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Linear mode conversion is considered between the ion-cyclotron and magnetosonic branches in a 
multispecies plasma with parallel magnetic field gradients. The results are interpreted in terms of ion 
conic heating. The mode-conversion coefficients are solved using perturbation theory, a phase 
integral approach, and saddle-point theory. These results are compared with numerical calculations. 
The coefficients thus obtained demonstrate that substantial coupling occurs between the four 
propagating modes, and a definite absorption occurs, Such absorption corresponds to ion heating 
and is, under realistic circumstances, sufficient to explain the outflow and heating of ionospheric 
oxygen. 0 1995 American Irzstitute of Physics. 

I. INTRODUCTION 

Energization of ionospheric oxygen to magnetospheric 
energies can be interpreted to be the result of wave absorp- 
tion near-the oxygen cyclotron frequency.lw3 The mechanism 
by which these central plasma sheet (CPS) ions are energized 
seems to be well understood, but the origin and nature of the 
ambient turbulence remain somewhat uncertain. Because 
there is no obvious local source, we suggested a scenario4 in 
which the waves are generated in the equatorial region of the 
magnetosphere and propagate along magnetic fields to lower 
altitudes where they heat ions. Two primary concerns about 
this model are (a) whether waves propagating earthward 
from the central plasma sheet are able to pass through a 
“stop gap” en route to the heating region and (b) how much 
wave power is available for heating ions near the oxygen 
gyrofrequency (about 10% of the observed wave power is 
requiredlw3). 

To illustrate this scenario and the associated concerns, 
consider the low frequency dispersion relation for two ion 
species5*6 as shown in Fig. 1. This dispersion relation is char- 
acterized by three separate modes which we have labeled I, 
II, and III. Mode I is the magnetosonic branch and is pre- 
dominately right-hand circularly polarized (RHCP) at high 
frequency whereas mode II, which is the hydrogen ion- 
cyclotron branch, is predominately LHCP. Below the oxygen 
cyclotron frequency mode II propagates as the RHCP mag- 
netosonic branch and mode III represents the LHCP ion- 
cyclotron branch. Near the crossover frequency, modes I and 
II couple and exchange energy.’ Mode I also suffers a cutoff 
at the cutoff frequency and is separated from mode III by an 
evanescent region. As waves move into regions of larger 
magnetic field they move “down” along the dispersion 
curves according to the Wentzel-Kramers-Brillouin (WKB) 
approximation in that they satisfy the local dispersion rela- 
tion. The scenario in which waves propagate earthward into a 
region of larger magnetic field (as is the case for waves 
propagating from the equatorial region to the aurora1 region) 
corresponds to waves incident from “above” the coupling- 
evanescent region. Some of the incident wave power is then 

reflected back along branches I and II, some wave power is 
transmitted along branches II and III “below” the heavy-ion- 
cyclotron frequency, and some wave power is absorbed in 
the evanescent region. Particle heating may result from ion- 
cyclotron damping of branch III (for a thermal plasma) and 
from the calculated absorption which typically corresponds 
to mode conversion to a strongly damped thermal plasma 
wave. 

In order to address the primary concerns of our model, 
we consider the localized region near the oxygen gyrofre- 
quency where the WKB approximation becomes question- 
able. We solve for the various transmission, reflection, and 
absorption coefficients both analytically and numerically and 
interpret the results in terms of wave energization. In order to 
ascertain the coefficients we employ several techniques: per- 
turbation theory, saddle-point analysis, and phase-integral 
analysis. Each approach has its limitations and advantages, 
but they are in reasonable agreement where more than one 
method is applicable. We substantiate the analytical results 
by evaluating the coefficients numerically. Furthermore, for 
intermediate angle of propagation we find that two saddie 
points are involved in the coupling process and the linear 
approximation is not completely accurate. Finally, we refer 
the interested reader to two cataloged reports8*9 which con- 
tain the complete details of the analytical and numerical cal- 
culations provided in this paper. 

II. BASIC EQUATlONS 

In the CPS the typical Alfven wavelength far exceeds 
even the most energetic ion gyroradius so that a cold plasma 
description is reasonable. Because the mode conversion pro- 
cess that we consider primarily depends on magnetic field 
gradients, we assume a uniform density profile. At low alti- 
tudes where the heating and mode conversion processes are 
presumed to occur, the primary gradient in the magnetic field 
strength is parallel to the field. We should emphasize that 
perpendicular gradients are weak compared to parallel gradi- 
ents for this problem so that their effects are not important in 
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FIG. 1. Dispersion relation for a cold two-ion component plasma for non- 
parallel propagation. The various branches am labeled according to their 
predominate polarization with RHCP dashed and LHCP solid. 

our calculations. Thus, our work is different from other stud- 
ies in which perpendicular gradients dominate.‘0-‘2 

With these assumptions, Maxwell’s equations combined 
with the momentum transfer equations reduce to a set of 
coupled ordinary differential equations for the components 
of the electric field.” For low frequencies, the electric field 
parallel to the magnetic field is negligibleI so that the equa- 
tions for the circularly polarized electric field components 
perpendicular to the magnetic field, E, = E,? iE,, take the 
compact form 

&“w’+MT=O, 

where 

1 
K2 K2 

r-- 2 y 

(0 

(21 

The two components of Y! ($ and ~,5) are the circularly po- 
larized fields E- and E, which are functions of the dimen- 
sionless coordinate, z%xlL, where LB is a conveniently 
chosen spatial scale. The characteristics of the medium are 
contained in the parameters: s=l/kALB , wk,/kA, 
kA=u/vA, L,=B-’ dBldz. The resealed Stix functions 

r fLlfic2 =+- Cm+ %J _- 
1 - w,, (0~i2,f)(0+fl,2j ’ 

where vA is the Alfvin velocity. We have taken the Fourier 
transform in the direction perpendicular to the magnetic 
field. 

These equations are related to a dispersion relation 
which is obtained from the Fourier transform (i.sdldz-+n) 
of the matrix equation (l), 

2 K4 112 

“+T * 1 (4 
These equations are primarily characterized by the quan- 

tities E, K, and the relative spacing of the cyclotron frequen- 
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ties and the cutoff. For small E the WKB solutions most 
nearly approximate the correct solution in the regions where 
r and 1 are well behaved. The parameter K characterizes the 
coupling between the two modes: - 

Ill. ANALYTICAL CONSIDERATIONS 

A. Previous work 

Mode conversion near the ion-ion crossover frequency 
has a rich history dating back to observations of proton 
whistlers.7 It was later recognized that absorption of the 
compressional Alfvdn wave at a deuterium gyroresonance 
layer could be an effective mechanism to heat fusion plas- 
mas. A series of papers21’5-‘8 specifically addressed mode 
conversion in an H-D plasma with parallel magnetic field 
gradients. Those results are applicable if the saddle point at 
the crossover frequency is not important as is the case for 
coupling at low frequencies (well below the crossover fre- 
quency) or for large angle of propagation (absorption at the 
ion-ion hybrid frequency). However, for small perpendicular 
wave vector and higher frequencies they do not retain the 
appropriate dispersion relation topology and only address 
coupling of two asymptotic inodes rather than four. A more 
recent analysis t9 addressed this problem by retaining the 
coupling point associated with the crossover frequency and 
the four propagating plasma modes. However, that analysis 
does not retain coupling at both the cross.over.frequency and 
at the cutoff frequency simultaneously because their linear 
approximation retains only one saddle point. Moreover, the 
approximations made in their analysis limit its applicability 
for nonparallel wave propagation to small ion densities (less 
than 3%). In this section we calculate the coefficients using 
several different methods (several of the methods have been 
applied to ~a H-D plasma15-I*). Where applicable+ the 
saddle-point method is best as it allows treatment of the two 
coupling regions separately. We also solve the equations nu- 
merically and find that both saddle points are important for 
coupling-particularly for intermediate angles of propaga- 
tion. 

B. Saddle-point topology 

Mode conversion is generally characterized by the coa- 
lescence of two propagating modes.‘6*20-22 The local proper- 
ties of a medium in one dimension are characterized by the 
dispersion relation D(k,z)=O. Saddle points of the disper- 
sion relation where at least two roots coalesce occur where 
dDldk=O which is satisfied for the mapping k = k,(z) which 
depends upon the spatial coordinate, z. ,4t a point, zb, the 
mapping, k,(zb), becomes a double root of the dispersion 
relation and is referred to as a branch point. Near the saddle 
point, the dispersion equation may be described in terms of 
an embedded dispersion relation 

D(k,,z)+(k-k,)2D,,(k,,z)/2=0. (5) 
Then a differential equation describing the two-mode cou- 
pling may be obtained from the Fourier transform in k so that 

Y(z>+Q(z)ti=O (6) 
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with Q(z)= -2D(k,. ,z)lDkk(kc ,z). By definition, the po- 
tential Q vanishes at branch points zb where D=O. When 
coupling points are well separated, the embedded equation 
contains sufficient information to describe the coupling be- 
tween the embedded modes. Such coupling is typically very 
strong if the coupling point zb occurs close to the real axis 
and is weak if the coupling point is far from the real axis. 

The particular dispersion relation that we are considering 
for low frequency waves may be obtained from the Fourier 
transform of Eq. (1) 

D(k,z)=(k2-r)(k2-f)fK2(k2-t-+1/2), (7) 
where it is understood that r and 1 are explicit functions of z. 
The saddle points are located along contours 

k,(z)=O, (r+1-K2)/2. 09 

The branch points in space related to these saddle points may 
be obtained by solving the dispersion relation (7) along the 
saddle-point contours, k,(z). For the coupling point at k, =0 
we find the cutoff condition 

rl=Kqr+1)/2 (9) 
which occurs at the position corresponding to the cutoff fre- 
quency 

J = w2 J. 
1 - K2/2 

co If 2 Wii - K2 W&/,/2 ’ 
(10) 

For small values of K, this cutoff occurs at the cutoff fre- 
quency, wCo , which for parallel propagation is the cutoff of 
the LHCP L mode. Near 2=2 the denominator diverges. 
(Actually the root approaches the lower-hybrid frequency, 
but our approximations, suitable for low frequencies, do not 
adequately describe this.) On the other hand, for ~>d? a 
cutoff appears at low frequencies which increases as a func- 
tion of K up to the ion-ion resonance. At some critical K the 
cutoff passes through the resonance. 

The coupling point, k, = (r + l- ~~)/2, when substituted 
into the dispersion relation yields 

d2+ K4/4=0, 

where d is the difference function 

r-l S1,1R,2 

d=2=- 

w( 62 - al;,) 

%I (w2-fg,)(w2-a~2)’ 
(12) 

For K=O, this condition is satisfied at the cutoff and cross- 
over frequencies which are the zeros of the function d. As 
K--+w, this condition is satisfied near the ion gyrofrequencies. 
For K+O it is clear that this condition may be satisfied only 
for values of complex d which correspond to the branch 
points, zb, which are complex conjugate pairs. In Fig. 2 we 
plot values of the complex frequency along which Eq. (11) is 
satisfied. Equation (11) is an eighth-order equation in fre- 
quency with four complex conjugate pair solutions except at 
K=O and K-@ where the modes coalesce into a pair of real 
double roots. For reasonable ionospheric values of the oxy- 
gen density, the crossover frequency connects to the oxygen 
cyclotron frequency and the double root at UJ=O connects to 
the heavy ion gyrofrequency. From the topology, we expect 
coupling to be largest when the coupling points lie near the 
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FIG. 2. The locus of solutions to Eq. C I I) for varying K. The coordinate z 
corresponds to the ratio w/Cl,, The arrows indicate the direction of increas- 
ing K. 

real axis. In this sense, we see that the largest coupling takes 
place for small values of K near the crossover frequency and 
near the o=O root (which corresponds physically to very low 
altitudes), and for Iarge values of K the coupling occurs near 
the two gyrofrequencies (the other gyrofrequency at z = 16 is 
not shown in Fig. 2). The topology of these branch points is 
discussed in detail by Le Q&au and Roux.‘~ 

C. Small K-Four propagating modes 

1. Perturbation and saddle-point analysis 

In this section, we solve for coupling due to the saddle 
point at the crossover frequency. The coupling may be con- 
sidered as a perturbation about parallel propagation.412* 
Equation (1) then reduces to a hierarchy of second-order dif- 
ferential equations which are coupled by the known lower- 
order fields. The zeroth-order solutions are the two un- 
coupled parallel propagating R,L modes. The higher-order 
fields may be determined using variation of parameters, To 
determine the behavior of a downcoming ion-cyclotron 
(magnetosonic) wave, we prescribe that I!??( E($‘) vanishes: 
The amplitude of the coupled wave involves an integral over 
a rapidly oscillating function which becomes stationary at 
the crossover frequency. The amplitude may be evaluated 
using standard methods of stationary phase.4323 

Comparing the Poynting flux of the incident wave above 
the coupling region to that of the coupled wave below the 
coupling region we obtain the coupling coefficient4 

This result may be extended to larger values of K if we 
consider the embedded dispersion relation discussed in Eq. 
(7). The coupling which occurs at the crossover frequency 
arises from the branch point which is the solution to Eq. (1 I), 
and may be described in terms of the embedded equation (6) 
with 
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1 &+ tc4/4 
Q(Z)=? 2s-K2 . (14) 

The function d has a zero at the crossover frequency, so that 
Iocally d = d, + db[ with d,,=O. The coupling is de- 
scribed by the potential equation 

fyy*j+ ; “i;‘fZ cj/zo, 
u--K 

(15) 

where the sum function has been evaluated at the crossover 
frequency. Equation (15) then takes the form of a Weber 
equation. The transmission coefficient is well known’7*‘sV24 

For small values of K, T= 1 -C as obtained in Eq. (13). 
The coupling occurs as the result of finite K and in- 

creases rapidly for Small angles of propagation. For larger K, 

the coupling approaches unity which means that a complete 
transfer of power from the predominately RHCP to the pre- 
dominately LHCP mode occurs. For large magnetic field 
scale length s-+0 and coupling is complete so that waves 
propagate on their appropriate dispersion surface and do not 
couple to other surfaces (except for parallel propagation). 

2. Phase integral analysis and tunneling 
In this section we solve (1) using the phase-integral 

method, and interpret the results in terms of two-mode cou- 
pling for the saddle points associated with the crossover and 
cutoff frequencies. We show that under the condition of .a 
large “gap” the solution is essentially a series of two-mode 
couplings. For a small “gap” the process is more compli- 
cated, but the coefficients still only involve the exponential. 
factors which arise from the two-mode couplings. 

To proceed, we approximate the functions r and 1 near 
the resonance 

r-k;, 2-k;{ 1 -a/z), (17) 
where a linearized form of the magnetic field, B = Ba( 1 - z) , 
has been used. The linearized function, I, retains the reso- 
nance and cutoff, while variations in the function, r, are not 
substantial. Near the resonance, the behavior of (1) is domi- 
nated by the singularity in I and higher-order terms in z are 
unimportant. If we were to include other dissipative effects, 
such as damping the pole would be found beIow the real 
axis. 

As in standard phase-integral analysis, we continue the 
WKB solution around the singularity and use conservation 
properties to obtain the proper asymptotic form of the solu- 
tion in the complex plane. From the differential equation (1) 
and its adjoint, we form the conserved quantity correspond- 
ing to the Poynting flux along the z axis, 

J==i(*+‘v-T+w) W-0 

which is conserved in space according to 

J’=i!P+(M-pl+)!P, (19) 
where the prime denotes real derivatives along a contour 
with fixed imaginary part [recall that d$*ldz # (d$/dz)* 

except along a line, z =x + iy , with y fixed]. The function 1 is 
singular at the heavy ion gyrofrequency so that a discontinu- 
ous jump in J occurs across the singularity. 

The discontinuity from continuation above (below) the 
real axis is 7A=+-2~k~a]&=a. Continuation above the 
pole corresponds to energy which is absorbed. That is 
J+<J -. where the superscript refers to the value along the 
positive (negative) real axis. Then if there is no tiux in or out 
on the positive real axis (J+=O) there is a positive energy 
flow from the left (J->O), which is absorbed. On the other 
hand, if there is no flux from the left (J--O), then there is a 
negative flux from the right (J+<O) sending wave energy, 
which is absorbed, into the system. The value of this energy 
loss clearly depends on the details of the boundary condi- 
tions. Physically, we may interpret this energy loss as result- 
ing from resonant absorption at the gyrofrequency. Such ab- 
sorption typically occurs because the cold plasma wave 
mode converts into a thermal wave which is readily ab- 
sorbed. Conversely, if the pole lies above the real axis, a 
similar procedure results in an energy gain which is unphysi- 
Cd. 

We may obtain a substantial amount of information con- 
cerning the asymptotic behavior of the solutions. The WKB 
solutions in this case are of the form 

O=exp( tf [‘rri ds). 

For large values of z the indices may be expanded using the 
approximation (17) to give 

0 
k;a + S+ Jsz+K1/4 

nc=n,- - - - 
473 rlqJrn 

7 

where 

+[ ,A?( g+ KJ1’2]1’2 (22) 

with the zeroth-order sum [a=(kF+kf)/2] and difference 
[S=(kF-kz)/2>0] functions. The four WIG3 solutions are 

O:=exp[*i/e(n+z--p+ logz/2)], 

OZ=exp[+ilE(n-z-p- log z/2)], (23) 

where 

k:a f a+ J6’+ ~~/4 

(24) 

and the coupling is characterized by the multivalued nature 
of the logarithm. 

From these expressions we can determine the transmis- 
sion coefficients for the case of incident magnetosonic waves 
or ion-cyclotron waves. We may extend the WKB solutions 
into the complex plane and use the dominance of the various 
solutions to determine transmission properties.‘4 The solu- 
tions on the positive real axis are of the form 

~=AO;+BOT+COt+DO~, Al-g(z)=& (2% 

where we have written them in order of dominance in the 
upper-half complex plane. The lower component, 4, of 9 is 
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of the same form with coefficients which are related to A, B, 
C, and D by the dispersion relation. The WKB approxima- 
tions in the complex plane, however, are at best limited to 
validity within certain sectors due to the Stokes phenomenon 
which results from the fact that Ihe exponential solutions are 
too simple to adequately describe the qualitative behavior of 
the actual functions. Although the coefficient of the dominant 
solution within a given region remains unchanged, the sub- 
dominant solutions are liable to change. To accommodate 
this change, we make a discontinuous adjustment of the sub- 
dominant terms along the Stokes lines where the subdomi- 
nant terms are least significant. The Stokes lines in this case 
are along the positive imaginary axis while the anti-Stokes 
lines are along the positive real axis. Accordingly the solu- 
tion takes the general form 

+=A@;+@-A&)@Z+(C-AS,-BS,)Ot+(D-AS, 

-BS5-CS,)O~, Arg(z)=n (26) 

on the negative real axis. We have added Stokes constants 
across the region of least dominance according to a prescrip- 
tion which retains the continuity of the equations in the ab- 
sence of the more dominant solutions. The boundary condi- 
tions for downgoing ion-cyclotron waves are given by A = I, 
B = S, . C= D = 0 while for downgoing magnetosonic waves 
the boundary conditions are A=O, B=l, C=D=O. The 
leading-order coefficient for downgoing ion-cyclotron waves 
is 

T~~=l~~l~~sl,,=?i/l~~l~~s,~,=o=e-np+fe, (27) 

whereas for downgoing magnetosonic waves in the absence 
of an incident ion-cyclotron wave there is no transmitted flux 
in the ion-cyclotron mode and the transmission coefficient to 
the magnetosonic mode is 

TwS=jO~I~Lz)=lr/lO~I~~g(ri=O=e-rrp-fa. @a 

For &is, we find from Eq. (24) that TIC is essentially 
the Budden coefficient for parallel propagation 
[p+ =kla (1 - O(K~))]. With increasing K, the tunneling di- 
minishes. For large K, we find that the coefficient approaches 
another constant, namely 

,G,=kfa/2&, (29) 

which we interpret in Sec. III D 2 as Budden-like tunneling 
for nearly perpendicular propagation near the ion-ion hybrid 
frequency. 

On the other hand, for the downgoing magnetosonic 
wave we find that for small K Eq. (24) gives the transmission 
coefficient 

(30) 
where d,l,= 2 S2/ k:a. The transmission coefficient is equiva- 
lent to the coupling coefficient established in Eq. (16). For 
parallel propagation transmission of the magnetosonic mode 
is complete (T= 1 j, but coupling increases rapidly with larger 
values of K and transmission falls off substantially. 

1278 Phys. Plasmas, Vol. 2, No. 4, April 1995 

k,vJ% 

FIG. 3. Illustration of the meaning of the coefficients for a downgoing 
ion-cyclotron wave. 

The values of the Stokes constants may not be unam- 
biguously determined using the methods of the previous sec- 
tion although a number of relationships between the ampli- 
tudes of the various waves may be determined. For the case 
of a “large” gap, however, we may actually determine the 
coefficients unambiguously. In this case the WKB solution, 
0;) has negligible amplitude at --co, i.e., /3+-+@~ so that 
there is no transmission in that mode. Furthermore, the re- 
striction that no upgoing ion-cyclotron wave, 0:) be found 
at --CQ implies that A-O so that no absorption occurs. In a 
detailed report’ we have shown that in the limit of a large 
“gap” the transmission and reflection coefficients, defined to 
be the ratio of the Poynting flux of a particular wave to that 
of the incident wave, are 

C&=1-e- @-fez 1 -c, 

Rp=e -27r&fe=C2 t (31) 
Cfc=e-gP-fe(J-e -“P-fE)=C(l-C), 

where the meaning of the coefficients are illustrated in Fig. 
3. For a magnetosonic wave incident from above we find that 

RMis=( J -,-rr@-fC)2=( 1 -c)2, 

Cis=e -sp-fE(l-,-?rp-f&)=C(1-C). 

(32) 

This process is illustrated in Fig. 4. 
In the case of large gap, wave propagation is entirely 

determined by the interaction at the crossover frequency 
which, as we have just shown, is characterized by the coef- 
ficient C = e - @- le. These results can be understood as a 
series of two mode couplings.17 A downgoing ion-cyclotron 
wave with unit flux encounters the crossover frequency at 
which point a fraction, C, is transferred from branch II to 
branch I. A fraction, 1 -C, continues down along mode II 
and is the coupled transmission coefficient CL. The wave 
which couples to branch I reflects at the cutoff frequency and 
once again encounters the crossover frequency as an upgoing 
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FIG. 4. Illustration of the meaning of the coefficients for a downgoing 
magnetosonic wave. 

wave. This reflected wave has amplitude C. Upon coupling, 
a fraction, C, of this reflected wave flux is coupled to branch 
II comprising the reflection coefficient RI,=C2. The fraction, 
1 -C, remains on branch I and is the coupled reflected wave 
CR, = C( 1 - C). Although in the lim it of a small “gap” the 
transmission coefficient Tic is a Budden tunneling term, in 
the lim it of a large “gap” T,, vanishes. This analysis differs 
from previous workI in that four propagating asymptotic 
modes rather than two are involved in the analysis. A similar 
interpretation may be given to the case of an incident mag- 
netosonic wave as illustrated in Fig. 4. 

D. Large K-TWO propagating modes 

1. Phase integra/ analysis 

For large enough K, V-G?, so that two of the solutions of 
Eq. (21) are complex (n+ is real and YL - is imaginary). Be- 
cause two of the asymptotic solutions are growing along the 
real axis the positive and negative real axes are Stokes lines 
for two of the solutions while the positive and negative 
imaginary axes remain the Stokes lines for the other two 
solutions. The anti-Stokes -lines are along. the rays 
n!$x = t n!y where z =x + iy is the complex coordinate. In 
order to incorporate the Stokes phenomena we introduce the 
Stokes multipliers such that upon crossing a Stokes line on 
which a WKB solution is maximally subdominant the coef- 
ficient of that term equals the coefficient before crossing the 
Stokes lines +EjisiX the coefficients of the jth dominant 
term on the Stokes line.x,25,26 . 

Appropriate boundary conditions require that at +a the 
exponentially growing. modes be absent. In addition, appro-~ 
priate boundary conditions require that no upgoing wave be 
found at --cx). In order to satisfy these conditions, we assume 
along or above the positive real axis that the solution takes 
the form 

+=AO~+BOI+CO?I+DO~ (region II). 63) 
Using the rules stated above we may continue the solution 
into the following sectors illustrated in Fig. 5, 

FIG. 5. Sectors of the complejt plane divided according to regions of domi- 
nance and subdominance of the asymptotic WKB solutions. The Stokes 
lines and anti-Stokes lines are solid and dashed, respectively. 

z,b=A@;+BK+C’@ f+D@+, 

with C’=C-AS,-BS,-DS4 

$=A’@ ;+B@:+C.‘@++D@; 

withA’=A-BlJ,-C’Ug-DU4 and 

+=AO;+B@T+C@:+D’@ ; 

(region III), (34) 

(region IV), (35) 

(region I), (36) 

with D’=D-6AV1i-BV2+CV3 where S, U, and V are 
Stokes constants. In order to satisfy the boundary conditions 
for downgoing waves, we require that B = C = D’ = 0, A = 1. 
The transmission and reflection coefficients are 

(37) 

f2 fGc=Ih121@+IArg(z)=0 4@T12,(,)=“=lV112. (38) 

In order to determine the Stokes constant VI we consider the 
situation with B = C = D = 0, A = 1 from which we can com- 
pute the Stokes constant if we invoke the conservation law. 
On- the real axis, the exponentially growing solutions do not 
contribute to the Poynting flux so that the conserved quantity 
Jln. is 

i 

1, &z(z) =o, 
J/n+ = erS+ Is, Arg(z) = - r, (39) 

e-Tp+‘s-IV112eTp+‘E, Arg(z)=rr. 

From the energy discontinuity 
-Az~-~@+ ‘E=-1+e-rrpt/e-jV112e~‘P+‘E (40) 

we obtain the reflection coefficient 

RIc=IVJ2=(1-T&. (41) 

2. Saddle-point analysis 

For large values of K, the saddle point associated with 
the crossover frequency is located far from the real axis so 
that it does not contribute to the coupling process as evi- 
denced by the weak dependence of p+ on the crossover fre- 
quency. Therefore; the saddle point is associated with zero 
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frequency at small K and the oxygen resonance for large 
values of K and is of primary interest (see Fig. 2). The tran- 
sition from four propagating modes to two propagating 
modes occurs at a critical value of K. Assuming that r and 1 
take a simple form such as in Eq. (17), the cutoff condition 
(9) implies that 

zco= a 1 - tc*/4kzl( 1 - (rK2/kSkT). (42) 
We then find that the abrupt change in the behavior of the 
modes occurs at the critical value, 2=kFkflo: For smaller K, 
the mode-conversion processes are determined primarily 
from the saddle point associated with the crossover fre- 
quency. For intermediate values of K, kfkf/cr< tc2<2k,. , 
four modes propagate in the vicinity of the heavy ion reso- 
nance although the magnetosonic branch is cut off at some 
point below the gyrofrequency and does not propagate above 
the gyrofrequency. The dominant saddle point is the one that 
is associated with zero frequency at small K and the oxygen 
resonance at large K. For larger K, tc%2k,, the downgoing 
ion-cyclotron wave is cutoff above the oxygen resonance at a 
frequency which approaches the ion-ion hybrid frequency 
and only two modes propagate. The transmission properties 
may be obtained by expanding about the saddle point asso- 
ciated with the cutoff condition rl- K’S =O. In the ensuing 
analysis we follow the reasoning of Lashmore-Davies et al. I7 
and Fuchs et a1.,‘8,2’ and consider the cases of intermediate 
and large K separately. 

The expression for the location of the saddle point in the 
complex plane is given by Eq. (11) with the potential (14). 
The roots of the saddle point occur in complex conjugate 
pairs so that the potential has the form of a complex conju- 
gate barrier described by the Weber equation. Assuming the 
form of r and I in Eq. (17), the potential is 

a2 + K4/4 
Q(5)= 4~~~~-~2/2) [(5-5r>2+tfl (43) 

where t=[,+ 5i=(k:a/2)( 62 iK2/2)/(8i-K4,4) is the loca- 
tion of the complex conjugate roots. If we then make the 
judicious choice for the variables kg= ( 6 2 + ~~/4)/[ kz( s, 
- K2/2)] and P=Ei/2=(k:a/2)(13/4)/(S2+K4/4) then the 
embedded equation is a Weber equation which has the trans- 
mission coefficient’7,‘” 

pe-‘rrk&‘t~, 

where the argument of the exponential is 
2 

k,BZ=? 
K4/4 6 

8 J( a’+ K4/4)( K4/4 6-k K2,2 - kf) ’ 
(45) 

Near the upper limit of validity, the two results have 
a reasonably simple limit. For ti?2=kz, p+ 

(kfa/2)/( &%?i;T?, whereas the equivalent coefficient 
iorn the saddle pointris 2koj32=P,k~/2 6. Over the range 
of densities for which absorption is strong (0.5%-5%), the 
ratio, kzl2jS takes values ranging from 1.3 to 0.6 depending 
on the density ratio and the two results are in reasonable 
agreement. 

The form of the reflection coefficient may be understood 
physically in the same manner that we understood coupling 

3 

FIG. 6. Illustration of the physical meaning of the coefficients for a down- 
going ion-cyclotron wave for large angle of propagation. 

for smaller K. In this case, coupling between the modes is 
characterized by As illustrated in Fig. 6, incident waves 
along mode II Tto = T=e -@3+ and the coefficients may be 
obtained as a series of two mode couplings.” 

For larger values of K we expand about the cutoff- 
resonance pair which arises near the ion-ion hybrid fre- 
quency. The coupling potential in (6) is 

Q=(d-K’s)/(r+f--K*). (46) 
After suitable definitions and algebraic manipulation,8’25 the 
potential is found to take the Budden form Q = ki( I- a/z). 
The transmission coefficients are well known 

T=e-“koaf”, R=(I-T)~, (47) 

In the limit of large K the potential approaches 

Q MC2 ( w2 - ci$> 
es= - 

co,‘, (o=-s2,2,)(W2-n,2,)’ 
(48) 

which exhibits a cutoff at the ion-ion hybrid frequency and 
a resonance at the oxygen gyrofrequency. Expanding s about 
the gyrofrequency, se o( 1 - kfa/2az) we find that the co- 
efficient factor is koa=@,+ = kta/2da in agreement with 
(29) af the previous section. 

Comparing both this result and the result for intermedi- 
ate K, we find that both coefficients are of the Budden form 
with transmission and reflection coefficients given by T and 
(1 -T)*, respectively. These results compare well with the 
form (37) and (41) which we obtained using the phase- 
integral analysis. In this analysis, we have three parameters: 
k,, kl , and a. These three parameters are sufficient to retain 
the location of the resonance (a,, ), crossover frequency 
(w,J, cutoff frequency Co,,), and ion-ion hybrid frequency 
(wii). Thus, in some sense we can form a uniform approxi- 
mation which retains the characteristics of the crossover and 
cutoff frequencies for small K but retains the characteristics 
of the ion-ion hybrid resonance for perpendicular propaga- 
tion. This linear approximation is good if the coupling is 
dominated by one or the other of the two coupling points, but 
if both coupling points are of significant importance, one 
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suspects that the linear approximation will fail for the phase 
integral approach, and Eq. (1) should be solved numerically. 

IV. NUMERICAL CONSIDERATIONS 

A. Basic equations 

In this section we solve Bq. (1) numerically. To proceed, 
we specify the dependence of the Stix functions (2) on posi- 
tion, z. For simplicity, we take the density to be constant and 
let the magnetic field vary as for a dipole field, 
finr,(z)Iw~L~Ix3= l/z3 where x is the physical coordinate. 
The differential equation has a regular singular point at the 
location of the plasma resonance, namely where z = 1. The 
solution to the differential Eq. (1) is multivalued and has a 
branch point at z =O. In order to retain the appropriate physi- 
cal behavior, we continue the solution above the pole in the 
complex plane.4 We refer the reader to a separate report9 
which contains the details and addresses the complications 
involved in these numerical calculations. 

B. Parameter regime 

In the following sections we determine the coefficients 
for several cases of incidence as described previously.-The 
parameters of greatest interest are the magnetic field, mag- 
netic field scale length, and the masses and densities of the 
various constituent ions. The masses are fixed parameters 
which we take to be hydrogen and oxygen (both singly ion- 
ized). The magnetic field and densities are embedded in the 
WKB parameter E and the functions Y and I depend only 
upon the density ratios. Hence, a particular solution is deter- 
mined from the specification of E and the concentration of 
the minority species 7. Typical values for the parameter E are 

1 .f3= -=0.5)--’ -1 
k&B 

P 2 (49) 

where I^ is-the scale length in earth radii (-1-3) and p is the 
number density of ions (-1-100 cm-3).27 We explore the 
parameter space for E ranging from approximately 0.2 to 
0.03. In this range, the WKB approximation is good and 
provides reasonable matching conditions to the WKB solu- 
tions. We concentrate on that range of oxygen concentration 
consistent with reasonable absorption levels. We have found 
this range to vary from 0.5% to 5%. In order to consider the 
limiting case of a large “gap” we take E to be small and 117 to 
be large. 

C. Incident magnetosonic waves 

For the results of this section, we impose the boundary 
conditions for downcoming magnetosonic waves as illus- 
trated in Fig. 4. In that figure a wave is incident on the 
magnetosonic branch with unit flux. The fractions of wave 
flux TM, and RMs are transmitted and reflected on the mag- 
netosonic branch while the fractions C&, and CL, are trans- 
mitted and reflected along the ion-cyclotron branches as in- 
dicated. 

We have obtained full analytical solutions for the limit of 
a large “gap.” In Fig. 7 we show the numerical solutions to 
the differential equation. Superimposed on the graph we 
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FIG. 7. Coefficients for the limit of a large “gap.” The numerical solutions 
are plotted in bold type and the analytical results are indicated in light type. 

have shown the analytical results (32) which we have ob- 
tained from a phase integral analysis consistent with a large 
“gap” for which there is no absorption. The results are in 
very good agreement. The most striking difference is that the 
coefficient CL, is nonzero in contrast to the analytic situa- 
tion. However, the analytical results only incorporate the ex- 
istence of the coupling point near the crossover frequency. 
Coupling between the two Alfvdn waves can be very strong 
at frequencies below the heavy ion-cyclotron frequency. It is 
this coupling which gives rise to the wave power found on 
the ion cyclotron branch. 

Even in the limit of a small “gap,” the analytical results 
are in reasonable agreement. In Fig. 8 we have plotted the 
coefficients for the case ~=0.2 and r=l%. For parallel 
propagation, no coupling occurs. As K increases, strong cou-’ 
pling between the two transmitted Alfvin waves occurs, and 
the sum of those coefficients reproduces the analytical trans- 
mission coefficient. This coupling is a result of the presence 
of both saddle points. For large K waves are reflected in the 
two upward propagating modes. The cutoff frequency in- 
creases substantially for large enough K and the “gap” be- 
comes too large to penetrate. In this case the reflection coef- 

FIG. 8. Coefficients for the case s=O.2 and r]= 1%. 
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ficient grows rapidly, and for ~-0.95 the magnetosonic wave 
no longer propagates (the wave is reflected at the lower- 
hybrid frequency well above the hydrogen gyrofrequency). 
For a substantial range of K strong absorption occurs peaking 
at 20% for large K. 

For smaller densities, the absorption increases to about 
25% although it tends to sharpen and occur mostly at large K. 
As the minority species density tends to zero, the transmis- 
sion coefficient, TM,, is approximately 1 and ail other coef- 
ficients vanish. This means, in effect, that for very small 
oxygen densities the waves propagate as if there were no 
oxygen present. 

For larger densities (7,7=5%) we find that the absorption 
diminishes rapidly although the waves still couple at low 
altitude. In addition, we find that total reflection occurs at a 
much smaller value for K. Absorption appears to be very 
small. However, one should keep in mind that in the case of 
a large gap all power upcoming in the LHCP mode will be 
absorbed. If perfect reflection were to occur at ionospheric 
altitudes, it is conceivable that a substantial portion of CL, 
would also be absorbed. 

For smaller values of E (=0.08) we find that less cou- 
pling occurs between the two downgoing transmitted waves. 
In addition, reflection is much stronger at intermediate values 
of K. This is because the “gap” contains more wavelengths 
and transmission is substantially diminished. Reasonably 
strong absorption still occurs over a vast range of K and is 
typically about 7%. It should also be noted that a substantial 
portion of the reflected wave C’& can also contribute to heat- 
ing upon reflection. For even smaller values of the parameter 
E (=0.03) we find that the absorption becomes negligible for 
‘I> 18, however, the absorption remains reasonably signili- 
cant for v=OS%. 

In summary, we have found that incident magnetosonic 
waves couple strongly near the crossover frequency for rea- 
sonable values of the minority species density. For larger 
values of K the waves are completely reflected, and strong 
absorption occurs over a substantial range of K. 

D. Incident ion-cyclotron waves 

In Fig. IO we have plotted the coefficients for a small 
“gap” with e=O.2 and v= 1%. For parallel propagation, the 
problem is describable as a Budden tunneling problem for 
the ion-cyclotron branch, and the ion-cyclotron and magne- 
tosonic branches do not couple. For small values of K the 
low frequency coupling point does not enter into the calcu- 
lation so the analytical analysis is quite accurate. As K in- 
creases, coupling between the downgoing modes occurs at 
the crossover frequency, and substantial wave energy is 
transferred to the coupled magnetosonic waves. The exist- 
ence of two dij2rent coupling points (low frequency and 
crossover-see Fig. 2) also leads to coupling between the 
transmitted and coupled transmitted modes. Substantial ab- 
WptiOn occurs over a very large range of K taking a value 
over 20% over most of the range. In Fig. 11 we explore the 

For the results of this section, we impose the boundary 
conditions for downcoming ion-cyclotron waves. For values 
of K smaller than the critical K for which the magnetosonic 
mode is cut off we determine these values numerically. For 
larger values of K we use the analytical results obtained ear- 
lier. In this section we obtain correct estimates of the absorp- 
tion for both small and large values of K, and we will discuss 
the meaning and correctness of evaluating the coefficients for 
intermediate K. 

1 ‘T”l”‘l”‘l”‘l”~. -C IC - 
R 

- c ic -- 
.e b -l 

First consider the coefficients for values of K smaller 
than the critical K for which the magnetosonic mode is cut 
off as illustrated in Fig. 3. A wave is incident on the ion- 
cyclotron branch with unit flux. The fractions of wave flux 
TIC and R,, are transmitted and reflected on the ion- 
cyclotron branches while the fractions C& and CL are trans- 
mitted and reflected along the magnetosonic branch as indi- 
cated. 

TIC -- 
/’ /- RK - .6 ,/’ 

- A,, ‘-- / 

^ 
----,. /- 
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.z - 
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We have obtained full analytical solutions for the limit of FIG. 10. Coefticients for the case ~=0.2 and v= 1%. 

FIG. 9. Coefficients for the limit of large “gap.” 

a large “gap.” In Fig. 9 we show the numerical solutions to 
the differential equation. Superimposed on the graph we 
have shown the analytical results (31) which we have ob- 
tained from a phase-integral analysis consistent with a large 
“gap” for which there is no absorption. As for the case of an 
incident magnetosonic wave, the results are in very good 
agreement. Again a small amount of wave flux is found in 
the coupled transmitted wave. 
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/’ T, --- 

I;IG. 11. Coefficients for parallel propagation with &=0.2. 

transmission coefficients for parallel propagation for s--O.2 
(for pyllel propagation the two modes are uncoupled so 
that Ctc = CL *= 0). As is clear, substantial absorption 
occurs over a large range of densities ranging from ~=0.5% 
to ?7=4%. For larger values of K, the absorption remains 
essentially the same as for parallel propagation up to reason- 
ably large VakXS of K. 

For large values of K, we have shown using a variety of 
methods that the transmission properties are described as a 
Budden tunneling problem at the ion-ion hybrid frequency. 
In Fig. 12 we have plotted in bold type the transmission 
factors found in Eqs. (37) and (41) along with the corre- 
sponding absorption factor. Physically, the coefficients corre- 
spond to Fig. 6. In Iight type we have plotted the transmis- 
sion factors obtained from the embedded differential 
equation (47). They are in good agreement in the regime in 
which they are both valid. It is to be noted that there is 
reasonable agreement between the transmission factor, T,, , 
near the upper bound of the numerical solution of Fig. 10 
and the large K solutions of Fig. 12. The absorption and 
reflection coefficients do not match well. While it is to be 
expected that the dominant WK.B solution would be continu- 

1 ,I , ,  1,1( , I , ,  , , , ,  ““,,‘“,‘,,,,;,,, 

.B : TIO -- /~<~~~~~~a~- .s -4 
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FIG. 12. Analytical approximations for the transmission coefficients for 
e=O.2 and q=l% at large K. 
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?1 

FIG. 13. Coefficients for large K with ~=0.2. Strong absorption occurs for 
0.5<7<5. 

ous in K it is not necessarily expected that the coefficient of 
the subdominant solutions would remain continuous. 

For large K the transmission coefficients approach a con- 
stant value determined from Budden tunneling at the ion-ion 
hybrid frequency. In Fig. 13 we plot the coefficients against 
the concentration of oxygen. As for the case of parallel 
propagation strong absorption occurs for a large range of 
densities ranging from ~‘0.5% to 17=7%. In all cases the 
absorption remains essentially constant for K> 1. For smaller 
values of E the region of strong absorption moves to smaller 
values of q. 

In summary, we have found that incident ion-cyclotron 
waves undergo Budden-like tunneling at the cutoff frequency 
for nearly parallel propagation and at the ion-ion hybrid 
frequency for nearly perpendicular propagation. The absorp- 
tion is very strong over a large range of K and for a reason- 
able range of 7. For intermediate values of K, coupling near 
the crossover .frequency becomes important and a substantial 
amount of wave power is transmitted in the magnetosonic 
mode. However, for large enough K, the magnetosonic mode 
is cut off and that wave power is reflected back into the 
system. 

E. Validity of analytic approximation 

The analytic results that were obtained in Sec. III and 
those obtained by Le Q&au and Roux’” are in excellent 
agreement for small and large K for which one or the other of 
the two saddle points dominate the mode-conversion pro- 
cess. However, for a small “gap” there is substantial cou- 
pling between the two downgoing modes resulting from the 
cutoff saddle point. The numerical results have the advantage 
of being able to retain both saddle points. It is also important 
to point out that the absorptions published by Le Q&au and 
Roux’” are somewhat misleading. They show strong absorp- 
tion for v-10%-50%. First, their approximation is only 
valid for densities less than 3%. Second, our results clearly 
show that absorption is at best Iimited to densities below 
about 5%. The reason behind this discrepancy is that they 
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have fixed the ratio of their tunneling factor, ?,?L,IX, so that modified if we include more physics into our analysis, but it 
the WKB approximation is actually not valid for 7 more than is certainly clear that substantial wave power is available to 
about 1%. heat minority species ions such as oxygen. 

V. CONCLUSIONS 

This mode-conversion analysis provides confirmation 
that equatorial waves are a viable source for ion energization 
along central plasma sheet field lines. In essence, we have 
shown that should waves reach the mode-conversion layer 
there can be substantial transmission and absorption. (This 
consequence is true also of any intermediate ion, such as 
helium, that might be encountered en route.) We suggested4 
that the bulk of the waves responsible for heating were ion- 
cyclotron waves generated near the hydrogen or helium gy- 
rofrequency. Typical values for the parameter E lie between 
0.2 and 0.03 along these field lines. The value of the oxygen 
to hydrogen density ratio is not well known, but a typical 
value of 5% or less is not unreasonable during a quiescent 
period. We have examined the absorption for these typical 
parameters and find that roughly lo%-20% of the incident 
waves can be absorbed. This finding is consistent with the 
previous ion-conic theory which supposes that roughly one- 
eighth of the observed wave power contributes to ion heat- 
ing. Essentially what we have shown is that waves do have 
access to the altitudes where the tonics are observed and that 
sufficient wave power can be absorbed to provide the ob- 
served ion energization. 

Although we have affirmed that power is available to 
heat the ions if the waves are incident from the equatorial 
region, we have by no means provided a complete descrip- 
tion of the absorption process. The mode structure and con- 
version coefficients are likely to be affected by thermal ef- 
fects (although these results should be good for an order of 
magnitude estimate). Perhaps more importantly, other physi- 
cal effects such as boundary conditions need to be consid- 
ered. As an example of the importance of boundary condi- 
tions, suppose we were to assume that waves incident on the 
ionosphere are completely reflected. Then in terms of the 
phase-integral analysis, we find trivially that for an incident 
upgoing ion-cyclotron wave from below the ion gyrofre- 
quency the amount of wave flux TIc=exp(- r/3+/~) contin- 
ues upward. Because this mode is completely subdominant, 
it couples to no other modes and hence, the remaining wave 
power is completely absorbed. Thus, for example, in if no 
absorption occurs, we would find that 60%-70% of the flux 
transmitted on the coupled branch as CL, would be reflected 
at the ionosphere and then absorbed at the oxygen resonance 
so that in actuality the coefficients which we have obtained 
serve as a lower bound. 

In sum, our results provide insight with regard to a lower 
bound estimate of the absorption near the resonance-cutoff- 
crossover frequency triplet. The results will be somewhat 
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