs radiating dispersive Alfvdn waves. 

Results from the computer simulations are first dis- 
cussed by verifying the assumptions on which the model 
is based. Three characteristic transverse scale sizes 

are also shown in Figure 3: the ion Larmour radius 
(Pi -- 31 km), the scale size of the resonant field 
defined as the full vlidth of the peak in EL at half 
amplitude [ll(EL) = 55 km], and the scale size of 
the transverse inhomogeneity in the background Alfv•n 
speed [/l(vA) = 333 km]. First, Figure 3 shows that 
lñ(vA) >> Iñ(EL), so the assumption in section 2.1 
allowing application of a Fourier transform to El in 
(5) is valid. Second, if the perpendicular wavelength of 
the resonant solution, defined as lit m 2/i(EL) = 110 
km, implies (kipi) 2 = (2•rpi/llr) 2 • 3.1. This fact 
means that (1) hot magnetospheric ions should signif- 
icantly modify the dispersive properties of the small- 
scale Alfv•n waves and (2) dispersive Alfvdn waves with 
such a small transverse wavelength are not accurately 
described using the small ion Larmor radius approxi- 
mation [Hasegawa, 1976]. 

Figure 4 shows profiles of EL, B•, Eu, ju (solid 
curves), and •bu (dashed curve) along the resonant field 
line for the nonradiative, fundamental FLR, obtained as 
a numerical solution of (20)-(22) at time 2621 s. Magni- 
tudes of the fields on these graphs, such as 182 mV/m 
for EL and 0.11 mV/m for E,, were obtained by as- 
suming that the maximum amplitude of EL of the sat- 
urated FLR is equal to 200 mV/m (a typical value of the 
large-amplitude electric fields observed above the auro- 
ral ionosphere from a few thousand kilometers altitude 

up to about 2-2.5 RE altitude [Mozer, 1981; Weimer 
and Gumeft, 1993]). With this choice the amplitude of 
any calculated quantity at any point in time and space 
is determined in a unique way owing to the !inearity of 
the model. 

Because the linear two-dimensional model considered 

here does not contain any volume or ionospheric bound- 
ary dissipation, the saturation of the resonance is due 
to (1) numerical dissipation, connected with using fi- 
nite differences for the approximation of spatial deriva- 
tives, and (2) imperfect implementation of the nonra- 
diative condition. As in SL97, numerical dissipation is 
the dominant saturation mechanism in these computa- 
tions. In this sense the absolute saturation level of the 

FLRs computed in our model must be interpreted with 
caution. However, because numerical dissipation is de- 
termined by the parameters of the code (mostly by the 
spatial resolution), which are the same for all computa- 
tions presented herein, it affects the behavior of all the 
FLR solutions in the same way and makes it meamng- 
ful to compare spatiotemporal properties of these FLRs 
with each other. 

Figure 4 shows that, in many respects, the behavior 
of the nonradiative FLR calculated in the new model 
is qualitatively similar to that obtained by SL97 in a 
model without ion Larmour radius correction (Figure 4 
in SL97). In particular, the perpendicular component 
of the electric field is enhanced at low altitudes at a dis- 

tance of about 2 RE along the'resonant field line above 
the ionosphere: ':he amplitude of the tra,n.qvor.qo ma•- 

netic field and the field-aligned current density maxi- 
mize at the ionospheric boundaries; the parallel poten- 
tial drop between the ionosphere and m 3 RE altitude 
is sufficient to accelerate electrons into the ionosphere 
up to keV energies. 

The main difference between results presented by 
SL97 and the results obtained from the model with full 
ion Larmour radius correction lies in the behavior of the 
parallel electric field at high altitudes. To illustrate this 
difference more explicitly, an additional computational 
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run was performed. In this run, •. was set equal to 0, 
so the influence of hot ions was effectively "turned off." 
To maintain the same nonradiative balance between ki- 

netic and inertial dispersions on the same magnetic L 
shell as before, Te. was set equal to 650 eV. In that 
case the distribution of total p2 _ p• q_p• along the 
resonance field line is the same as when •, - 500 eV 
and T** - 150 eV. The comparison between these two 
cases is shown in Figure 5. 

Figures 5a and 5b show the evolution of the maximum 
of the amplitudes of Eœ and Eu in the computational 
domain for FLR with •, = 500 eV and T** - 150 eV 
(solid curves) and FLR with •, = 0 eV and T** = 650 
eV (dashed curves). Graphs of Eœ (Figure 5a) and E, 
(Figure 5b) show that both FLRs saturate on the same 
timescale and at the same amplitude level. This result 
is expected because the maximum of Eœ and Eu occur 
at low altitudes and is determined not by the plasma 
temperature but by the plasma density, which in both 
cases is the same. Figures 5c and 5d show the distribu- 
tion of E• and • along the resonance field line at time 
1955 s for the FLR with hot magnetospheric ions (solid 

curve) and for the FLR without ions (dashed curve). 
In agreement with (12) the parallel electric field in the 
high-altitude, near-equatorial plasma is almost. oiimi- 
nated when the kinetic dispersion is mostly provided 
by hot magnetospheric ions (solid curve in Figure 5c). 
As a result, the parallel potential distribution is nearly 
constant in this region (solid curve in Figure 5d). The 
amplitude of the parallel potential drop is also changed 
significantly. Despite the fact that the maximum am- 
plitude of Eu in both cases is almost the same (about 
0.1 mV/m), the maximum of the parallel potential in 
the second case decreases by more than 25% compared 
with the case with hot ions included in the model. 

As discussed in section 2.2, this effect means that 
even dispersive Alfv•n resonances with extremely small 
transverse scale sizes will undergo only weak Landau 
damping in the magnetospheric plasma because the as- 
sociated parallel electric field is significantly attenuated 
there by the hot ions. 

The fact that higher-harmonic FLRs are much more 
"kinetically" radiative than the fundamental FLR for 
the same set of the background parameters is illustrated 
in Figure 3. Our investigation shows that even when 
the equatorial ions were "cooled" to 50 eV temperature, 
the third-harmonic FLR, on the L - 7.5 magnetic shell, 
continued to radiate kinetic dispersive waves. The same 
behavior of the harmonic FLRs in comparison with fun- 
damental FLR was reported by SL97 in the model with- 
out hot magnetospheric ions, and it deserves additional 
investigation. 

To understand the phenomenon, consider the ratio 
between perpendicular and parallel component of the 
group velocity of the dispersive Alfvdn waves, v g - 
dw/dk, at high and low altitudes. Because this anal- 
ysis is mostly qualitative, it is sufficient to make use 
of the simplified dispersion relations derived in section 
2.2. By using (9) and (il), it is easy to show that at 
the equatorial magnetosphere 

kñp 2 

and at low altitudes 

kñ• 2 

So if different harmonic FLRs occur on the same mag- 
netic L shell with the same parameters of the back- 
ground plasma and contract to the same transverse 
scale size (or kñ), then the ratio Vgñ/Vgll for the dif- 
ferent harmonics differs in kll only. At the equatorial 
magnetosphere, v,• is relatively homogeneous along the 
field line (Figure 2), so here it is reasonable to estimate 
kll ,-, W/VA. Because the eigentYequency co of higher 
harmonics is larger than that for the fundamental dis- 
persive Alfv•n wave, (25) shows that for the same value 

2 
of kñp-, the fundamental dispersive Alfvdn wave prop- 
agates energy in the transverse direction more slowly 
than the harmonic waves for the same section of the 

resonance along the field line in the equatorial magne- 
tosphere. 
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At low altitudes, where the background Alfvdn speed 
is very inhomogeneous, kll cannot be replaced with 
w/va, even as a rough approximation. Instead, the 
parallel structure of the fields obtained by solving the 
eigenvalue equation (24) can be analyzed. These fields 
can be considered as solutions of the entire model (1)- 
(3) during the "predispersive," one-fluid stage, wherein 
dispersive effects are not yet important. Figure 6 shows 
profiles of E•_ for the first four odd harmonics, calcu- 
lated along the L - 7.5 magnetic shell using (24) and 
models for the background parameters given above. Be- 
cause the immediate objective is to compare only the 
structure and not the amplitude of the solutions, each 
curve in Figure 6 is normalized to its own rnaximurn 
value, so actually, EL/ELma,, for each harmonic is plot- 
ted. Figure 6 shows that at low altitudes t. he struc- 

ture of all four harmonic solutions is the same. Their 

differences occur only at high altitudes where EL pro- 
gressively develops smaller parallel structure as the har- 
monic number increases. According to the above anal- 
ysis of the ratio vg.k/vgll , it may be concluded that at 
low altitudes, small transverse scale Alfvdn waves at 
different harmonics are affected in the same manner by 
the inertial dispersion, but at high altitudes the higher- 
harmonic waves are more strongly affected by the ki- 
netic dispersion. This difference in behavior of the dif- 
ferent harmonic dispersive Alfvdn waves originates from 
the parallel inhomogeneity of the plasma density and ge- 
omagnetic field, with a significant distinction between 
the fundamental FLR and higher odd harmonic FLRs. 

This behavior of higher-harmonic FLRs suggests that 
under normal magnetospheric conditions, they would 
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Figure 6. Distribution of the background v•t along the resonance field line (dashed curve) and 
corresponding profiles of E; for the first four odd harmonics (solid curves), obtained by solving 
eigenvalue equation (24). 
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tend to produce multiple auroral forms [Trondsen el al., 
1997], rather than a single, discrete arc at high magnetic 
L shells. Otherwise, nonradiative harmonic FLRs can 
be expected mostly on lower magnetic shells, where the 
plasma, is colder and inertial dispersion dominates over 
larger portion of the flux tube. 

Computations of the model with hot magnetospheric 
ions show that even fundamental FLR radiates kinetic 

Alfv•n waves on L - 7.5 unless the background plasma 
is not depleted at the lower magnetosphere. Figure 7a 
shows four profiles of no along a resonance field line. 
The background density at radial distance 3 RE is set 
equal to 0.1 cm -a (solid curve), 0.5 cm -a (long-dashed 
curve), 1.4 c•n -s (medium-dashed curve), and 3.6 cm -3 
(short-dashed curve). Four profiles of the correspond- 
ing v• are shown in Figure 7b. In spite of the fact that 
the maximu•n of 'v• in t. hese ibur cases changes more 
than 3 times, the difference in the corresponding fun- 
damental eigenfrequencies is less than 3.5%. Figure 7c 
shows the temporal behavior of the maximum ampli- 
tude of Eœ in four fundamental FLRs, and Figure 7d 
shows the temporal behavior of the maximum ampli- 
tude of the corresponding B•. The investigations reveal 
that the fundamental FLR on L - 7.5, with T•, - 150 
eV and 7}, - 500 eV, becomes nonradiative, when no 
at the geocentric distance • 3 RE is in the range 0.1- 
0.5 cm -s. Such a depletion of the background plasma 
density (auroral plasma cavity) is typically observed in 
the nightside auroral zone at that geocentric distance 
[Persoon ½t al., 1988]. 

The occurrence of an auroral plasma cavity also af- 
fects small-scale, dispersive FLRs in two other ways. 
First. it increases the parallel potential drop between 
ionosphere and ,.• 4 RE altitude by changing the dis- 
tribution and amplitude of E, along the resonant field 
line. Thus in the computations with n0min -- 0.5 cm -3 

the maximum parallel potential drop is equal to 1.02 
kV. For the case when /10rni n -- 0.1 cm -3 the same 
boundary generator produces a FLR with maximum 
parallel potential drop of 2.15 kV. 

Second, because the inertial Alfv•n waves satisfy the 
impedance relation IELI/IBI- VA(1-i-k}/•2) 1/2 [Lysak 
and Durn, 1983] and because a depletion in no increases 
v• and l • at the same time, it, is reasonable to expect 
that an auroral plasma cavity will cause the local ratio 
Il/IBl to increase. Indeed, in the computations with 
n0mi n -- 0.5 cm -a, a dispersive Alfvdn wave with E• - 
100 mV/m at an altitude m 1.74 RE (where Eœ has a 
maximum) has B• - 36 nT. For a case with n0mi n -- 0.1 
cm -a, a dispersive Alfvdn wave with E• - 100 •nV/m 
at an altitude m 2.3 RE (where Eœ has a maximum) 
has B• - 8 nT. 

The last point of interest concerns the "thickness" 
and temporal evolution of the discrete auroral arc that 
may be produced by the parallel electric field of a non- 
radiative fundamental FLR. To connect the numerical 

results with optical ground-based observations of au- 
rora, like that given by Trondsen et al. [1997], the neg- 
ative parallel potential drop (which should accelerate 
electrons into the ionosphere) calculated from the non- 
radiative thndamental FLR along the dipole magnetic 
field lines and mapped to 100 km altitude, is used as a 
proxy for auroral luminosity. Results of this mapping 
are shown in the 11 curves of Figure 8. Each successive 
plot is a step in time of 1/10 of the wave period (m 88 
s), and the entire sequence covers one full period of the 
process. The characteristic scale size of the "brightest" 
discrete arc (about time 35.2-44.0 s) in the north-south 
direction, measured as the width of the peak at half 
amplitude, is about 800 m. A further decrease of the 
north-south scale of this structure is limited by the spa- 
tial resolution of the code. 
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5. Conclusions 

Results from the studies of small-scale, dispersive, 
nonradiative FLRs, including finite ion Larmor radius 
correction, can be summarized as follows: 

1. A new MHD/kinetic model including finite ion 
Larmor radius effects and the wave relativistic correc- 

tion (finite v•4/c) has been developed in dipole magnetic 
geometry to investigate the microstructure and tempo- 
ral behavior of small-scale, dispersive Alfv•n waves in 
the Earth's magnetosphere. The model is suitable for 
describing magnetically incompressible ULF waves with 
•,•,,•v•,• •u•,• sizes uu,,,p•,-•u,• to •,,• ior, Lm-,,,ur ,-•- 
dius. 

2. The model reveals that hot magnetospheric ions 
significantly reduce the parallel electric field of ion Lar- 
mor scale dispersive Alfv•n waves, with an expected re- 
duction in the electron Landau damping of these waves 
in the magnetosphere. This conclusion is important 
when the propagation of a small-scale dispersive Alfv•n 
wave along a high-latitude magnetic L shell threading 
hot magnetospheric plasma is considered. 

3. If the parameters of the background plasma and 
magnetic field satisfy the condition p2 • ,k2 (the tran- 

sition region where inertial and kinetic dispersion effec- 
tively cancel each other), ion gyroscale dispersive Alfv•n 
waves exhibit several novel properties, namely, they 
propagate exactly along magnetic field lines, satisfy 
the dispersion relation of the classical one-fluid MHD 
Alfv•n wave, and carry parallel electric field. 

4. Computations show that for realistic parameters 
of the background plasma and magnetic field the funda- 
mental FLR can become nonradiative on auroral field 

lines near L -- 7.5. In the absence of dissipation, funda- 
mental nonradiative FLR can produce dispersive Alfv•n 
waves with transverse scales less than 1 km at 100 km 
altitude. The parallel electric field of the small-scale 
Alfv•n wave can produce a kV potential drop along the 
resonance field line between the ionosphere and • 4/•E 
altitude. 

5. A plasma density depletion in the lower auroral 
magnetosphere (auroral plasma cavity at • 2-5/•E geo- 
centric distance) enables the formation of a nonradia- 
tive fundamental FLR. It also increases the net parallel 
potential drop and the ratio IEñI/IBñI of small-scale, 
dispersive FLRs. The last fact may be important for 
the analysis of small-scale electromagnetic structures 
observed below 4/•E altitude. 

6. Owing to the parallel inhomogeneity of the back- 
ground plasma density and geomagnetic field, higher- 
harmonic dispersive FLRs are more radiative in the 
equatorial magnetosphere than the fundamental mode. 

Appendix' Elliptic Equations 

In the computations presented in this paper, All and 
•b are defined at each time step as a numerical solution 
of the one-dimensional elliptic equations: 

rioAll- 5V•Aii - Y (A1) 

V. (1/v• + 1/c') VL½5 - 6 (A2) 

with corresponding boundary conditions. Here 9 r and 
{• denote known right-hand parts, which are calculated 
using information from the previous time steps. 

Equations (A1) and (A2) can be approximated at 
each interior grid point (Li, yj) of the computational 
domain by the difference equation 

-- ai,j •4i- 1 ,j -• bi,j •4i,j - ci,j.Ai + 1,j - 7'•i,j (A3) 

where •4i,j is the difference approximation of either All 
or •; 7'•i,j is the difference approximation of the cor- 
responding right-hand parts 9 r or {•; and a, b, and c 
are numerical coefficients describing background me- 
dia. Applying central difference formulas [Burden and 
Faires, 1989] to (A1), these coefficients can be obtained 
in the form 

( L'•..• hl•i_l,j ai,j -- Hi,j h•h. ] i-1/2,j 

-- ht•i+l, j 
i+l[2,j 
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bi,j - noi,j + 

+ h•i,j Hi,j hth• i-1/2,j hth• i+l/2,j 
Here the subscript i- 1,..., 149 denotes grids points 
with Li - 7.25 + iHœ; the subscript j - 1,..., 100 de- 
notes grids points with/•j corresponding to the distance 
(j - 1/2)œ/100 along the resonant field line (L - 7.5) 
from the southern ionosphere (320 km altitude); •' - 
18.6 Re is the total length of the resonant field line; 
Hœ - (7.75-7.25)/150; and Hi,j - (5/H•)(1/hLhqo)i,j. 

By analogy with the above forms, coefficients in the 
discrete approximation (A3) of (A2) can be obtained in 
the form 

[(1 ai,j -- -Hi,j V-•A q- •'• hL i-1/2,j 
, 

Ci,j -- -Hi,j q- hœ i+l/2,j 
bi,j = -ai,j - ci,j 

Here the subscript i is the same as above and the sub- 
script j - 1,...,99 denotes grid points with /•j cor- 
responding to the distance j œ/100 along the resonant 
field line from the southern ionosphere. 

In inhomogeneous media, coefficients a, b, and c de- 
pend on space but do not depend on time. So all of 
them are calculated only once at the beginning of the 
computation and used repeatedly after that. 

Approximation (A3) together with lateral boundary 
conditions leads each (A1) and (A2) to a linear algebraic 
system of 149 equations defining All and •b. Structurally, 
these systems have a tridiagonal matrix which can be 
inverted numerically by a number of well-known tech- 
niques. In our numerical code the so-called Thomas 
algorithm [$trikwerda, 1989] is successfully used. 
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