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Page 2 . Abstract

Stochastic Heating of lons in a Tokamak by RF Power
by
Charles Fielding Finch Karney

Submitted to the Department of Electrical Engineering and Computer Science on May 25, 1977, in
partial fulfillment of the requirements for the degree of Doctor of Philosphy.

Abstract.

The nonlinear interaction of ions in a plasma with waves excited by RF power near the
lower hybrid frequency is considered. The object of this study is to evaluate such an interaction
as a method of heating the ions in a tokamak. The problem is simplified by assuming the magnetic
field, 80' to be uniform and the lower hybrid wave (whose frequency, w, is much greater than the
lon cyclotron frequency, R,) to be propagating perpendicular to the magnetic field. It is shown
that trapping by the wave significantly increases the energy of the ions on a time scale of a few
cyclotron periods. For longer times the motion in a certain region of velocity space becomes
stochastic for fields satisfying EIBO > i(ﬂ,lw)mwlk (k is the wavenumber of the wave). The
stochastic region of velocity space extends from a lower limit given by w/k - VgE[mk (q and m are
the ionic charge and mass, respectively) where the ion dynamics are determined by trapping to an
upper limit which scales as E23, The stochasticity condition is independent of how close w is to a
cyclotron harmonic. These results are extended to the case of propagation at an oblique angle to
the magnetic field and to the case of inhomogeneous magnetic field. It is shown that stochastic ion
heating can be an efficient method for supplementary heating of the ions in a tokamak.

Thesis Supervisor: Abraham Bers
Professor of Electrical Engineering and Computer Science
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STOCHASTIC HEATING OF IONS IN A TOKAMAK BY RF POWER.

Chapter 1. INTRODUCTION.

Section 1.1. Overview of Problem.

The need for supplementary heating of tokamak plasma is well known (Artsimovich, 1972).
Its purpose is to raise the ion temperature from the 1 to 2 keV attainable by ohmic heating to
about 10 keV required for ignition. Injection lof RF power in the lower hybrid frequency range is
one of the heating schemes considered (Stix, 1965). This has the advantages that high power
(about 1 MW) sources at these frequencies are presently available, and that the power can be
easily brought to the wall of the tokamak by means of waveguides. Experiments using RF in
tokamaks have been carried out on ALCATOR (Richards and Parker, 1975), ATC (Hooke, 1975;
Bernabei ot al., 1976; Porkolab et al., 1977), and WEGA (Lallia ef al,, 1976; Blanc et al., 1976; Hess
et al, 1976). With all the experiments hot ion tails are observed; these ion tails decay very
rapidly after the RF is turned off. Only preliminary results were obtained with the experiment on
ALCATOR; this experiment is currently in the process of being revived. With the experiment on
ATC an ion temperature rise was observed, although, due to instrumental deficiencies, it was not
possible to establish its decay time accurately. A neutral beam injected into ATC as a diagnostic,
was accelerated from 25 keV to 32 keV in the perpondicul.ar direction when the RF was turned on.
This indicated that the RF was able to to penetrate into the center of the plasma, and that it was
able to couple strongly to the beam. With WEGA the ion temperature rise was more definite,
increasing by a factor of 2 in some cases. The ion temperature decayed over a time of several

milliseconds.

In this thesis we will deal with a theoretical aspect of the problem of RF heating.
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Specifically we ask the question: What is the interaction of ions with the lower hybrid waves?
Since lower hybrid waves generally satisfy k, * k, and @ > R, we begin by looking at the
nonlinear motion of a single ion i.n uniform magnetic field and a perpendicularly propagating
electrostatic wave whose frequency Is much above the ion cyclotron frequency. The equations of
motion exhibit some Interesting properties. Over a small portion of the Larmor orbit (times short
compared with the cyclotron period) the ion behaves as though it were unmagnetized, so that
trapping of the same sort that occurs without a magnetic field can occur, as long as the particle’s
velocity equals the wave phase velocity. Although the magnetic field eventually detraps the
particle, the particle’s energy may be significantly increased. An estimate of the energy exchange
can be made on the basis of this physical picture. The effect of trapping in this problem has also
recently been discussed by Sugihara and Midzuno (1976), but they consider much larger field

amplitudes.

In order to be sure that this energy is gained irreversibly, we next numerically compute the
motion over many cyclotron periods. What we find is that the motion in a certain region of
perpendicular velocity space becomes stochastic above a threshold field. The stochasticity
threshold is found to be independent of how close w is to a cyclotron harmonic. This should be
contrasted with the results of Fukuyama et al. (1977) which are only applicable very close to a
harmonic. In order to derive the threshold analytically we cast the problem in terms of a
Hamiltonian. The effect of the wave is to cause a nonlinear shift in the cyclotron frequency, which
depends on the particle’s speed, so that the cyclotron frequency becomes a rational fraction of
the wave frequency. This resonance causes islands to form in phase space. As the amplitude of
the field is increased these islands grow and increase in number leading to overlap and stochastic
behaviour. By finding the nonlinear frequency shift analytically and by investigating the motion

numerically we are able to derive an analytic expression for the stochasticity threshold.

In order to apply these results to lower hybrid heating in tokamaks we include parallel

propagation of the wave as a perturbation. We are able to show how our results match to those
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of Smith and Kaufman (1975) for an obliquely propagating wave. We also consider an
inhomogeneity in the magnetic field as a perturbation and show that for tokamak magnetic field
configurations this does not affect our results. We examine the role of collisions in channelling the
energy gained by tail particles due to be stochastic heating into the bulk ion distribution. Finally
we discuss the ways in which our results may used to design a lower hybrid heating experiment.
We find that the field required for the motion to be stochastic is quite moderate, but that the
requirement that the heating not occur too far out on the tail of the ion distribution means that
the frequency of the wave must be quite close to the maximum lower hybrid frequency in the

tokamak.

Section 1.2. Previous Work.

We briefly review some of the work on the basic theory of lower hybrid heating. The

previous work on ion heating and stochasticity is covered in more detail.

The suggestion of using RF power near the lower hybrid frequency was first made by Stix
(1965), who gave the conditions under which such power could penetrate the plasma. This
accessiblity condition was refined by Briggs and Parker (1972), Golant (1971), Troyon and Perkins
(1974), and Theilhaber (1976). A detailed analysis of the coupling to RF power in waveguides to
plasma waves has been made by Brambilla (1976), although a thorough treatment of the waves in
the very low density region of the plasma is still required. The effects of the tokamak geometry
on the penetration have been studied by Kulp et al. (1976). These studies consider only linear
effects; however, in order to heat the plasma effectively large amplitude waves must be used. In
fact, it turns out that nonlinear effects can significantly affect the penetration of lower hybrid
waves. Morales and Lee (1975) and Bers ot al. (1976b) have considered the filamentation of the
lower hybrid rays. Decay into quasi-modes (Berger and Chen, 1976; Sen et &/, 1977) may also

play an important role in the penetration problem.
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Stix (1965) suggested that the lower hybrid waves would convert near the lower hybrid
resonance layer to an ion thermai wave which would damp (and heat the plasma) by linear
processes. This idea has been pursued by Glagolev (1972) and Simonutti (1975). This wave
conversion is primarily a finite ion temperature effect. One effect of finite electron temperature is
to cause the lower hybrid wave to decay by Landau damping. This has been proposed as a
heating mechanism by Bers et al. (1976a). In additition there have been a number of studies on
the possibility of heating by parametric decay products (Kindel et al., 1972; Porkolab, 1974; Bers
and Karney, 1974). A detailed examination of the role of parametric instablilities on the problem

of penetration and of heating still remains to be done.

We turn now to the work on ion heating. Linearly a wave propagating at a steep angle to
the magnetic field suffers cyclotron harmonic damping only if its frequency is close to a cyclotron
harmonic. In a tokamak the magnetic field is inhomogeneous and so the lower hybrid ray crosses
a few cyclotron harmonics as it penetrates the plasma. Eldridge et al. (1975) considered such a
situation, and found the damping of the lower hybrid wave as it crosses the cyclotron harmonic
layers by solving for the linear motion of an ion. Antonsen and Ott (1976) considered a similar
problem but treated the waves more exactly. They showed that the integrated effect of the
wave's crossing many cyclotron harmonic layers is the same as if the wave were suffering linear
Landau damping in an unmagnetized plasma; however these conditions are unlikely to be met in a

tokamak.

This thesis examines the interaction between a lower hybrid wave and the ions in more
detail. Specifically we consider the nonlinear motion of an ion in a magnetic field and a lower
hybrid wave. The motion of a particle in various field configurations has been investigated for
many years. In the absence of a magnetic field the motion of particles in a single finite amplitude
electrostatic wave is well known (O'Neil, 1965). There are a class of particles that are trapped in
the potential trough of the wave. For times shorter than the bounce time of the particle in the

wave, this leads to Landau damping; for longer times trapping serves to limit the damping
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decrement of the wave. The next most simple case to consider is the motion of a particle in the
presence of a finite amplitude electrostatic wave travelling at an angle to a constant magnetic
field. The equations of motion in this case cannot in general be solved exactly. Various
approximations have been used to make the equations tractable. For instance Aamodt (1970)
makes the approximation that the Larmor orbit is not grossly perturbed over one cyclotron orbit.
A similar restriction is made by Sigmar and Callen (1971), Timofesv (1974), and Schmitt (1976)
who in addition concentrates on the long wavelength limit. A somewhat different approach is
taken by Sugihara and Midzuno (1976), who consider a large amplitude wave. They show that the
. process of trapping and detrapping of a particle in the trough of the electrostatic wave can result
in a large exchange of energy. However the fields they consider are so large that their results
sre inapplicable to the case of lower hybrid heating. One of the important results that we shall
present here is to show that trapping can indeed play an important role in the short time
behaviour of the particle.

In contrast with the studies described above, which seek to find an approximation to the
orbit of the particle, is the work of Smith and Kaufman (1974). They look instead at more general
properties of the system, and they show that even though the wave is coherent the particle
motion can be stochastic if the amplitude of the wave is large enough. Unfortunately the
threshold for stochasticity that they give is infinite for waves propagating exactly perpendicularly
to the field, and is very large for lower hybrid waves that propagate nearly perpendicularly.
Fukuyama ef al. (1977) consider the case of a perpendicularly propagating wave whose frequency
is very close to a cyclotron harmonic and show that the motion is stochastic at a finite amplitude.
These results should be constrasted with those of Dum and Dupree (1970) who consider

"resonance broadening” effect of the motion of a particle in a randomly phased wave.

There are a number of examples from the field of plasma physics, in addition to the two
cited above, where a coherent system can produce stochastic motion. Jaeger ef al. (1972) and

Lisberman and Lichtenberg (1973) found this to be the case for electron cyclotron heating in



Page 10 ~ Section 1.2

mirror machines. In this case the inhomogeneous magnetic field in a mirror machine plays an
important role in randomizing the particles phase with repect to the wave. Other examples are
the particle motion in two electrostatic waves (Zaslavskii and Filonenko, 1968), magnetic braiding
(Rechester and Stix, 1976) and particle motion in a modulated magnetic field (Dunnett et af, 1968).
Since this is a relstively unfamiliar subject, we give a brief description of the origin of

stochasticity in Sec. 4.3.

The work in progress towards this thesis thesis has been reported in Bers et al. (1975),
Karney et al. (1975), and Karney and Bers (1976a, 1976b, 1976¢, 1977a, 1977b).

Section 1.3. Outline of Following Chapters.

In this thesis we will examine the interaction of lower hybrid waves with the ions in a
tokamak. We wish to determine whether this interaction can lead to ion heating. We begin by
making four simplifying assumptions which we make use of in the next two and a half chapters.

They are:

1. That the wave may taken as propagating perpendicular to the magnetic field.
2. That the wave is uniform,

3. That the magnetic field is homogeneous.

4. That the ion doesn’t act back on the wave.

These assumptions allow us to study a much simpler problem: the interaction of a single ion with
@ perpendicularly propagating electrostatic wave in a homogenous magnetic field. We will examine
these assumptions later when applying our results to the problem of ion heating in a tokamak.
This simpler problem is tackled by three methods: iterating the linear solutions, numerical

integration of the orbit equations, and the Hamiltonian formulation.
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Chapter 2 deals with the orbit equations and their linear solutions. In Sec. 2.1 we derive
the equations describing the motion of an ion in a homogeneous magnetic field and a uniform,
perpendicularly propagating, electrostatic wn#o. We summarize the standard linear solution to the
orbit equations in Sec. 2.2 and derive an alternate form for the linear solution, that allows the
unperturbed orbit to be corrected every cyclotron period. In Sec. 2.3 we show how this alternate
form may be physically interpreted in terms of the zero magnetic field wave particle resonance.
In Sec. 2.4 we present the results of numerically iterating the linear equations, with the corrected
orbits, and show that when the field is sufficiently large, particles with a perpendicular velocity

larger than the phase velocity of the wave may be accelerated.

In order to verify the results of Chapter 2, we look in Chapter 3 at the results of
numerically integrating the exact orbit equations. Two interesting phenomena are discovered. In
Sec. 3.1 we show that trapping of the particle by the wave can lead to significant energy
exchange between the particle and the wave on the time scale of the cyclotron period. Estimates
of the energy exchange based on simple physical considerations are given. In Sec. 3.2 we look at
the behaviour of the orbit equations over many cyclotron periods, and find that the motion in

certain regions of velocity space can become stochastic.

In Chapter 4, we formulate the problem in terms of its Hamiltonian. This enables us to
derive an analytic expression for the stochasticity threshold observed in Sec. 3.2. We derive the
Hamiltonian in Sec. 4.1. In Sec. 4.2 we derive the integrals of the motion for the case where the
electric field is small. In Sec. 4.3 we discuss the origins of stochasticity in Hamiltonian systems,
with specific reference to our problem; in particular we trace the relation between stochasticity
and island formation and growth. In Sec. 4.4 we derive the conditions for island formation, and
from them the stochasticity threshold. Section 4.5 examines to what extent our results hold when
we include parallel propagation of the wave. We show how our results tie in with the results of
Smith and Kaufman (1975) for oblique propagation. Lastly Sec. 4.6 deals with the inclusion of a

weak magnetic field inhomogeneity, where we show that our results are valid for the magnetic
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fields typical in Tokamaks.

In Chapter 5 we examine how our results may be applied to the problem of heating a
tokamak plasma with RF power near the lower hybrid frequnecy. In Sec. 5.1 we present the
results of a numerical simulation of a group of particles. This establishes that the stochastic
motion analyzed in the previous chapter does cause particles to get heated. For short times it is
shown that the amount of heating in determined by trapping. In Sec. 5.2 we look at collisions.
Their effect is to convert the tail heating caused by the wave into bulk heating. The time scale of -
this is derived. In Sec. 5.3 we discuss some aspects of the design of a lower hybrid heating

experiment, which seeks to utilize stochastic ion heating. Section 5.4 is the conclusion.
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Chapter 2. ORBIT EQUATIONS AND THEIR LINEAR SOLUTION.

Section 2.1. Derivation of Orbit Equations.

For the major part of this thesis we will assume that the magnetic field is uniform and that
the RF field propagates perpendicular to the magnetic field. (We will examine both of these
assumptions later in the light of our results.) Thus we consider an ion in the presence of a

magnetic field,
B=8_t, (2.1.1)
and an electric field,
E= Eoicos(ky -t - ¢). (2.1.2)
The equation of motion of such a particle is given by the Lorentz force law,
av

9 " %[E +vxB]= g[l:'ofcos(ky ~ot-¢)+v xBo'i]. (2.1.3)

If we normalize time to !, length to k", and velocity to /k, then (2.1.3) becomes

% = af cos(y - ot - ¢) + v xi, (2.1.9)
where
» =0/, (2.1.5)
and
qkE,  E,/B,

am= ";{f - Tﬂk_o' (2.1.6)
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Teking the x and y components of (2.1.4) we obtain
X=y, (2.1.7)
ys= -k-racos(y-vt-ti. (2.1.8)
Integrating (2.1.7), and suitably choosing the orgin of y we find
k=y, (2.1.9)
and s0 (2.1.8) becomes
Y+ y=acos(y -t -¢). {2.1.10)
Equations (2.1.9) and (2.1.10) are the orbit equations for the ion.

The orbit equations obey an energy conservation law, which we will now derive. We make
use of this law in the numerical integration of the equations described in the next chapter. We

begin by making a Galilean transformation to the frame of the wave,
y =y-ot. (2.1.11)
Then (2.1.11) becomes
Y +y =acos(y’ -¢)-vt. (2.1.12)
Multiplying through by y° and integrating we find
4% + by® - asinly” - ) + v tat = const. (2.1.13)

Going back to the original frame and integrating the last term in (2.1.13) by parts and using (2.1.9)

we obtain
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Kis -2 + Li2 - asin(y - vt - §) - vx = const = €. (2.1.14)

The first two terms in (2.1.14) are the particle’s kinetic energy in the wave frame. The third term
is its potential energy in the wave trough and the fourth term its potential energy in the constant
electric field obtained by transforming the magnetic field to the wave frame. Thus we identity £

with the total energy of the particle in the wave frame.

Section 2.2. Linear Solution of Orbit Equations.

Many important properties of plasma waves may be found from the linear solution of the
orbit equations (2.1.9) and (2.1.10). Most importantly we may find the energy transfer between
infinitesimal amplitude waves and a distribution of ions. This result is also embodied in the ion

susceptibility as derived by Harris (1961)

w? = J ARV, /R roq Of S,
0 o .
- 2 o e [ 5 ) 2z

From this we may write down the power gained by the ions, P, (Bers, 1975)
P = e iE? Sy, (222)
where we find IM(x) by writing
Smi(ky, - o + )] = w8o - M - k). (2.23)
This tells us that only particles obeying the resonance condition

- ky, = m  (224)

can gain energy from the waves. With m = O the mechanism for energy gain is the same as in the
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Landau problem (with zero magnetic field). For m ¥ 0 we see that the Doppler-shifted frequency
is an integer multiple of 2. If the wave is propagating perpendicular to the magnetic field, it will
oxperlence heavy (in fact, infinite) damping only if ® = nf2 (n, an integer). (However the real part
ol‘ the susceptibility is singular in this case so such a wave cannot exist in a homoaaneous plasma,
unless it is driven. Also there are physical effects, not accounted for in this model, which can Iimit
the damping. In long wavelength systems, e.g. cyclotron accelerators, relativistic effects cause a
change in the cyclotron frequency. In our problem the wave has a short wavelength and this
causes nonlinear effects to be important.) These results are given more physical foundation if we
look at a single particle obeying the linearized orbit equations. Also we are lead to analyse these

equations, for they give valuable insight into the nonlinear equations (2.1.9) and (2.1.10).

In order to linearize (2.1.9) and (2.1.10) we first solve them with @ = O (Eg = 0). The

solution to this problem is
X = xo(f) = -r,cos(t - ¢, o)r ¥ = Yolt) = rysin(t - ty) (2.25)

where ro and to are constants. The linearized equations are then obtained by substituting y =

¥o{0) in the right hand side of (2.1.10) to give

Y+ y = acos(rysin(t - ty) = vt - ¢) (2.2.6)
=a I _J(r)cosl(m- vt - § - mt], 22.7)

where we have made use of eq. 9.1.41 of Abramowitz and Stegun (1964). We can now

straightforwardly solve for y and obtain
y = +rgsin(t - t)

tal Lysq (1-(m- v)2]-‘J.(ro)c05[(m -0t - ¢ - mty)
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ral, . dtIlrsinlt 7 (6 + mt)). (2.2.8)

The first term on the right hand side of (2.2.8) is yo(t), the unperturbed solution, and the
remaining terms of the contributions due to a. If v is not an integer then the last term is zero,
and y Is bounded for all time, leading to no time-averaged energy exchange between the ion and
the wave. However, if » = n, an integer, the last term in (2.2.8) is unbounded as ¢ -+ . In this
case all the particles in the ion distribution function will be exchanging energy with the wave,
leading to the 3 function dependence of the power dissipsted on frequency. It is clear in this
case, that if a is finite that the linearized solution is valid only for a finite time. We will postpone
an snalysis of the limitations of linear theory until we have solved (2.2.6) by an alternative

method.

The alternative approach to solving the linearized equations avoids Fourier transforming the
driving term. Instead we use the method of variation of parameters to express the solutions in
terms of integrals. These integrals are known if we integrate over one cyclotron period. Thus if

klh

we know the particle’s position and velocity at the beginning of the k™ cyclotron orbit, we can use

this solution to compute its state at the beginning of the (k + 1) orbit. This process can then be
repeated. We will define the beginning of the K™ cyclotron orbit as being when the particle

satisfies
yot y=0, x=n. (2.2.9)

At this point the interaction between the particle and the wave is minimum, since the quantity

lo = k - v|] (in normalized terms [» - j) is maximum.
We begin by writing (2.2.6) as a set of coupled first order equations

X =A-X +F(®). (2.2.10) .
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v -10 ft)
X-L R A-F 0 0], Fih=]0 |, (2.2.11)
010 0 '

and A?), the driving term, is the right hand side of (2.2.6). Note that v = j. We take for the

where

unperturbed orbit [F(t) = 0]

' volD) rcos(t - t)
X Xo(t) - [:o(t)] - [Gsin(f -t) ], (2.2.12)
o(t) -r.COS(f - f)

$0 that the k' unperturbed orbit lasts from tk -xtot, +m ¢ is the time at which the ion is at

the “top" of its unperturbed orbit (see Fig. 2.2.1). Then A1) is given by
1) = acos[rsin(t - t) - vt - ¢]. (2.2.13)

Transforming the time origin to ¢, using

tet-t, (2.2.14)
we have
r*cosr’
X (t') = | nsint” |, (2.2.15)
-r.cosf’
and
Rt’) = acos[y (') - vt’ - 7,] = acos(rsint’ - vt" - 7)), (2.2.16)
where
™" (vf. + é)m 2 (2.2.17)

We wish to determine the position of the particle at time ¢’ = 7 in terms of its position at time -w.

We can write this result formally as
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t-g-r

------

tmty,, -7 t=ty+w

Figure 2.2.1. Integration along the k'® unperturbed orbit. The dashed line is the unperturbed
orbit and the solid line the result of the integration (schematically). The dotted line extends the

&™ orbit to the beginning of the (k + 1)™ orbit.
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X(t" = 1) = X (1) + Gm) - [ [GAT' -Fir)dr, (2.2.18)

where X(-n) is given by (2.2.15) and G is the fundamental matrix of independent solutions to the
homogeneous equation X = A-X. Thus we may take

cost’ -sint” O
G(t’) = | sint’ cost’ 0].
-cost’ sint’ 1

(2.2.19)

Making use of eq. 9.1.22 of Abramowitz and Stegun (1964) the integrals in (2.2.18) may be

evaluated to give

WE = %) = -1, - chosyk[%Jv(r‘) - S0em) 14 1) + iap+1);]. (2.2.20)
Wt = 3) = - 2masing, [4,75) - SL L g-1) - Jowe1], (2:2.21)

Xt” = %) = 1, + 2nacosy, [:*—;—'-J,(r.) - S0 g-1) - Qo) + Jowe1)]],  (2222)

where
Qn) = [ exp(-r,sinhs - ps)ds. (2.2.23)

If » » 1 we can asymptotically expand the terms multiplying sin(ew)/x (in small [Ts) in (2.2.20),
(2.2.21), (2.2.22) and so show that these terms are equal to

!, (newr?, (g en, (2.2.24)

respectively. Since these terms are multiplied by sin{vx), They do not contribute when » is an
integer. Also the quantity (, + ») is the difference in the velocity of the particle and the phase
velocity of the wave at the beginning or end of a cyclotron orbit. Thus we interpret these terms
in the expressions for X(¢’ = 7) as being th§ oscillations of particle under the influence of a wave

travelling ('ir + ») faster than it, which arise because the particle does not experience an integral
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number of wave periods in a time 2r. Since we are interested obtaining a estimate for the
unperturbed (k + 1) we do not wish to include these contributions when computing T ol and

th ' Thus for our purposes we may write (going back to the original time)

Wit, + ¥) + 1, = - 27acosy, f;.:,(.p, (2.2.25)
A, + 7) = - 2rasiny, J,"(n), (2.2.26)

r* +p
xt, + ¥) - r, = + 2racosy, n VA(AR (2.2.27)

We may define r, ., and t, , , by extending the k' orbit to y = 0 assuming « = 0 (Fig. 2.2.1). Then

we find
wE, + 7))
-] k
tkol - f. + 27 + tan [m . (2.2.28)
feoy = [t + 12+ it + M2, (2.2.29)

Expanding (2.2.28) and (2.2.27) in the limit of a small (the only limit in which we are justified in

integrating along unperturbed orbits) we obtain

bhoy=ttor- 210%; siny, J,"(n). (2.2.30)
Nl "h*t 21«;’; cosy, J,(n), (2.2.31)

Because we are primarily interested in the evolution of the wave-particle system, we find it useful
to use only quantities that define the state of the system, without regard to the time at which the
system is at that state. Thus instead of the time at which the particle is in the middle of its Kt

orbit, t,, we will use the wave phase, 7,, at this point as defined in (2.2.17). From (2.2.30)

ooy =7+ 2m - 2:«} L AVR((3) Iy (2.2.32)
k
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Equations (2.2.31) and (2.2.32) constitute a set of difference equations, which may be easily
iterated to give us an understanding of some of the basic properties of the orbit equations.
Before turning to the solution, we investigate an impulse model that enables us to derive (2.2.31)
and (2.2.32) by considering only the interaction of the wave and the particle when they are in

resonance.

Section 2.3. Interpretation of Linear Solutions.

It is often supposed that @ » R (v » 1) is a sufficient condition for regarding the ions as
being unmagnetized. While this is not so, it is true that phenomena that occur over a time short
compared with the cyclotron period can be correctly treated by assuming that the magnetic field
is zero. We will use this fact to re-derive (2.2.31) and (2.2.32) from a more physical standpoint.
We do this by approximating the force seen by the particle as a deita function whenever the
particle passes through (or close to) = v (» = k-v), the zero magnetic field wave-particle

resonance.

We consider two cases: InCase I,r, <vorrn =v (Fig. 2.3.1). The largest kick the particle
will receive is at t = t,, when the particle is closest to be in resonance with the wave. As in the
previous section we shift the time origin to ¢,, so that the unperturbed orbit is given by (2.2.15)
and the force due to the electric field by (2.2.16). Expanding the y (t") appearing in (2.2.16) in a

Taylor series about t’ = 0 we obtain
y = - sint’ + acos(nt’ - {fkf'a -t -q). (2.3.1)
Integrating once we find

Y= ncost’ + f_': cu::m[*r,lf'3 +-nt'+ 7.] dt’. (2.3.2)
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Figure 2.3.2. Illustration of the kicks, 8, , received by the ion when r > » (Case II).
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The argument of the cosine is most slowly varying (for » - r, 2 0) at t"= 0. Thus the largest
contribution to the integral comes close to ¢’ = 0 and we may approximate the integrand in (2.3.2)

by A, ¥t’) where
A - I_: cucos[%r.,l"3 +(v - pt’+ q)dt’
= 2racosy, (/27 'R Ail(n /2w - ). (23.3)

where Ai is the Airy function and we have used eq. 10.4.32 of Abramowitz and Stegun (1964).
Thus before the collision with the field (¢’ < 0) the orbit is given by (2.2.15), and after the collision
(¢’ > 0) by

veln+Adcost’, y=(n+A)sint’. (23.9)

We use (2.3.4) to compute the (k + 1)™ orbit variables, (2.2.17),

ot ™t Ao (2.35)
Yooy = W+ 2m) o0 ' (2.3.6)

For Case I, we take n>v (Fig. 2.3.2) so that the particle is in resonance with the wave
twice every cyclotron orbit. Again chosing the time origin as in (2.2.14), the particle collides with

the wave at
t = t;, = 2cos”(v/r). (23.7)

Taylor expanding the unperturbed orbit yo(t’) about r;t and substituting into the expression
(2.2.16) for the force due to the electric field we see that

At) = acos{xln? - A1 - Y7 - 1 D) - vy, -0}, (23.8)
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near {“= f,,. The stationary phase points in (2.3.8) are at t" - #,;

approximate this force by Bu: 5t - t;* , where

Byy = [ weosl(r” - V)AL - Jt%) - wtiy - )

= VZra(n? - v cosl(n? - v1)/2 - Jo = iy, + 7))

The differential equation describing the ion’s orbit becomes
y+y=8 _4t"-t,)+B Ut'-t,),
with initial conditions that for ¢* < f:_
HALt’) = neost”, At’) = rsint”.
Equation (2.3.10) is readily integrated to give for >t

Y= rlolsm(t - tkol)’
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so as in Case | we

(2.3.9)

(23.10)

(23.11)

(2.3.12)

where we use the subscript k + 1, because the electric field has no further effect on the ion until

the (k + 1)“‘ orbit, and where for small

r2 - )2
t

X
ko1 "l t2m e ,.z (B, - B,

and the new orbit is defined by

| 4
rk.‘ .r.."' Fk(B"‘ "Bk_)!

r2 . 212
Mear = t2m+ . 2 W8y, = By Mnod 20
A

where from (2.3.9)

(23.13)

(23.14)

(2.3.15)
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By, * 2‘/_—' -1/ 7 Z?:[('* 2 - veos” [ ] S @ale)

It is readily confirmed that (2.3.14) in the limit n, - » « v agrees with (2.35) in the limit of 1
«n-v<Ey [the asymptotic expansion of Ai (eq. 10.4.60, Abramowitz and Stegun, 1964) is
needed). Furthermore by expanding in Bessel function in (2.2.31) in the limits , ~ v and 7, > »
(equations 9.3.23 and 9.2.1, Abramowitz and Stegun, 1964), we can recover (2.3.5) and (2.3.14).
From (2.2.32) we can recover (2.3.15) but not (2.3.6); in order for Case I to give (2.2.32) we

would have to approximate the force by an impulse at ¢/ # 0.

We can now appreciate the dependence of (2.2.31) and (2.2.32) on r, (Fig. 233). For n >
there is an oscillatory dependence through the Bessel functions. This is due to the fact that the
particle passes twice through the resonance region v = », sampling different phases of the wave.
By the beating of the kicks the particle receives we can explain the oscillatory nature of (2.2.31)

and (2.2.32). Aside from the oscillatory behaviour there is an overall ,41 2

dependence for r, > ».
A factor, rk"" 2. enters through the Bessel functions, and describes the reduction in the kicks, 8, ,,
that the particle exporiencos as increases, because it spends less time close to resonance. An
additional factor, r, , is geometrical in origin; as r, is increased, it enters (2.2.31) because the
kicks are closer to being perpendicular to the particle’s velocity and it enters (2.2.32) because
they change the direction of the velocity less. For 7, = » the particle spends the maximum time
close to resonance corresponding to the maxima of the Bessel functions. For n<v the particle
never passes through resonance, and the exchange energy between the particle and the wave is

very small, as witnessed by the exponential decay of the Bessel functions when their argument in

less than their order. We will concentrate therefore on the regimes r, = v and r, >
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Figure 2.3.3. The field dependent contributions to the change in the particles velocity and phase
[see (2.2.31) and (2.2.32)] The phase factors have been omitted.
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Section 2.4. Iteration of Linear Solutions.

We pass now on to the solution of the difference equations

ot ™t 2ra’ cos'r* RN (2.2.31)
Veoy = [, ¢ 20 - 2m;’; $inY,d, (] og 20 (2.2.32)

Firstly we will see how the "true” linear solution (2.2.8) may be recovered. To do this we
must integrate along the original unperturbed orbits for all time, instead correcting the
unperturbed orbits each cyclotron orbit as is implied by (2.2.31) and (2.2.32). The unperturbed

orbits are found by solving the difference equations with a = 0, in which case
o= "xo = (79 + 27K8) oy 20 (2.4.1)
where
v =n + §(n, an integer, 3] < i), (2.4.2)

and where the second subscript O denotes a true unperturbed orbit. These are plugged into the

term proportional to a in (2.2.31) to give

foot = T = 27aCOSY, o %J,(ro); (2.43)
thus
> 0
rL=-r,= r -r_=2xa—J/(r,) COSY_ .- (2.4.4)
k 0 .-onol [ ] rovo._o m0

We can perform the sum in (2.4.4) obtaining .

k-1 kcosy, for8=0

- : (2.45
.z.:oco”*' 0 [ﬂc [¢'To (1 - 6281 - o278)) for 3 4 0 )
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This illustrates the origin of the secular growth in the velocity of the ion for 3 = 0, that we
observed in (2.2.8). It arises because during each cyclotron orbit the particle sees the wave in
exactly the same phase (7,‘ = constant). Thus all the kicks the particle receives are in phase and
equal, leading to a linear growth (or reduction) of the particle’s orbit. For 3 # 0, r, - r, oscillates

about some mean value with the amplitude of oscillation being

| 4 L.
;;Jv(r‘o) et B (2.4.6)

This results, of course, in no time-averaged energy trasnfer.

These results we useful because they enable us to understand the estimates given by
Sigmar and Callen (1971) for the breakdown of linear theory. Linear theory consists of
integrating the particle’s motion along its unperturbed orbit. It is inaccurate, therefore, if the
force computed along the unperturbed orbit differs substantially from that along the true orbit.
Since we do not know the true orbit of the particle we will instead compare the true linear
equation (2.4.3) with the interated linear equation (2.2.31). Two things can happen to make these
two equations give different results. Firstly J (r,) can become significantly different from J (r,)
(e.g. it can have the opposite sign). The amount r, has to change by in order to make a difference
Is roughly J(ro)/J,"(roh thus linear theory breaks down if the magnitude of the oscillations in r,
predicted by linear theory (2.4.6) exceeds this amount, i.e.

r  sin(nd
a> m | (2.4.7)

The result quoted by Sigmar and Callen (1971) differs from (2.4.7) in thet J, appears in place of
J, . This is because they estimated the scale length for J, to be unity rather than our more

accurate expression, Jv/Jv"

The second possibility is that 7, can differ sufficiently from o in which case the
oscillatory nature of the sum in (2.4.4) is destroyed. This is possible if the electric field is
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sufficient to make Teer ™ Mo for then successive kicks given the particle could be in phase,
leading to a similar secular behaviour as is seen when 8 = 0. From (2.2.32) the condition for this

to happen is (teking the siny, term to have a magnitude of 1)

a> IF:FS s|. (2.4.8)

the same as (2.4.7) in the limit 3 « 1, and approximately the same as (2.4.7) for all 3 (s i).

The major defect of the linear theory is that it uses information (embodied in the
unperturbed orbit) which becomes progressively more and more out of date, as the particle is
driven away from its unperturbed orbit by the field. This defect is corrected by the difference
equations (2.2.31) and (2.2.32). Here we only continue the integration along an unperturbed orbit
for one cyclotron period, before computing a new "unperturbed” orbit. Figures 2.4.1-4 give the
results of numerically solving the difference equations for » = 30.23 and various e The initial
conditions r, 7, are the same in all these figures. (Note that r, > », so that we are in the region
where the Bessel functions oscillate.) For a = 0, the orbit lies on the line n=rq The phase, 7,,
increases by 2x3 each orbit. For low a (Fig. 2.4.1), the dominant effect is still the increase of 7,
by 23 however now the velocity of the particle keeps changing until its velocity is such that
Jre Iv, o = O (at which point , |, = r*). (jv, o 15 the m™ zero of J,) These velocities, j”' ’
constitute the stable orbits for the difference equations, since if the velocity is perturbed slightly
from one of these values it will drop back to it. In fact r, , will only be closer to jv. o than n if
€087,J,"(j, ) < O, which is only true for half of the possible values of 7, (37 < v, < 37 in Fig.
2.4.1). However since 7, is continually changing the particle never samples the unstable regions
of /N long enough for the orbit to be unstable. These orbits remain stable until the field given in
(2.4.8). Figure 2.4.2 shows the picture at a = 3.2 [the right hand side of (2.4.8) equals 3.07, for
the revelent zero of the Bessel functionl What has happened here is that the difference
equations have developed two fixed points (r,“I = Yoo = T ), shown in the figure. [Recall that

(2.4.8) was derived by requiring that 7,  , = 7] In principle a particle starting at one of these
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Figure 2.4.1. Iterations of the difference equations (2.2.31) and (2.2.32) for a particle initially at r
=ro=39andy=7,=n [marked by a cross (x)} In this plot » = 30.23, @ = 0.3, and the particle
is followed for 1500 orbits.

44 r

Fixed points

= x
38 1 , 1 | ]
0 v 2x

Figure 2.4.2. Same as Fig. 24.1, but a = 3.2,
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fixed points remains there forever. However one of these fixed points (the left one in this case)
is always in the range of Y which is unstable to perturbations in N and now the particle remains
long enough in the unstable range for the instability to take effect and for r, to drift away from
j,’ i8S is evident in the figure. (The other fixed point is also unstable, but to perturbations in v,
rather than Q.) The particle eventually is carried into the stable range of 7,, so that it recovers
from the instability and the orbit forms a "loop” which falls back to jp' o Particles with different
initial positions form loops either at the same place as shown in the figure or at some other fv, m’
and the loop will enclose y = {»ﬁ or %ﬂ, depending on whether Jv’(jv. o is positive or negative.
Figure 2.4.3 gives the picture at a slightly larger field. The loop has grown substantially. At a =
45 (Fig. 2.4.4) the loop has grown to such an extent that it has “collided” with the neighbouring
loops at fv, 1 and jv,a' Whereas at lower fields the particle couldnt leave its loop, it can now be
temporarily captured by other loops allowing it to hop between loops and to move much larger
distances in velocity space. In this case, it eventually wanders down to r < », where the Bessel

functions are exponentially small, where it gets "stuck.”

Obviously the field at which the loops collide is significant in that it gives the field at which
there can be significant energy exchanged between the particle and the wave. It is of interest
then to determine how this field varies with the various parameters in the problem. As long as we
keep to r > v the Bessel functions in (2.2.31) and (2.2.32) ere Oscillatdry with a slowly varying
amplitude. In order to proceed further we need an approximation to the Bessel functions valid in
this region. Surprisingly enough, we have already derived such an approximation in Sec. 2.3.
There we derived approximate formulas for the change in r, and 7, when the exact formulas were
in terms of Bessel functions. Comparing (2.3.14), (2.3.15), and (2.3.16) with (2.2.31) and (2.2.32)

we see that
Jy(r) = V2w (2- v"")"‘"-t:os[(rz -2 _ veos™\(v/r) - {w]. (2.4.9)

J,0(r) = V2n [(r2 - vz)ml.r']lsln[(r2 - vz)'f 2 _yeos~'w/r) - i«]. (2.4.10)
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Figure 2.4.3. Same as Fig. 2.4.1, but a = 35 and the particle is followed for 10000 orbits.
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Figure 2.0.4. Same as Fig. 2.4.3, but a = 45.
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Now the size of the loops before they overlap is of the order of or less than the period of
oscillation of the Bessel function. Over this scale length the slow variation of the amplitude of the
Bessel function is not felt. Thus if we are interested in the field at which the loops overlap, we

may neglect the r variation in all but the trigonometric terms above. Thus we define
=2 - )2 - peos\(v/r) - I, (24.11)
and observe that
ot = B0y - TPl [30), (24.12)

as long as r, | - 7, «n, which is true before the loops overlap. Thus we can rewrite (2.2.31) and

(2.2.32) as
Proy ™ Fy + 27A(r, v)cosy, cosry, (2.4.13)
Yooy ™ (1) + 278 - 20A(r, V)siny, sinri] o (2.4.14)
where A(r, ») is a slowly varying function giving by
Alr, ») = av|J, (I = av2]r v(r? - ¥9)1V4)r2, (2.4.15)

which we regard as a constant while iterating (2.4.13) and (2.4.14). [By |J,"(r)] we mean the
amplitude factor in (2.4.10).] Thus the problem now just depends on two parameters, 8, which
measures how close we are to a cyclotron harmonic, and A, which is proportional to a. By
numerically iterating these difference equations we can determine and plot (Fig. 2.4.5) the value of
A, A = (X3), at which the loops overlap. With these equations, once the loops overlap the ion’s
motion is unbounded in r’. We have plotted only the interval of 8 from O to i; the interval from O
to -i can be mapped into this interval by shifting ¥ by m therfore Q is an even function of &
The region where Q(3) is multi-valued appears to be a real feature of (2.4.13) and (2.4.14),
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Figure 2.45. Threshold for overlap of loops as given by iterating (2.4.13) and (2.4.14), shown

with plusses (+).
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although we have no explanation for it. Apart from this mysterious multi-valued part Q is an

increasing function of |§]. Thus the overlap condition is A > (X8) or substituting (2.4.15)

"l%l J"zs))m (2.4.16)'

for r > v. The dashed line, A = §, is the same as the Sigmar and Callen (1971) result, (2.4.9), the
" field at which the loops first form. Note that, for small 3, Q(3) is constant to lowest order in

contrast with (2.4.9) which varies as 8.

The equations (2.2.31) and (2.2.32) predict heating of the ions, if the field exceeds that
plotted in Fig. 2.45. There are features of these equations which are not exhibited by the orbit
equation, (2.1.10). The most problematical is that (2.2.31) and (2.2.32) are not time-reversible;
©8 N1 "k is given in terms of 7., but not r, _ . For instance the fact that for low a all particles
dropontor = jv' - (Fig. 2.4.1) and that at higher a they can become stuck at r < » (Fig. 2.4.4) are
consequences of this irreversibility. This is in contrast to the orbit equations (2.1.9) and (2.1.10),
which are reversible. This time reversibility of the single particle equations does not exclude the
irreversible phenomenon of heating which is a statistical effect requiring many particles. However
we are hestitant to use ll;\e results of solving the difference equations, (2.2.31) and (2.2.32), to
predict heating for a particle obeying the orbit equation. For this reason, we are lead to attempt

to duplicate the results of this section by numerically solving the orbit equations.
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Chapter 3. NUMERICAL SOLUTION OF ORBIT EQUATIONS.

Section 3.1. Observation of Trapping.

In this chapter we present the results of numerically integrating the equations of motion,
(2.1.9) and (2.1.10). (The details of the numerical integration are given in Appendix A) These
results played an important role in developing our understanding of the motion of the ion. The
effects of trapping and stochasticity were first noticed by this means, and the subsequent analysis

was to a large extent guided by the numerical results.

We begin by presenting the phenomenon of trapping. To do this we show plots of single
cyclotron orbits. Figures 3.1.1 and 3.1.2 show the velocity and configuration space plots of the
orbits for a = 20, ¢ = 0, » = 30.23, and initial velocities, fo™ 24 and 25. We note that a small
increase in the initial speed of the ion, results in a dramatic increase in the amount of energy
gained by the ion. We explain this by recognizing that for short times (less than a cyclotron
period) the ion does not know that it is in a magnetic field. Thus we interpret the energy gained
in Fig. 3.1.2 as being the result of the particle’s being trapped. In the absence of a magnetic field

the condition for a particle to be trapped by a wave propagating in the y direction is

I¥ - o/kl < v, (3.1.1)
where
Yy " Jqulmk . (3.1.2)

In normalized terms (see Sec. 2.1), (3.1.1) reads

Iy - vl < Va. (3.1.3)
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Figure 3.1.1. lon orbits obtained by numerically integrating the orbit equations from t = 0, where

k=0 and y<0,to 2r. The parameters in this plot are: » = 30.23, a = 20, ¢ = 0, and r, = 24.
ly/\
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Figure 3.1.2. Same as Fig. 3.1.1, except that ro = 25.
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When considering an ion in a magnetic field, the trapping condition need only be satisfied at some
point along the orbit. Thus (3.1.3) becomes

r>v-vasr,, (3.1.9)

where r is the initial perpendicular velocity of the particle. With the parameters of Figs. 3.1,1 and

3.1.2 this predicts a value of 25.8 for M which is close to observed threshold.

Equation (3.1.4) is the condition under which a the particle exchanges some energy with the
wave. We have yet to determine how much it gains. By integrating the orbit equations for
constant » and a, but different values of o and ¢ (the electric field phase), we can generate a plot
of (AE), the phase average energy gain per particle over one cyclotron orbit, against r,. Such a
plot is shown in Fig. 3.1.3, for » and a the same as Fig. 3.1.1. We notice a sharp threshold to the
energy gain close to r,. The curve peaks close to the threshold and drops off at higher
velocities. Since the maximum occurs close to the threshold it suggests that the maximum is given

by
(BE) = H + Va2 - v - va)?] = 2vVa, (3.15)
or in unnormalized terms
(L), = 2mla/Kv,,. (3.1.6)

This just says that a particle that is just trapped will bounce once in the potential well of the field

and come out with a velocity (w/k + v, ). We see from Fig. 3.1.3 that this is an accurate estimate.
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Figure 3.1.3. Plot of the phase m}eragad energy gain per ion over one cylcotron orbit, (AE),
against ion velocity, r,, for » = 30.23 and a = 20. The phase average was obtained by integrating
the orbits equations for 50 particles with evenly distributed phases in (0, 25). The integrations
were begun and ended at ¥ = 0 and y < 0. (AE),,, is defined in (3.1.6).
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Section 3.2 Observation of Stochasticity.

In this section we seek to determine whether the trapping observed in the previous section
leads to real heating. Also we wish to see whether the large energy exchanges that we observed
in Sec. 2.4 when iterating the linear equations (2.2.31) and (2.2.32) are exhibited by the nonlinear
equations. To do this we must look at the /ong time behaviour of the orbit equations, (2.1.9) and
(2.1.10). Thus we will integrate the equations over many cyclotron orbits, in contrast to the single
cyclotron orbit integrations presented in the previous section. The problem that we are faced
with is that of finding a suitable way of presenting the results. Clearly plots like Figs. (3.1.1) and

(3.1.2) are useless for more than a few cyclotron periods.

The state of a particle whoss motion is described by the orbit equation (2.1.10) is
completely given by the three variables: the speed of the ion, r, the angle of the velocity vector,
w, = tln"(yljf), and the phase of the wave, w, = Wt + )oy 20 [That these variables are
sufficient is easily seen by recognizing that they provide sufficient information to begin the
integration of (2.1.10).] A complete description of the system is given by the trajectory of the
particle in (r, W “'z) space. Since two of these coordinates are angles it is convenient to
visualize the trajectory in toroidal coordinates, Fig. 3.2.1. In the limit @ = O the ion spirals around
the surface of a torus with constant minor radius, r, going » times round the short way (wz
increasing) for once around the long way (w, increasing); in the process the ion will map out the
entire surface of the torus, except for rational values of » (a set of measure zero). Rather than
displaying the ion's trajectory in this way, we plot only a cross-section of its trajectory. We
choose the cross-section defined by w, = , the ion travelling in the -y direction. This particular
choice of w, s motivated by observing that the interaction between the wave and the ion is
minimum when they are travelling in opposite directions. Such a cross-section is commonly
referred to as a surface of section. For brevity we will use T to denote the w, = « surface of
section. In plotting this cross-section we will plot r and w, as cartesian rather than polar

coordinates, since in practice we will only be interested in a small range of r.
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Figure 3.2.1. A particle’s trajectory in the space given by the magnitude of its velocity, r, the
angle of its velocity vector, Wy and the phase of the wave, w, = vt + ¢. The trajectory is shown
in the limit « - 0, when the trajectory maps out the surface of a torus [assuming » (= irzllifl) is

irrational]l The surface of section, I, defined by w, = ¥ is also shown.
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Figs. 3.2.2, 3.2.3, and 3.2.4 show the cross-sections for » = 30.23 and various a. In each
case the trajectories of a number of particles is given and a small region of velocity space with r
> » is plotted. As in Sec. 2.4 we will concentrate on the regions r = » and r > ». We will not
consider the case r « », where the wave particle interaction is negligible. If a = 0, then it would
take the particle exactly a cyclotron period, 2m, to come back to the w, = = plane, in which case
w, will have increased by 2m; the velocity of the particle, r, will remain unchanged. Thus the

crossings of a particular particle will all lie on a straight line r = constant.

In Fig. 3.2.2 @ = 1 and we see that the straight lines in @ = 0 case have become curved.

However the points still do lie on lines. Such lines can, in principle, be written in the form
7|(r, w,) = const, (3.2.1)

where the constant depends on the starting position of the particle. (This choice of notation is
made because, as we will see in Sec. 4.2, 71 is a perturbed action.) This indicates that there
exists a constant of the motion such that the motion is completely integrable. A consequence of
this integrability is that there can be no time averaged energy exchange between the particle and
the wave; the particle’s energy will just oscillate about some average value. We will also speak
of motion of this type as being coherent. The presence of smooth lines in I indicates that the
motion in the phase space illustrated in Fig. 3.2.1 is still constrained to lie on a surface. Tiﬂs
surface lies close to the a = O torus shown in that figure, because r is nearly constant in Fig.

3.2.2.

Figure 3.2.3 shows the picture when a has been increased to 2.2. Again there are
trajectories that lie on smooth curves spanning all W indicating integrability of the motion.
However we see two new features. Firstly there are some trajectories which lie on is/lands. Each
chain of islands is generated by a single particle trajectory. Two of the chains of islands are

numbered in Fig. 3.2.3, the numbers indicating the order in which the islands are visited. The
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order of a chain of islands is the number of islands in a chain, and gives the number of cyclotron
orbits it takes for a particle to return to a given island. Thus 4™ and 5™ order chains are visible
in Fig. 3.2.3. Since the islands form smooth curves the motion of the corresponding particle is
integrable. The second feature is that between the island chains are regions where the motion is
stochastic. The trajectories no longer lie on smooth lines, but appear to wander freely about a
subset of £. However the presence of the integrable trajectories prevents the particle’s gaining

significant energy.

In Fig. 3.3.4 a is 4. In this case the motion is stochastic is nearly all of the portion of £ we
have plotted. This means that particles may be heated through the range of velocity space
plotted.

Summarizing the behaviour of these three plots: At small @ the motion is coherent over a
large range of r. At intermediate values of a the motion in £ has a very detailed structure, with
portions of T coherent and portions stochastic. The scale length in r of this structure is typically
27 (we will see in the next chapter that this is related to the period of a Bessel function). For
large a this structure is destroyed and T is stochastic over a region of r greater than 2x. The
value of a at which this happens we term the stochasticity threshold. It gives the field at which

appreciable heating of the particles can take place.

Figures 3.25 and 3.2.6 show T for the same parameters as in Fig. 3.2.3, but at lower and
higher velolcities. We see that at lower velocities the motion is more stochastic than in Fig. 3.2.3
whereas at higher velocities it is less so. This is consistent with the r dependence, exhibited by
the coefficient, A (2.4.15), in the difference equations (2.4.13) and (2.4.14).

Finally we show I for v = 30, 30.11 and 30.47 for the same region of velocity space as Figs.
3.2.2-4 illustrating the three regimes of a for these frequencies (Figs. 3.2.7-15). We see that the

plots for » = 30 are unusual, for all @ # O there are large islands present that occupy all of Z.
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Figure 3.24. Tfory=3023 anda = 4.
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Figure 3.2.12. Zfor v =30.11,a = 4.
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Chapter 4. HAMILTONIAN FORMULATION.

Section 4.1. Formulation in Terms of Hamiltonian.

In this chapter we use the Hamiltonian formulation to look at the motion of the ion described
by the orbit equations (2.1.9) and (2.1.10). The advantages of this approach over the linear
analysis of the Chapter 2 is two-fold. Firstly by using the Hamiltonian we are able to solve for
the frequencies in the problem without having to completely solve for the motion. We shall see in
Secs. 4.2 and 4.4 that this enables us to predict the dominant features in the exact numerical
calculation of Sec. 3.2). The second advantage is that we are able to make approximations that

glve good results for long times and obtain a good bound on the accuracy of these resuilts.

We begin by writing down the Hamiltonian for a particle in electric and magnetic fields as
(Goldstein, 1951)

K = Xp - qAY/m + qb. (a.1.1)

where B = VxA and E = -V® - 3A/3t. In our problem B = ByE and E = Ej cos(ky - wt - ),
glving

A = -ByyX, ®=~E/K)sin(ky - ot - ¢). (4.1.2)
Evaluating the Hamiltonian (4.1.1) we obtain
K = H(p, + aBoy)* + p 2lim - (Eo/Ksinky - wt - $). (4.1.3)

At this stage it is convenient to introduce the normalization first used in Chapter 2. Normalizing K
to m(!!lk)2 we obtain
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K=4lp, + )? +p 2] - asinly - ot - §). (4.1.9)

Since K is independent of x, p is a constant. We could then replace p, by a constant in (4.1.4),
thus reducing the number of degrees of freedom in the problem. However we will postpone using
this fact, preferring instead to make a canonical transformation to remove the time dependence
from the Hamiltonian. We accomplish this, using the notation of Goldstein (1951), by means of the

generating function,
Fz-(P'-vt-ﬁ)x+P'(y-vr-¢+P'). (4.15)

where the new coordinates are denoted by capital letters. Equation (4.1.5) gives the following

relations between the new and the old coordinates:
X-x-&-p', P.-p,+vt+¢. Y-y+p', Py-py, (4.1.6)
and the new Hamiltonian M is given by
2
HeK-vX=}Y?+}P%-vX-asin(Y - P). (4.1.7)

Note that Y differs from y by a constent, p,, which without loss of generality we may take to be
zero (e.g. by choice of the y origin). [This is equivalent to the statement that x = y (2.1.9).]
Finally we transform (Py. Y) and (P,, X) to the action-angle variables (I,, w,) and (I, w,)

respectively, using the generating function
F, = §Y2cotw, + Xw,. (4.1.8)
This gives

P, = V2I, cosw,, ¥ = VI sinw,, (4.1.9)
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Xm-ly P =w,. (4.1.10)
Performing the transformation on H we find
H=lI +v,- asin[\f'c‘—[; sinw, - w,]. (4.1.11)
The original position variables, x and y, are given by
y = V2I sinw,, x = -I, - V2I cosw,. (4.1.12)

Note that the Hamiltonian equation W, = 3H/3l, = v is trivially integrated to give w, = vt + &.
Thus we may interpret (4.1.11) as describing & pair of harmonic oscillators, the ion in a magnetic
field described by (Il. wl) with frequency 1 () and the wave described by (Iz' wz) with

frequency » (w), coupled by the last term in (4.1.11).

One essential test of the correctness of (4.1.11) is to compute the Hamiltonian equations of
motion, and to see if they give the Lorentz force law, (2.1.7) and (2.1.8). The Hamiltonian

equations are:

W, = 3H/3I, = 1 - of2l, )2 sinw, cos[V2I, sinw, - w,], (4.1.13)
W, = H[3l, = v, (4.1.14)
b, = -3H[dw, = a(21))' cosw, cos[V2I| sinw, - w,], (4.1.15)
L, = -3H[3w, = - acos[V2I, sinw, - w,]. (4.1.16)

Of course (4.1.14) is easily integrated to give

wy=pt+. (4.1.17)



Section 4.1 Page 55
From (4.1.13) we form
y= (2!1)'”2:inwl I, +(2I|)"zcosw‘ v,
= V2I, cosw, . (4.1.18)
ko= <ty - @12 cosw, | + (21)2sinw, W,
= V2I, sinw,
-y. (4.i.19)
Teking a further time derivative we obtain
y = (@1, 2cosw, 1 - (21))'2sinw, W,
= - V2 sinw, + acos[ V2], sinw, - w,]
= -k +acos(y -vt-¢), ' (4.1.20)
X=y, (a.1.21)
as required.

We may also mention an alternative derivation of the Hamiltonian, (4.1.11), which avoids ever
introducing time into the Hamiltonian. If we transform to the frame of the wave, v?, then all the
fields are static. The Hamiltonian in this frame is then numerically equal to the total energy of the

ion. A Galilean transformation back to the rest frame gives (4.1.7).
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Section 4.2. Integrals of the Motion.

The Hamiltonian in (4.1.11) cannot in general be integrated exactly. However we saw in Sec.
3.2 that at sufficiently small @ an additional (approximate) constant of motion does exist, showing
that the Hamiltonian is approximately integrable. We are able to derive this constant using
standard techniques. We must distinguish two cases: when the unperturbed (a = 0) motion is far
from any resonances and when it is close to a resonance. What resonances are important may be
determined by first treating the non-resonant case, and deducing the presence of resonances from
any resonant denominators appearing in the analysis. Similar results to the ones given here are

derived by Timofeev (1974).
The analysis begins by Fourier transforming the angle dependent term in (4.1.11) giving
He= I, vl - a3, J (V2I)sin(mw, - w,), (a.2.1)

where we we have used the Fourier expansion, eq. 9.1.41, of Abramowitz and Stegun (1964).

There is then a standard procedure given by Walker and Ford (1969) for transforming to a new

set of coordinates in which the Hamiltonian is cyclic to order a. This consists of introducing the

new set of coordinates (7" W‘) and (Tz. Wz) using the generating function
Fa=-1,W, - LW, - a £, J (VZI,)cos(m¥, - ¥,)/(m - v). (4.2.2)
The old and new coordinates are then related by
w, =¥, +a Q) (V2I)cos(m¥, - ¥)/(m - v), (4.23)
w, = W,, | (4.2.4)

T, =1, - a £, mJ (V2 )sin(m@, - &,)/(m - v), (4.25)
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T, =1, + a3, J (V20 )sin(miv, - ¥)/(m - v). (4.2.6)
The new Hamiltonian is then
FaT, eol,+al, J (V2 sin(m¥, - ¥,) - sinimw, - ¥,)], a.2.7)

although this is not in the proper form until we have eliminated the variables Il and w,. As long
as (m - ») is not small for any m [we require (m - ») » O{a), so that the terms proportional to « in
(4.2.3-6) are small] then the transformation given by (4.2.2) is an infinitesimal one (for infinitesimal
a) and specifically (4.2.3) tells us that w, and '\'v'l differ by O{a). Thus if we substitute (4.2.3) into
(4.2.7) we obtain

HaT, +oT, +0la®. (4.2.8)

To order O(a?), 71 and 72 are constants since H is cyclic in the angle variables and so sufficient
integrals of the motion are known to completely specify the motion. By computing surfaces of
constant 7‘ we can display the motion and compare it with that given by the numerical solution in

Chapter 3. Substituting (4.2.3) and (4.2.4) into (4.2.5) we have
T, =1, - a T, mJ(V2I))sin(mw, - w,)/(m - v) + Oka®) = const + Oa®). (4.2.9)

In the analysis above we had to exclude the case » = n, an integer, because of the
presence of (m - v) in the generating function (4.2.2). The problem arises because if » = n, then
the m = n term in the sum in (4.2.1) drives the zeroth order terms resonantly, so that there will be
large deviations in motion from the unperturbed motion and an infinitesimal transformation given
by (4.2.2) breaks down. We may still derive additional constants of the motion, by utilizing a
transformation to a rotating frame described by Jaeger and Lichtenberg (1972). The generating

function for this transformation is
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Fyulinw, -w)+ 1w, (4.2.10)
Then the old coordinates may be expressed as
Ii=nl, L=1,-1,, w =(&, +G)n, w,=@,, (a.2.11)
and the Hamiltonian (4.2.1) becomes
H=(n-»l, +vl,-az, J12n] ) P]sin[mb /n - Q1 - m/m,]. (3.2.12)

Note that Gl =-nw, - w, is slowly varying, whereas Gz - W, the wave phase, is still rapidly
varying. The dominant contributions to the behaviour of the ion are given by the slowly varying
components of 7] only (Bogoliubov and Mitropolsky, 1961), thus we may average over a period of

w, to give
) = (n-0)1, +91, - a J[(2n] )/?]sin@, . (4.2.13)

Since (M) is cyclic in Grz. 72 is constant to order az, as is (FI) - v?:. Expressing this latter quantity
in the original coordinates using (4.2.11) and (4.2.13) we obtain to order o?

)y - vl,=(n - W) /n - & J (V21 )sin(nw, - w,) = const . (4.2.14)

Remarkably, the motion derived in the non-resonant case as given by (4.2.9) agrees with
(4.2.14), because in the limit (n - ») = 0, only the m = n term contributes in the sum in (4.2.9) and
80 (4.2.9) reduces to (4.2.14). We may therefore use (4.2.9) to determine the motion for all ». On
I (the cross-section w, = , Fig. 3.2.1), (4.2.9) becomes to order a?

T, =1, + a T, m-1)"J (V2T)sinw,/(m - ») = const. (4.2.15)

From (4.1.18) and (4.1.19) the magnitude of the velocity, r, is given by
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I, =42 (4.2.16)

In Figs. 4.2.1-10 we have plotted the curves of constant Tl at the w, ="~ plane for the
same values as in the numerical computations shown in Figs. 3.2.2-4 and 3.2.7-15. Note that for »
= 30 the motion in I is independent of a; in this case a only determines the time scale of the
motion. Comparing these figures with those of Sec. 3.2, we see that (4.2.16) gives the coherent
motion at low a accurately. It also predicts the location and size of the first order islands.

Islands of higher orders are not predicted, nor, of course, is the stochastic motion seen in Sec. 3.2.

Section 4.3. Origin of Stochasticity.

Two important features were observed in the exact numerical computations in Sec. 3.2, but
are not predicted by the approximate integral of the motion, 71 (4.2.15). They are the higher
(than first) order islands and the stochastic motion. The stochasitc motion is of course of principle
interest for RF heating. However the appearance of islands is intimately related to onset of
stochasticity. We will trace the connection in this section, for it is on the basis of that connection
that we are able to derive an analytic expression for the stochasticity threshold in Sec. 4.4. A
more complete description of the subject can be found in Ford (1975), and more mathematical
treatments are given by Arnold and Avez (1968) and Moser (1973). In this discussion we will find
it helpful to refer the the surface of section plots of Sec. 3.2.

In Sec. 3.2 we defined a surface of section by w, =, and we plotted r vs. w,. [We argued
that specifying w,, w,, and r is sufficient to begin the integration of the orbit equation (2.1.10).]
Unfortunately this surface of section, which was arrived at from studying the orbit equation,
differs somewhat from that defined by other authors, who consider the problem more in terms of
the Hamiltonian. We can, however, establish a connection between our surface of section and the

more usual one. If we followed the conventions of Arnold and Avez (1968), for instance, we
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would consider particles with a constant H = h and at a constant w, (= m, in our case), and we
would plot the conjugate coordinates, Iz and Wy Again the specification of H, w,, w,, and Iz is
enough to fully specify the state of the particle, since we can solve for I, from the equation for
the Hamiltonian (4.1.11). It seems at first sight that requiring H to be a constant for all particles in
the surface of section plot would overly restrict the class of particles we could study. However
from (4.1.6) and (4.1.10) we have [, = (x + pl), and so the value of the Hamiltonian in (4.1.11) can
slways be adjusted to a constant value, h, by suitably chosing the origin for x (a choice which
merely results in a spatial translation of the entire trajectory). We may think of the Hamiltonian
equations of motion as defining a mapping, T, of the "z' “'z) plane into itself over a period of w,.

Arnold and Avez (1968) prove that this mapping is area-preserving, i.e. that

§7 Idw, = §r1 Ldw,. (43.1)

where 7 is a closed curve in the (I, ‘”z) plane and Ty is the result of mapping it. We may use
(4.3.1) to determine the corresponding area conservation theorem for the surface of section, (r,

w,), used in Sec. 3.2, since these coordinates are related to (I, w,) by
Wy = Wy, Ip = (h - L2 - asinw,)/, (43.2)

where we have used the fact that H = h and w, = ¥ in (4.1.11). The Jacobian for this

transformation is d1,/3r = -r/v; so (4.3.1) becomes

§7dez -4 r7§'zdwz. (a33)

We note the integrals express the area of a closed curve when r and w, are plotted in polar

coordinates.

The study of the Hamiltonian equations is equivalent to the study of the area-preserving

mapping, T, of . We will begin by discussing the case where » is not close to an integer. In the
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limit @ = O the T is given by

rer, woew,+ 2wy, (4.3.4)

i.e. T (plotted in polar coordinates) .is rotated by 2mv. The angle of advance of w, is independent
of r, because, in the limit of a + 0, the Hamiltonian (4.1.11) describes two harmonic oscillators. A
circle is an invariant curve under the mapping (i.e. r is a constant of the motion); however, unless
v is rational (a set of measure zero), there are no fixed points of the mapping; that is there are
no points for which T7(r, wz) = (r, '”z)' where p is an integer. (Of course the point r = O is a fixed

point in this case; however we will omit this from the discussion.)

As « is increased to a finite value the mapping (4.3.4) is perturbed. If a is small enough,
there are still curves that are mapped into themselves, and the curves are close to circles (see
Figs. 3.2.2, 3.2.10, and 3.2.13, but remember that these are plotted in cartesian rather than polar
coordinates). The new invariant curves are described by the perturbed action 71 (4.2.15). In
addition, the angle by which the invariant curves are rotated upon applying T is perturbed, and
becomes a function of r. As we will see later this arises from a nonlinear shift in the cyclotron
frequency, W, in which case the mean angle by which the curve is rotated is 2mv[(w)). If /(W)
is a rational number, s/p, then to lowest order in a, all of the points on some of the invariant
curves become p“' order fixed points, so that each point of the curve maps onto itself on applying
TP. Such curves of fixed points are highly susceptible to perturbations. The effect of
perturbations is to cause only 2p of the points to remain fixed points. Half of them are elliptic
fixed points around which islands form (for instance, see the numbered islands in Fig. 3.2.3), while
the other half are hyberbolic fixed points, lying on the seperatix between the island chain and the
unperturbed invariant curves. In Fig. 4.3.1 we show a typical chain of islands with the fixed
points marked. The elliptic and hyberbolic fixed points are also cailed "0" and "X" points for
obvious reasons. Near the elliptic fixed points the mapping, 7%, is stable. On successive

splications of T” a particle maps an an ellipse with its center at the elliptic fixed point. However



Section 4.3 Page 67

Hyberbolic fixed point

Elliptic fixed point

Figure 43.1. Schematic diagram showing 4™ order islands in £ and the elliptic and hyberbolic

fixed points.
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the mapping, 7%, at the hyberbolic fixed points is unstable; particles starting close to the fixed
point move away from it on a hyperbolic path whose asymptote is the separatrix bounding the
islands. It is clear that the motion of the particle near the separatrix can be grossly changed by a
small perturbation; indeed an arbitrarily small perturbation can kick it out of or into the island
system. In fact in the presence of perturbations, the motion becomes stochastic in a band
centered at the separatrix (again see Figs. 3.2.3, 3.2.11, 3.2.14). The way to picture this is as
follows: The motion of the particle under a mapping of T? is that of an anharmonic oscillator about
the elliptic fixed point. The frequency of the oscillator, defined as the mean angle advance around
the elliptic point for each application of TP, decreases as the sepatrix is approached, and is zero
on the separatrix (because the separatrix contains fixed points). Now whenever this frequency is
a rational number, s’ /p’, the corresponding island maps onto itself under the mapping . But
by the same argument as before such a island will turn into a chain of p” sub-islands. As the
separatrix of the main island chain is approached there are infinitely many chains of these
sub-islands. The picture repeats itself indefinitely, each sub-island supporting its own set of
sub-sub-islands, etc. There are two ways of viewing how this process leads to stochasticity. One
is to say that the infinite series of islands chains have an infinite number of hyberbolic fixed
points associated with them; these constitute "scatterers” for the motion in phase space, making it
a random walk. The other point of 'view to take is to say that when the sub-islands are too close
together (e.g. near the separatrix) they "overlap” destroying their structure and leading to
stochasticity. This latter view leads to a method for computing the fraction of phase space that is
stochastic. If the size and position of all the sub-islands can be determined, then we can compute
where they overlap. The method is of necessity non-rigorous because when we can really only
speak of islands before the motion becomes stochastic. The normal procedure is to neglect the

influence of neighboring islands when finding the size of a particular chain of islands.

The same mechanism that causes the motion to become stochastic near the separatices, also

is reponsible for the gross stochasticity observable in Figs. 3.2.4, 3.2.12, and 3.2.15. As the field
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increases, the perturbations, that caused the line of fixed points to turn into a chain of islands,
grows, leading to a growth of the islands. (This is not necessarily visible in the surface of section
plots, since the stochastic bands sbout the separatrix also grow, "eating™ away at the islands.)
The other thing that happens it that more chains of islands appear as (v'vl) is perturbed more by
the wave. .At what we define as the “"stochasticity threshold® these two phenomena lead to the
overlap of the islands. Above this field the motion is stochastic over a large range of velocity

space (larger that the period of oscillation of the Bessel functions in Sec. 2.2).

The situation when w is close to a cyclotron harmonic (v close to an integer) has been
recently treated by Fukuyama et /. (1977). It differs in important respects from that presented
above. If we look at Fig. 3.2.7 we see that there are large first order islands present, even for
small a. These islands occupy most (all, if » is an integer) of phase space. Furthermore they do
not grow to the point where they overlap. Thus the mechanism by which the stochasticity
threshold is reached in this case is by the growth and overlap of the sub-islands within the first
order islands. Their growth causes a band near the separatrix in Fig. 3.2.7 to become stochastic
(see Fig. 3.2.8). Eventually this band grows until a substantial part of the first order islands is
stochastic. Since the first order islands constitute such a large fraction of phase space, this allows
particles to travel freely throughout most of phase space (see Fig. 3.2.9). In their paper,
Fukuyama et al. (1977) were able find the size and location the sub-islands in this case, and hence
the condition for their overlap and the stocasticity threshold. We have given steps leading to
their threshold in Appendix B.

To summarize: When » is close to an integer, n, there is only one primary resonance in
effect v = n(uir|). This leads to large first order islands. The motion becomes stochastic because
the sub-islands within the first order islands overlap, destroying most of the first order islands. If
» is not close to an integer, there are higher order islands of many different orders possible.
These are caused by the resonance v/(wp = s/p. The motion becomes stochastic when enough of

these islands appear, and when they have sufficient size, to cause them to overlap each other.
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In the next section we will present the calculation of the threshold for and location of the
higher order islands in the case where » is not close to an integer. It turns out that the nonlinear
shift in (\'vl) which leads to the fixed points is O(a®). The perturbation that gives the islands
themselves is higher order in the field. Thus we do not compute the size of the islands. So the
analysis we present is only part of what is required to find the stoohast!ciiy threshold analytically.
We will turn to the numerical simulations to complement the analysis we have done, and the

combination enables us to find an analytic form for the stochasticity threshold.

Section 4.4. Derivation of Island and Stochasticity Thresholds.

In order to find the p"' order islands, we must find the p“‘ order fixed points. These in turn

are found by setting
(W, Wy} = G v = pfs, (a4.1)

where s and p are integers and the (time) average is performed over p cyclotron orbits (or,
equivalently, s wave periods). We have also noted that w, = vt + ¢ (4.1.17). A particle satisfiying
(4.4.1) will complete s wave periods (the short way round the torus in Fig. 3.2.1) in exactly p
cyclotron orbits (the long way round), and so its trajectory is a fixed point of TP. (We use the
term "cyclotron orbits” to denote the time it takes the ion to complete a cyclotron orbit. The term

“cyclotron period” bears with it the connotation of the constant time 27.)

We begin by looking at the first order fixed points for which p = 1 and s = n. These may
be derived directly from the Hamiltonian H(a.2.12) by noting that (4.4.1) implies that (ér') = 0,
We take an equivalent route here and derive the threshold from the Hamiltonian H (4.2.1). We
chose this procedure because it is somowhil easier to extend it to the derivation of higher order

islands. We computing Wl from MI&II s0 that
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W, = 1 - aZ, (331 (V2 )sin(mw, - w,). (4.4.2)

In order to compute the average of (4.4.2), we begin by assuming that I, is constant and that n¥,
- "’z = p (we will check these assumptions & posteriori). The average commutes with the Bessel

function, and we have
(cin(mwl = wp)) = sin(nw, - w,) 3, (4.4.3)
Taking the average of (4.4.2) we obtain
(W,) = 1 = (33, (V2I)) sin(nw, - w,). (4.4.9)

In order to find the threshold for first order islands, we substitute (4.4.4) into (4.4.1) and take

sin(nw, - w,) = £1. Solving for a gives
r
a= |— "'(l') si. (4.45)

where as before 8 =» - n(242) and r = \/E-I'; (4.2.16). This is of course the same as the resuit
of Sigmar and Callen (1971) given in (2.4.8), with the replacement of » by n. Indeed this is just to
be expected, for each gives the condition for there to be an integral number, n, of wave periods
per cyclotron orbit. Equation (4.45) tells us the location of the islands. The threshold is
minimized by chosing r at an extremum of J”’(r)lr. To check the assumptions we made, we note
that in fact [ - const + O(a) and nw, =n + Ola) = v + O(a), where the latter equality results from
8 = O(a) (4.45). Thus the assumptions we made are shown to be justified and terms missing in

(4.4.4) are O{a?) and may be neglected.

An alternative derivation of the threshold for first order islands is to observe that they
must always form around the extrema of 71' (4.2.15), in the (I.. wz) plots of Sec. 4.2. Setting
a‘f,/a:, - a7,/awz = 0 in (4.2.15) we obtain cosw, = O [there are other roots for w, but these



Page 72 Section 4.4
correspond to the saddle points of (4.2.15)] and then a is given by
a =[S, (m/rX-11"J,7()fm - )", (4.4.6)

For » close to an integer n, only the m = n term contributes in (4.4.6), and (4.4.6) reduces to
(4.45). It is clear the (4.2.15) also tells the size of the first order islands, as can be readily seen

from the plots of Sec. 4.2.

We have a problem when trying to find the higher (p > 1) order islands, because the sum in
(4.2.1) contains no terms that don't average to zero for the higher order islands. This problem is
resolved by making the canonical transformation given by (4.2.2), for by computing the Hamiltonian
correct to O(a?) we will find that there is a angle independent term proportional to a? (which
obviously survives the averaging process). We begin with the form of H given in (4.2.7) which,
although exact, is not in the proper form. To put it in the proper form we substitute for w, using

(4.2.3) so that to order al

Bty el 3

Here we have assumed that Il - 1! + O(a) and similarly for w,. These assumptions break down

V(I ALE W (v AL I
T 12 o

" cos(mw, - 'u"z) cos(kwi - Wz). (4.4.7)

for first order islands because of the presence of the (n - ») denominators in (4.2.3) and (4.25)
which, from (4.4.5), are of order a for first order islands. To find the threshold for higher order
islands we compute (Wl) using (W) = (@l) - (éfl/a'f‘). If p # 2 then only the m = k terms do

not average to zero giving

(4.4.8)

o, 3% 2@l )2
wv,)-l-‘%2 > nt2) ] o
e 67‘2 m-v

(We have managed to write this mofe compactly by introducing an additional derivative operator.)

For p = 2 (s = 2n + 1) there are additional contributions to the average from the terms

satisfying m + k = g which add
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r

2 o
- ms-m m v o "
2 lZﬁ [(21 )IIZ ] s-m-vp COs(swl 2W2) (4.4.9)

to the right hand side of (4.4.8). [The argument to the Bessel functions is (21,)'/2] To find the

effect of (4.4.9) on (W ), we evaluate it withvy = n + * [where we expect the second order (p = 2)
islands to be important] and in the limit of r » v (in this limit J - J 1 2, l). Keeping only

the m = n and n + | terms, which have the smallest denominators, (4.4.9) evaluates to

a? d J +Jnolz
21t el

Now successive Bessel functions behave as either sines or cosines. This means that the

] 2ncosts¥, - 2. (4.4.10)

numerator in (4.4.10) is approximately constant, having only an overall 1/r dependence. (We have
checked this point numerically, still keeping only two terms of the sum, but not assuming that r »
», and we find that it is true even when r = ») Thus, on taking the derivative, we see that
(4.4.10) will be reduced by a factor of r; this is to be constrasted with the sum in (4.4.8), which

as we will see is not reduced when the derivatives are taken.

To compute the threshold for islands we merely susbtitute (4.4.8) into (4.4.1) to find that

=, 3%yl )2
(hise ”’]' (4.4.11)

REH )

neo al 2

where
c=»-s/p. (4.4.12)

Note that in general a = o(8) at the threshold for higher order islands. This checks out with the

sssumption we made earlier that 7‘ and Wl differed from the original variables by O{«x).

Note that at this stage we are not able to give the size of the higher order islands (with the
possible exception of second order islands). For the first order islands, the term which gave the

shift in the cyclotron frequency was angle dependent and this was the needed perturbation to
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create the islands. However for the higher order islands it is an angle independent term that
‘causos the cyclotron frequency shift. Thus all the points at a given 71 constitute pt" order fixed
points. What is required is to find the additional perturbation that breaks this line of fixed points
up into islands. The form of perturbation necessary has the form sinlcos(sﬁ‘ - pﬁz). Such a
perturbation will yield the size of the higher order islands using a generating function similar to
(4.2.10). To order aZ there are only the angle dependent terms that give the size for first and
second order islands. For arbitrary order islands it is not clear to what order we must go in order
to obtain the necessary perturbation. Thus while we know at what field arbitrary order islands
appear and at what 7| they form at a given field, we have not yet been able to determine their

size.

In order to better understand the formulas for the nonlinear cyclotron frequency shift,
(4.4.4) and (4.4.8), and the island thresholds, (4.4.5) and (4.4.11), we examine them in various limits.
Firstly we expand the Bessel functions in the limit r >» » (eq. 9.2.1, Abramowitz and Stegun, 1964).
In this limit the frequency shift giving first order islands, (4.4.4), becomes

W)=1-a v2/x r‘a"zsm(r - *r) sin{nw, - wz) (4.4.13)

The threshold for first order islands derived from this is minimized by letting both sine factors

have unit magnitude giving
/2
|f"3 g. (4.4.12)

In order to put (4.4.8) in a simple form we make the additional assumption that » >» 1. It is easily
verified that

§925, 22T )" 12)3Y 2 s - sin(2r) (-1Y"[(nr?), (4.4.15)

where we have used the fact that 71 E II . V The terms left in the sum in (4.4.8) are then
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!:. (-1)"m/(m - »). The major contribution to the sum comes from the terms such that m = », in
which case the factor of m may be replaced by », leaving T (-1)"/(m - »). Now this is just the
partial fraction expansion of the cosecant function (eq. 4.3.93, Abramowitz and Stegun, 1964). The

expression for (Wl) becomes

b)) =1-a? §2) 5 (4.4.16)
The island threshold is then
- S O (a.4.17)

Unfortunately the asymptotic expansion is only valid for r/v » 1. Since we are interested
in » » 1, this places a severe restriction on r. We would like to be able to extend the above
results to the region r > ». To do this we use the approximations (2.4.9) and (2.4.10). Numerically
comparing (2.4.9) with the Bessel function indicates that it is an excellent approximation for r
larger than the first maxima the Bessel function. From eq. 9.3.23 of Abramowitz and Stegun
(1964) the first maxima of the Bessel function of order » is at » + (iﬂ)"a; so (2.4.9) is valid for r >
v+ (b')'n. This approximation is readily incorporated into (4.4.13) end (4.4.14), giving for the
threshold

Jar?

a= WS . (4.4.18)

For higher order islands the situation is slightly more complicated. The typical Bessel function

term in (4.4.8) now reads
324 2127 )"12)/3T 2 = - sin{2[(r? - mD'/2 - mcos™N(m/N)]} (2 - mA) 2 )(xr%). (4.4.19)
m 1 |

The sum is more difficult, reading Im z,, exp{2[]}/(m - v), where we have brought all the slowly
varying functions of » outside the sum (replacing m by »), and the phase factor in [J's in (4.4.13)

should be placed in the exponential function. The sum may be computed by making a Taylor
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series expansion of the phase term in [T's in m about m = v, and keeping only the first two terms.

The resuiting expression for (W) is

2 sin{2[(r2 - ¥¥)'12 + psin- v/} W2 - vz)'fz
(W) =1-a 2 ~ (4.4.20)

From (4.4.20) we derive the threshold

ol sin(my) r*

=T CII’\{Z[‘[’z vz)uz + I'Sin"(vlr)]} ',2(’2 2)1[2 . (4-4.21)

Note that (4.4.18) and (4.4.21) give the same scaling for @ on both » and r.

The last limit to consider is r = » and » ®» 1. For this we need the intermediate argument
expansions of the Bessel function and its derivative (eqs. 9.3.23 and 9.3.27, Abramowitz and
Stegun, 1964). The magnitude of J"(r) has a maximum of l.llvm at r = n + 18 n'fR
Substituting this into (4.4.5) we obtain

2/3

a= |”T‘1' a|. (4.4.22)

Since J,” has its maximum amplitude (as a function of r) at this point, (4.4.22) gives the minimum

threshold for first order islands at a given ». For higher order islands we again compute, for m = »
§3%, %27 )'/2)/3Y 2 = - 2'Pm"ORRAX-R) - AV X(-R)], (4.4.23)

where R = (r - mX2/m)'/3 and we have used the differential equation governing the Airy function
(eq. 10.4.1, Abramowitz and Stegun, 1964). We do not attempt to carry out the sum in this case,
wishing only to find how the threshold scales with » in this limit. So we assume that v = n so that
only the m = n contributes in (4.4.23). Taking r s n + 1.8 n"a, where the combination of Airy
function in [T's in (4.4.23) has a maximum, we obtain a threshold of

pal3

a - ﬁ JJ_ ‘4.4-24,
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Again note that (4.4.24) has the same scaling as (4.4.22). In fact, we obtain nearly the correct
threshold for first order islands by setting ¢ = 3 «< 1 in any of (4.4.17), (4.4.21) or (4.4.24). The
resulting expressions for a overestimate the thresholds given by the correct expression for the

first order islands, (4.4.14), (4.4.18) and (4.4.22) by s factor of V2.

To illustrate these results more graphically we plot in Fig. 4.4.1 (Wl) as given by (4.4.4) and
(4.4.20) for the parameters in Fig. 3.2.4 (at these parameters the motion has just become
stochastic). As a increases the curve of vl(t'vl) grows away from the line (¥ ) = 1. This causes
new Islands to appear, and crowds up the existing islands. At the stochasticity threshold this

causes the islands to overlap, leading to their breakup, with its attendent stochasticity.

Figure 4.4.2 shows the dependence of the island thresholds on ». We have plotted (4.4.18)
and (4.4.21) (with the sin term equal to unity) against » for 29} < » < 304, for various s/p and for
r = 475 (the middle of the r scale in the plots of Sec. 3.2). We also show some numerically
observed island thresholds. Note that the analytic thresholds are in good agreement with the
numerical ones. Note that for a large many islands are predicted for all v, not very close to n (=
30). In this figure we have also given the numerically observed stochasticity thresholds. Note
that this field is insensitive to 8 varying by about 20% for 8 between —i and i. Now the island
thresholds (4.45) and (4.4.11) consist of a slowly varying factor which depends on r and »
multiplying a function of 3 and s. The stochasticity threshold will likewise consist of the same
factor of r and » multiplying some function of 8 [¢ is only defined in reference to a particular chain
of islands (4.4.12)] The evidence of Fig. 4.4.2 is that this function of 8 is essentially a constant.
Thus to obtain an analytic expression for the stochasticity threshold we just take the either
(4.4.18) or (4.4.21) and replace 3 and ¢ by appropriate constants. (It won’t matter which equation
we do this to, since they both have the same scaling with r and ».) For instance we can substitute
= * into (4.4.18) observing that for this 8 the stochasticity theshold coincides with the threshold
for first order islands. We can further generalize this result for arbitrary r by sustituting 8 = *

into the more general equation, (4.4.5), to give
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Figure 4.4.1. Plot of v/(W,) for higher order islands as given by (4.4.20) for » = 30.23 and a = 4
(ct. Fig. 3.2.4). The plusses (+) indicate the values of r for which (u‘v|) is a simple rational multiple
of », and where higher order islands form. The crosses (x) show the positions for first order

islands as given by (4.45).

I

2

+
+

e AT

Figure 4.4.2. The threshold a for the formation of islands of various orders (the numbers by the

curves) for r = 47.5 as a function of v. The lines give the analytically predicted values, (4.4.18)
and (4.4.21), and the crosses (x) the numerically observed values. The plusses (+) give the

numerically observed stochasticity thresholds.



Section 4.4 Page 79

> |m| (4.4.25)

Again it doesn’t matter whether we chose (4.45) or (4.4.11) since we have seen that they scale
the same way in all limits of interest. We have substituted v for n here to emphasise that this
result is not restricted to values of v close to an integer. Since the stochasticity threshold is
defined in terms of a substantial region of velocity space, the value of J,” with the oscillatory
part factored out should be used. As with the island thresholds the various limits of (4.4.25) can
be found. For r » » we see that (4.4.25) is the same as the loop overlap condition for the
iterated equations, (2.4.16), except that (X8) (Fig. 2.45) is replaced by i In the limit r =» »,
(4.4.25) is nearly the same as the result of Fukuyama et al. (1977) [see (B.31) and (B.32) in
Appendix B] Their result is only valid in this limit and has factor of 0.15 in the place of the i in
(4.4.25). As we explained in Sec. 4.3 their results are obtained by finding the overlap of the
sub-islands within the large first order islands, so their results are valid only close to a cyclotron
harmonic; specifically they require 3 < 0.15. Of particular interest is the minimum threshold for a

given ». We obtain this by substituting r = » into (4.4.25) to give

a=v2P)a, (4.4.26)
or in unnormalized terms,
(4.4.27)

Equation (4.4.25) can also be used to determine the region of velocity space that is
stochastic. For instance the upper limit can be found expanding (4.4.25) in the limit r » » and

solving for r, giving -
r = (@an)¥¥(2/m)' 3. (4.4.28)

Since the Bessel function cuts off extremely rapidly for r < v the lower limit of the stochastic
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region is approximately given by r = . However the more strongly nonlinear effect of trapping
(Sec. 3.1) is operative here. This allows particles within va of v to be accelerated into the

stochastic region r > ». This lowers the lower limit of the stochastic region to
rey-va. (4.4.29)

In Fig. 4.43 we plot the limits of the stochastic region of velocity space as a function of a as

given by (4.4.25) and (4.4.29) for a fixed ».

As we have seen trapping occurs near r = p. Also this is the region of velocity space that
becomes stochastic first, at a field given by (4.4.26). This suggests that we should be able to
derive (4.4.26) from trapping considerations. Indeed this is so, and the scaling of (4.4.26) may be
derived if we state that the motion becomes stochastic when trapping is "effective.” We define
“effective” here to mean that the particle spends at least a trapping bounce time in the trapping
region. The trapping region is given by ¥ > » - Va (see Fig. 4.4.4). The time a particle travelling

at v spends in this region is given by
22vva)'/2, (4.4.30)
assuming v < v, which we can check a posteriori. The bounce time (inverse bounce frequency) is
1/Va. (4.431)

Equating (4.4.30) and (4.4.31) gives (4.4.26), as required.
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Figure 4.4.3. The limits of the stochastic region of velocity space as given by (4.4.25) and (4.4.29)
for » = 30.23. The crosses (x) give the numerically observed values. The terms "Diconnected
Stochastic” and "Connected Stochastic® are used to distinguish motion of the type shown in Figs.
3.2.3 and 3.2.4 respectively.

Figure 4.4.4. Derivation of stochasticity threshold in terms of trapping.
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Section 4.5. Inclusion of Small Parallel Propagation.

The discussion up till now has been on the interaction of an ion with an electrostatic wave
propagating exactly perpendicular to the magnetic field. This makes the analytic and numerical
work considerably easier, since we can completely ignore the parallel motion. However lower
hybrid waves used for RF heating always have a slight parallel component to their electric field (if
" they did not they would not penetrate the plasma). Thus if we are to determine the interaction of

a8 particle with a lower hybrid wave, we must include the effect of parallel propagation.

First we must generalize our notation somewhat. We will normalize lengths to |kI™'; thus in

normalized terms
k = [0, sind, cosé] = [0, &, ], (45.1)

where @ is the angle k makes with the magnetic field Boi, and its direction cosines are § and [.
The normalized electric field is given by a = quol(rrﬂz). As a vector @ is given by

@=[0,¢r]. (45.2)
The equation of motion is then
dav  _ a
o = acos(k-r - vt - §) + v xI. (45.3)

As in Sec 2.1 the x component of (4.5.3) may be integrated to give ¥ = y, giving for the other

components
Y+ y=tacos(by + tz - ot - ¢), (45.4)
2 = Pacos(by + Lz - vt - ¢). (455)

Now for [' sufficiently small (in a sense we will make precise in a moment) we can replace (4.5.5)
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by 2 = 0. Then the solution for z is
Z=2z,= v,t + const, ' (45.6)

where v, is a constant. Now if (4.5.6) is substituted into (4.5.4), it is clear that the constant may
be absorbed into the ¢. The resuiting equation reads

¥+ y=tkacos[ty - 0 - pv )t - ¢], (45.7)
or multiplying by ¢
EY + by = Facoslty - & - tv,)t - 8. (45.8)

If we compare (4.5.8) with the orbit equation (2.1.10) we see that (4.5.8) is identical if we make

the following replacements in (2.1.10):
yoby, a+fa, vopuv-ty,. (45.9)

Thus the solution to (4.5.8) is the same as (2.1.10). Making the above replacements in (4.4.25) we

know that motion becomes stochastic above the stochasticity threshold
-1
a> |l (45.10)
l‘lllJ‘l (Er)l

Remember that (45.10) was derived assuming that 2 = 0. We must now go back and check
for what parameters this is valid. To do this we solve for z by integrating (4.55) along

unperturbed orbits (yo = rsint, z, " v.t). i.e. we solve
2, = facos(frsint - pt - ¢)

= fa T, J (tr)cosl(m - wt - §), (45.11)
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where z = z, + z,, z/(t = 0) = 0. As we know from Sec. 2.2 the solution to (45.11) is secular if p
= {, an integer. We consider only this case as it leads to the largest values of z, and hence gives
the tightest restriction on the validity of (45.10). Including only the m = ¢ term in (45.11) and

taking the cosine term to be unity, we obtain
z, = §ral it (45.12)

Now we argue that the stochastic nature of the motion for fields satisfying (4.5.10) is something
that is established on the time scale of a cyclotron period. Thus as long as the phase factor le
appearing in the perpendicular equation of motion is small at ¢ = 1 then the presence of this phase
factor at later times won't alter the fact that the motion is stochastic. Expressing this condition as

a condition on @ we find that

«« |72:%I (45.13)

for (45.10) to be valid. The results of Smith and Kaufman (1975) are that the motion is stochastic
i '

a> |ﬁ%l (45.18)

Thus we see that if (4.5.13) is not obeyed, so that the stochasticity condition (4.5.10) cannot be
spplied, the motion is still stochastic, since (4.5.14) is then satisfied. We may combine (4.5.10) and
(4.5.149) to give the general stochasticity condition

o> ] 155;:&) | |4#5i-"(ﬁr) It (45.15)

(For uniformity we have replaced £ by g; this incurs negligible error.)

If Fig. 4.5.1 we plot what region of velocity space becomes stochastic as a function of a and

at a constant @, close to 90° Since both of the terms in (4.5.15) rapidly become large for {r < p,
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Figure 45.1. The stochastic regions of velocity space, as given by (45.15), for various a (marked

by the curves), and for v = 30.23, ¢ = 80°. (The jaggedness is an artifact of the plotting routine.)

ar ! Stochastic

Coherent

Figure 45.2. Variation of the stochasticity threshold with 8, as given by (4.5.16), for the region of

velocity space r = »/E, Ve ® 0.
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the motion is "never" stochastic in this region (although as we discussed in Sec 4.4, trapping does
cause the edge of this region to become stochastic). At a particular a the stochastic region of
velocity space is closed and has the line ir = p as one of its boundaries. The region is symmetric
about Y -'vr" (ie. p = 0). The boundaries that are nearly parallel to the v, axis are due to the
expression of Smith and Kaufman (1975), the first term in (4.5.15). The other boundaries are due
to our result, the second term in (4.5.15).

To show the dependence of (4.5.15) angle we pick the region of velocity space r = v/, v,
» 0, Le. just inside the Er > p region. For » large we use the appropriate limits of the Bessel

functions (eqs. 9.3.23 and 9.3.27, Abramowitz and Stegun, 1964) (4.5.15) becomes

13 213
oP v ] (45.16)

a= MH[BEE, E{

(see Fig. 4.5.2). The second term is the smaller in (4.5.16) for | < 0.6 v"”, approximately, or
0> jr-060"/°, (45.17)

For lower hybrid waves » is typically between 20 and 40, while [ is aron'.md \/m.jm’ (= 1/40 for
hydrogen plasmas). Thus the second term is applicable in this case. Since [ is small, ¢ = 1 and
(4.5.16) reduces to the original stochasticity threshold, (4.4.26).
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Section 4.6. Inclusion of Weak Magnetic Field Inhomogeneity.

The other important effect omitted from our analysis thus far is magnetic field
inhomogeneity. In tokamaks this inhomogeneity is primarily due to the 1/R drop-off of the
toroidal magnetic field. However because of the complicated way the lower hybrid ray spirals
sround the tokamak (Kulp et al, 1976), the inhomogeneity in general appears in all three of the
coordinates our cartesian coordinate system (with Z along the magnetic field and k parallel to ¥).
We would be surprised if weak inhomogeneity effected our results significantly for two reasons:
the stochasticity condition (4.4.25) is not dependent on cyclotron harmonic resonances; and
stochasticity is known to occur in many systems with inhomogeneous magnetic field (Dunnett et al.,
1968; Jaeger eof al., 1972; Lieberman and Lichtenberg, 1973). For these reasons we have not

made an exhaustive study of the problem. We will consider here two special cases

(Case 1) B= Bo(l + BkyN, (4.6.1)
and
(Case II) B= Bo(l + BKX)T. (4.6.2)

where B is a measure of the change of B in a wavelength.

Considering first Case 1 where B is given by (4.6.1), we see that, as with the homogeneous
magnetic field case (Sec. 2.1), the x component of the Lorentz force law is again trivially

integrated to give

k=y+ 18/, (4.6.3)

where as before we have set the integration constant to zero by choice of the y origin. The
reason we able to do this is that the V8 and -E x B drifts are parallel to one another. Thus one

component (y) of the guiding center position remains fixed. Substituting this into the y component
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of the equation gives

y+y=acosly-vt-¢) - §8y% - 1% (4.6.9)

Since (4.6.4) is identical to (2.1.10), except that the force term has some additional terms.
Therefore only a slight modification of the numerical routines used to integrate (2.1.10) is needed
to integrate (4.6.4). In Figs. 4.6.1 and 4.6.2 we show the surface of section plots for g = 103
We see in these plots the same behaviour as for 8 = 0. At intermediate fields there are chains of
islands and part of phase space is stochastic. At higher fields the islands have overlapped, leading

to widespread stochasticity.

In order to understand this behaviour in more detail we look at the Hamiltonian for the

system. It is then readily ascertained that the Hamiltonian,
H =1, - asin(VZ2, sinw, - w,) + §8(21 %2 sin%w, + } p%21,)?sin’w,, (4.6.5)

where y = JZII sinw,, describes this system. We follow the same prescription given by Walker
and Ford (1969) as we followed in Sec. 4.4. This enables us to put the angle dependent terms
depending on B into some angle independent terms, and angle dependent terms which are o(B).

The transformed Hamiltonian becomes

Hel, - 2p’:,2 + vl, - asin(V2] sinw, - w,) + B2 x (angle dependent terms).  (4.6.6)

1

Since B is smell, the presence of the angle independent ﬁz term does not effect the analysis
presented in Sec. 4.4 deriving the first and higher order islands thresholds. Thus the effect of
finite B is just to cause an additional shift in (Wl) that get added into both (4.4.4) and (4.4.8). This
additional shift is just

A(W,) = (331 X-§ 821, %) = 3 8%, (4.6.7)
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Figure 4.6.1. The surface of section, I, for v = 30.23, a = 2.4, and magnetic field given by (4.6.1)
with g = 103, Crosses (x) denote the initial positions of the particles and dots (-) subsequent

crossings. The particles ere followed for 300 crossings of the w, = plane.
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Figure 4.6.2. Same as Fig. 46.1,but a = 4.
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The shift in (Wl) is second order in B because the y coordinate of the guiding center is constant,
and so to first order it samples a constant magnetic field. The corresponding change in vl(wl) '
(see Fig. 4.4.1) is iﬂzvrz. For the parameters of Figs. 4.6.1 and 4.6.2 this shift varies from 0.046
at r = 45 to 0.057 at r = 50. Since this shift does not vary much for the range of r plotted, we
are effectively seeing in Fig. 4.6.1 the island structure characteristic of § = 0, @ = 2.4, and v =
30.23 + 0.05 = 30.28. In confirmation, we note that the two chains of fourth order islands visible
in Fig. 4.6.1 are centered at around r = 49, where the sine factor in the denominator of (4.4.21) is
positive, indicating that ¢ < 0, and that the effective » is greater that 30;". Since the stochasticity
condition is independent of 3, small changes in the effective wave frequency do not change the

field at which the motion becomes stochastic.

The island structure is determined by vl(W,); thus we may argue that the stochasticity
thresholds (4.4.25) and (4.4.26) may be applied when B # 0 as long as the change in v/{w,) due to
P meets two conditions. Firstly the fractional change must be small compared to unity. Secondly
the change in v/ (\irl) when r changes by unity must be small. This latter condition is requirement
that the islands cannot "feel” the effect of B over the scale length of the island structure (~ 1).

Stated more concisely these conditions read
B«r'andp «@r)'/2 (4.6.8)

For r > » the first of these conditions is the more stringent. We may state it as follows: The
fractional change of B over a Larmor radius must be small; a condition that is well satisfied in

Tokamaks.

We turn now to Case II where the magnetic field is given by (4.6.2). In this case we cannot
simply integrate either component of the Lorentz force equation, since the E x B motion due to the
wave is perpendicular to the VB drift, so that neither component of the guiding center position is

conserved. To derive the Hamiltonian we begin by writing down 4.1.1 with
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A = - Byl + PRk, (4.6.9)

We normalize the Hamiltonian as in Sec. 4.1, and transform it using the generating function
Fym(Py=vt-Xx+ }B2) s P iy vt - $ +P) (4.6.10)

[cf. (4.1.5)) and then using the generating function (4.1.8) to obtain

H eI, +l, - asin(V2I, sinw, - w,) - Bl + V2I, cosw )21, sin®w,, (4.6.11)
where
y = V2l sinw, - wy + vt + ¢, x + }pi® = -1, - V2I cosw,. (4.6.12)

Note that ‘i’z is no longer a constant. We again perform a transformation converting the B
dependent terms in (4.6.11) into angle independent terms plus terms proportional to ﬂz. The

resulting Hamiltonian reads
He I, +vl, - B, + }B1L,A), - §6°1,2 - asin(V2]| sinw, - w,)
+ B2 x (angle dependent terms). ' (4.6.13)
Evaluating (Wi) and (Wz) we find that
()) = 1 - B, + §B1,%) - §8%, + (a dependent terms), (4.6.19)
(Wp) = v - BI,(1 + BL,). (4.6.15)

There are new terms appearing in both expressions. The terms in ()’s in (4.6.14) arise because
the E xB motion of the ion is parallel to the magnetic field gradient, and thus can move the

particle’s guiding center into regions of different magnetic field; note that from (4.6.12), the



Page 92 Section 4.6

negative of I, is a measure of the x coordinate of the guiding center. The additional terms
sppearing in {¥,) are due to the fact that the VB drift of the ion is parallel to the wavevector of
the wave, causing a Doppler shift in the wave frequency as seen by the ion. We now ask under
what circumstances the stochasticity thresholds, (4.4.25) and (4.4.26), can be applied. Since the
$8%1, term that appears in (4.6.6) also appears in (4.6.14), the conditions (4.6.7) must still be
satisfied. For the other terms we use the same reasoning as in Case | but this time to (\irz)l(\irl).
The requirement that the fractional change in (u'vz)l(drl) be small means that gI, « » in (4.6.15)
(note that we can choose the x origin so that /, is small, so there are no additional constraints due
to the I2 dependent terms). Since H is a constant of the motion a change in r of unity (i.e. a
change in Il of r) leads to a change in Iz of r/v. Thus we require that the change in (irz)[(ﬁrl)
when either I, changes by r or I, changes by rfv, be small; that is g « r~!, which is already
specified. The former condition is slightly more stringent than (4.6.7) giving

B =i, (4.6.16)

slthough (4.6.16) and (4.6.7) are the same in the limit r = ». Also it should be noted that all the
conditions given on the applicability of the stochasticity thresholds have been sufficient conditions.
Equations (4.4.25) and (4.4.26), or slight modifications of them, may be correct when these
conditions fail. However the conditions we have given do enable us to directly apply the resuits

of Sec. 4.4 to tokamak-type plasmas.
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Chapter 5. APPLICATION TO RF HEATING

Section 5.1. Simulated Heating Experiment.

One problem with the approach of the last chapter is that it takes a static view of the ion
motion. The results of that chapter tell us that above a certain field the ions will get heated, but
they don't tell us how fast they get heated. The results of Sec. 3.1 are helpful in this regard:
there, we computed the average energy gain per cyclotron period as a function of the initial

velocity of the particle. In this section we wish to extend those results to longer times.

We start by asking the question: What happens to a distribution function of ions when a
qniform wave is turned on at t = 0? For realistic parameters the perpendicular phase velocity of
lower hybrid wave is at least a few times the ion thermal speed, v, = JTTI'r—n; Thus the bulk of
the ion distribution function satisfies r < » - Va, placing those ions in the coherent region of
velocity space. These ions will not exchange energy (on the average) with the wave, but are
responsible for supporting the wave; that is they provide the real part of the ion susceptibility.
Only a very few particles in the tail of the ion distribution function which satisify r > » - va will
exchange any time-averaged energy with the wave. Thus we were justified in not treating the
interaction between the wave and the ions self-consistently, neglecting the action of the ions on
the wave. If the distribution function is a Maxwellian then we incur negligible error by assuming
that all the particles in the stochastic region have a perpendicular speed corresponding to the
minimum energy side of the stochasic region, ie. r > » - va. Thus an adequate model of the
distribution function of the interacting particle at t = 0 is a delta function just inside the stochastic

region.

Figures 5.1.1 and 5.1.2 show the results of integrating the orbits of 50 particles with the
same initial speeds, but with evenly distributed phases with respect to the wave. The other

parameters are: v = 30.23, a = 20. The horizontal axis is the number of cyclotron orbits, which is
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Figure 5.1.1. Heating of a group of 50 particles with a = 20, v = 30.23, initial velocity r = 23, and

evenly distributed phase.
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0 Number of Cyclotron Orbits 100

Figure 5.1.2. Same as Fig. 5.1.1 but on a larger scale.
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nearly proportional to time. Initially there is a rapid increase in the rms velocity of the particles.
This is followed at about the 10" cylotron orbit by a slower heating of the particles. This heating
continues for longer than 1000 cyclotron orbits. From Fig. 4.4.3, we see that the stochastic region
of velocity space extends up to r = 150 for the parameters of Figs. 5.1.1 and 5.1.2. Thus by the
1000™ cyclotron orbit the particles are occupying a substantial fraction of the stochastic region of

velocity sbace.

In Fig. 5.1.3 we plot the distribution function, f, of the particles at late times. This was

obtained by averaging over the cyclotron orbits 800 - 1000. We have defined f such that
J2nrfdr=1. (5.1.1)

Thus f represents the distribution function in two dimensional perpendicular velocity space, before
the cyclotron angle has been integrated out. Note that, except at high velocities, f is quite flat;

the distribution function is plateaued in two dimensional velocity space.

Discussion of the final state of the particles is rather academic, since lower hybrid waves
excited from a waveguide array are not uniform. We model this by saying that a particle spends
only a finite time, W/v., in the region where the waves are (W is the total width of the waveguide
array). .Taking vy ~ vy, implies, as we will see, a time on the order of 10 - 20 cyclotron periods.
On this time scale the most important effect is the initial rapid energy gain by the ions. Since this
energy gain is experienced by particles just inside the trapping region, it is related to the
trapping velocity. In fact the rms velocity after a few cyclotron orbits is around » + va, so the
energy gain per particle on a single pass through the lower hybrid ray is given by the
expressions for (A£)__, (3.15) and (3.1.6). The flux of ions entering the ray is nyv,, (particles
per second per unit area in the perpendicular plane), where we use v, as a representative
parallel velocity for the ions. Assuming that-tho jon distribution function is Maxwellian, then only a
fraction,
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f(t = 0)

Figure 5.1.3. Perpendicular velocity distribution function for the particles in Fig. 5.1.1 averaged
over orbits 800 - 1100. (This is the two dimensional distribution function before the Larmor angle

has been integrated out.) Normalization is such that [ 2arf dr = 1.
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oxp(- Ko/k - v )?/v, 2], (5.1.2)

of the particles are in the stochastic region of perpendicular velocity space, and most of these

particles will be travelling at w/k - Vir Thus we can estimate the energy gain of the ions to be,
2m (@/Kwv,, nyvy, expl- Ho/k - v )2 iv 2. (5.1.3)

The dimension of this quantity is energy per second per unit area of the ray in the perpendicular

plane.

Section 5.2. Role of Collisions.

In deriving (5.1.3) we modeled the spatially inhomogeneous field as a field that is turned on
at t = 0 and off again at W/vn. In practice an ion has many encounters with the lower hybrid
ray. Assuming the lower hybrid ray subtends a poloidal angle A# then the mean time between

encounters with the field is
'o - (21Rlvn)(2rlA9). (5.2.1)

Thus a more realistic model for the field would be to have switched on for a time W/v" with a
duty cycle of to. The most uncertain aspect of extending (5.1.3) to this case is the assumption
that the distribution function of ions entering the lower hybrid ray is Maxwellian. Such an
assumption will give the right answer for the number of particles in the stochastic region, but the
distribution function of particles within the stochastic region will not in general be part of a
Maxwellian, because these ions will have been affected by previous transits through the field. If
there were no collisions then the effect of subsequent passes through the ray would be .just to
continue on the curves in Fig. 5.1.1, which results in much slower heating. The effect of collisions,

if they ere sufficiently frequent, is to reinstitute a Maxwellian tail while the ion is streaming
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outside the ray, so that (5.1.3) remains valid. In this section we will determine how collisional the

lons must be for this to be so.

The effect of one transit through the ray on the distribution function is to create a plateau
in perpendicular velocity space at w/k with a size of about v, . This is usefully regarded as the
sum of a Maxwellian and a perturbation, fp(v). The perturbation is centered at v - w/k, has an
extent of about v,, and has velocity space integral of zero. If the perturbation is small (true
when w/k > v;,) then the equation for the relaxation of the perturbation to zero may be written

as (Trubnikov, 1965)

%!fL. -3 % (622)
where
Jo/P = Pt ym, - O*P .V 1, (5.2.3)
0P = 19 9 v v, (5.2.4)
PP = 3P ¥ g m P Img, (5.25)
(P - x[%]’. (5.2.6)
tg=Vy0: 0=y Vg, (5.2.7)

and A is the Coulomb logarithm &n(r, /r_.), which is typically about 16 to 20. If the field particle

distribution functions, fp, are Maxwellian then ] becomes
Jdlﬁ - my/(my + mp)v.“’pvfa -}vf’ﬁvzv,ra + Y J_"’p - v'“m)vv Vofys  (5.2.8)

where Vor Vo and v, are the slowing down, parallel diffusion, and perpendicular diffusion

frequencies ("parallel” and "perpendicular” here refer to the direction of the test particle velocity,



Section 5.2 Page 99

not the direction of the magnetic field). [Expressions for these frequencies may be found in the
NRL Plasma Formulary (1976% note, however, that (5.2.8) differs in several respects from the

formula given there.)
To understand the evolution of the perturbation, fp, we look at a simple case for £, namely
fo = v, = v 0¥y, = v )2y ). (5.2.9)

This is a ring distribution function in velocity space. We are interested in finding how £, diffuses

in perpendicular velocity space. From (5.2.8) we compute
Ly, - )P =0 2By 2 s by Oy 2. (5.2.10)

>
Vio Vie 7 Vg

disappears once it has spread a distance v, in perpendicular velocity space, for then the positive

Now we are intested in an fp for which = w/k and Yap ® Vi 8° that Also fp
and negative parts of it would cancel out. Thus the time it takes for collisions to destroy the

plateau is given by

r =9, v, /K, (5.2.11)

where for v, we use the sum of v.”' and v"”. In the usual case we have v, > w/k > vy, in which
case, assuming T. % T, and the plesma is hydrogen, v.”' < v.’” holds for w/k < 5v,. However we
will require that this latter condition be satisfied so that there be an appreciable number of
particles in the stochastic region. Thus in cases of interest we may use = v.’” in (5.2.11), where

from the NRL Plasma Formulary (1976)

o

/! = 5110713, n T3 o/ (kv )T 571, (5.2.12)

where n, is in m= and T, is in eV. In this case the smoothing out of the plateau results in bulk

heating of the ions. If to, the time between encounters with the field, is greater than r then
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(5.1.3) may be used for each transit through the ray. If t, < r then (5.1.3) can only be applied

approximately every flto encounters with the field.

Section 5.3. Design of Experiment.

Let us summarize the results so far: The motion becomes stochastic above the threshold

field

E 1/3

=0 L[ﬁ] w

B, >ale g (4.4.27)
The stochastic region of velocity space is close to v, = w/k, extending approximately v," -

\/q_l:':i;v_k below w/k. These results were derived for a wave propagating perpendicular to the
homogeneous magnetic field, but we may apply them in cases where 8, the angle of k to the
magnetic field, differs from 4w by no more than 0.6(R/w)/® [see (45.17)] and if there is negligible
change in the magnetic field over a Larmor orbit of a particle with v, - w/k. Since the scale
length of magnetic field variation is R, the major radius, this latter condition is automatically
satisfied if the ions are confined. We have modeled the effect of a spatially finite ray by saying
that a particle spends only len in the ray. Assuming that this is several cyclotron periods and
that the distribution function of ions entering the ray is Maxwellian, the rms velocity gained by the
particle on travelling through the ray is 2v, . The condition under which we may assume that the
entering distribution function is Maxwellian is that r be shorter than the mean time between

encounters with the field, t,, where
to = (27R/v,)(27/A0), (5.2.1)
r = v, /03 (5.2.11)

and »_ is given by (5.2.12). If this is the case, then energy gain by the ions per second per unit
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area of the ray in the perpendicular plane is
2m, (@/Kv,, ngvy, expl- Hw/k - v )%/v E]. (5.1.3)

We will now see whether stochastic heating can be used to heat a realistic tokamak plasma.
Our purpose is to uncover the issues involved in designing an experiment. In order to focus the

discussion we will pick two sets of plasma parameters, as follows:

Case | Case 11
Plasma H H
no 3x10'? m3 (3x10'3 cm™®) 102! m2 (108 cm™®)
8, 2 T (20 kG) 10 T (100 kG)
T, 800 eV 2 keV
T, 400 eV 2 keV
o 5.4x10° ™! (860 MHz) 2.9x10'% 5™ (4.7 GHz)
/9%, 28 3l
R Im Im
L] 0.2 m (20 cm) 0.2 m (20 cm)
! 100 KA 1 MA

These values are those of the central plasma. For simplicity we will assume that n,, T , and T,
scale proportionally to one another as a function of minor radius. In practice the electron
temperature profile is more peaked than the density and ion temperature profiles. The goal is to
design a waveguide array such that the lower hybrid waves that it excites can appreciably heat
the plasma. If we look at (5.1.3) we immediately recognise that the exponential is the dominant
factor; if the power dissipated is not to be negligible then the exponent in (5.1.3) must not be too
negative. As we will see later, we are generally interested in fields such that v, « w/k, in which

case we demand that o/(k Lvn) must not be large, or typically
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w/(k,vp,) < 4. 5.3.1)

The first task is to see if lower hybrid waves satisfying (5.3.1) can be excited in a plasma. We
assume for the time being that the stochasticity threshold, (4.4.27), can be satisfied (we will check
this later). T;here are a number of constraints we must satisfy. The first is that the paralliel
wavenumber must satisfy the accessibility condition (Golant, 1971; Troyon and Perkins, 1974;
Theilhaber, 1976). Using the results of Theilhaber (1976) we find that n, = k,c/w must satisfy

n2>[1 - W?/R )T, (6.3.2)

If o? < 2.0 and 0 2/w? > /(@ N, - o), and

2
w w w w w_q1/2
2 - A e pe_ _ _p_
nZ>1+2 n.z uzz +2 R, [1 + n.z ”zz] , (5.3.3)

otherwise. Here the plasma frequencies are evaluated at the center of the plasma. In practice we
will find that the accessibility condition becomes approximately n, > 2. Except for parallel
wavenumbers close to this accessibility condition and in the very low density region the waves

propagate according to the electrostatic dispersion relation,

K (0 K2+ K00 K2 - ok, ® - book, 2,2 - cok®, (5.3.4)
where
2 2 2
0) o w
"1'“,,. {’? Ky=- 5 (5.35)
2 2 2 2 2 2 2 2
.....3.:'2!.:"‘_...3_&_7-‘, ?.’E.:.L 52&"7'
q n.z n‘z w2 o' w2 n‘ o2 0
2 2 2
o v w 1 4
c-a-:;-_:';-\»a%%. (5.3.6)

We have defined v, as T.Im., and have assumed that f, « w « Q. The coefficients describing

the finite temperature effects are found by expanding the Harris dispersion relation (Harris, 1961)
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for small k. In writing (5.3.4) we have assumed a slab geometry, where the density and
temperature are functions only of x, the distance from the wall of the tokamak. In Fig. 5.3.1 we
have plotted the solution of (5.3.4) against no(x), for Case Il and with n, = 4, w=13 YL H max’ For
simplicity we have assumed that the temperatures are proportional to the density, and that the
magnetic field is constant. The curve of n, stays quite close to the cold plasma solution, the
dashed line in Fig. 5.3.1, until  is close to the local lower hybrid frequency, where n, starts to

increase rapidly leading eventually to wave conversion to a ion thermal wave.

As the wave penetrates two direct heating mecahnisms may become operative: electron
Landau damping (Bers et al, 1976a) and the stochastic ion heating we have been discussing.
[There are also a number of other processes which can effect to penetration of the ray or can
lead to heating, e.g. parametric decay (Porkolab, 1974) and filamentation (Morales and Lee, 1975).
Also nonlinear effects may modify the process of electron Landau damping (Bers et al,, 1976a).]
The effectiveness of both heating mechanisms increases exponentially as a certain factor
decreases. This factor is w/(k .Lvn) for the stochastic heating and wl(k‘vr.) for Landau damping,
and both factors decrease as the wave penetrates into the plasma. The decrease is due to the
increase of the temperature and also, in the case of the stochastic heating, to the increase of k,
with increasing density (see Fig. 5.3.1). We will begin by assuming that the wave is very heavily
damped once either of these factors drops below 4. At the outside of the plasma where k, ~ k,
we have w/(k _I_vn) > w/(kyvy,). However due to the increase in k, both due to cold and warm
plasma effects this situation can reverse at some point as the wave penetrates. The wave will
have damped on the electrons if this crossover point occurs for wl(k.vr_) < 4; however if this is
not the case and if k, becomes sufficiently large then the wave may damp on the ions. Thus the
increase of k ) close to wave conversion is very important, since it leads to a slowing down of the
wave and makes (5.3.1) easier to satisfy. From (5.3.4) we can find the valuve of k, at wave

conversion
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Figure 5.3.1. Plot of n  against density, n(x), for the parameters of Case I,and @ = 1.3 Wy s
n = 4. The solid line in the electrostatic dispersion relation given by (5.3.4), and the dashed line

is the cold electrostatic dispersion relation, (5.3.4) with a(x), b{(x), and c(x) = 0.
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4 2 4
k" = (K Ik, + k) a. (6.3.7)

In order for the wave to reach this wave conversion point electron Landau damping must be small.
In that case we can drop the second term in the numerator in (5.3.7) (we may check this
sfterwards). In addition for Cases I and I, the ion term in the expression for s, (5.3.6), dominates

over the electron term st wave conversion. Then (5.3.7) becomes

b (1"

At wave conversion the wave frequency is related to the local lower hybrid frequency by
kv, (T \1/291/2
. MTef i
o [1 +2V3 " [r.] ] . (5.3.9)

This equation shows us that if the wave is to reach wave conversion before being Landau damped
then @ must be quite close to U although it is still possible that the wave will damp by

stochastic ion heating before reaching the wave conversion point.

In Figs. 5.3.2 and 5.3.3 we show plots of both wl(kl_vn) and w/(kv v, ) as a function of
density (again assuming that the temperatures are proportional to density). In these plots w is
fixed and is close to the central value of w , and curves for various n’s are shown. Note that the
low nS’s propagate to the maximum density without getting damped on either the ions or the
electrons; for intermediate values of n, the wave is damped on the ions close to the center of the
plasma; and for the highest values they are damped on the electrons closer to the 6utside of the
plasma. Of interest then is the values of n, at these transitions and the position in the plasma
where the heating changes from electron Landau damping to stochastic ion heating. Figures 5.3.4
and 5.3.5 show the transistion values of n  as a function of wlmw for our two cases. Note that if
the frequency is too high the curves cross, indicating that there is no range of My which will heat

the ions. Also shown in these figures are curves showing the accessibility condition, (5.3.2) and

(5.3.3). Figures 5.3.6 and 5.3.7 show ths curves of the density at which the wave changes from
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Figure 5.3.2. Plots of w/k n (the solid lines) and ulk.v,.. (the dashed lines) against n{x) for Case

I, uluw' — 1.2, and various n,'s (shown by numbers on the figure). The wave is assumed to be

heavily damped if either w/k LV, Of u[k.v,.. drops below to dotted line.

n(x)/n, 1

Figure 5.3.3. Same as Fig. 5.3.2 except for Case Il and wlww, max ™ 13-
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Figure 5.3.4. Graph showing what species the various Fourier components heat, as a function of

o, for Case'I. The lowest curve gives the accessibility condition, (5.3.2) and (5.3.3).
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Figure 5.35. Same as Fig. 5.3.4 except for Case IL
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Figure 5.3.6. The density at which the wave changes from heating the electrons to heating the
ions for Case I.
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Figure 5.3.7. The same as Fig. 5.3.6 except for Case IL
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heating the electrons to heating the ions. These plots confirm the simple picture we gave by
looking just at the wave conversion point. They indicate that only quite close to the lower hybrid
frequency can stochastic ion heating be realized. The maximum frequency that can be used may
be found by substituting w/(k J."n’ - wl(k'vr.) = 4 in (5.3.4) and assuming that the ion term of a is

the only thermal term to come into play. The resulting expression for the maximum frequency is

T

[%,]2 -1 (53.10)

This gives values 1.3 and 1.5 for mlmm for Cases I and II, close to the more exact values given in

Figs. 5.3.4 and 5.35. We will pick the following parameters to describe the wave:

Case | Case 11
w 65x10° 57! (1 GHz) 3.8x10' s°! (6 GHz)
oo, 1.2 13
My, min 43 28
My max 7.2 5
TN 0.77 0.64

The value of n . (x) is the minimum density which can be heated by these waves. For these
frequencies the lower hybrid wave propagates close to perpendicular to the magnetic field so that
(4.4.27) is the correct stochasticity condition. Designing an array so that the bulk of the field lies
in the bounds on n, given above appears to pose no particular problem; see, for instance, Bers

and Karney (1974).

We now must check that the field amplitude is sufficient for the stochasticity condition
(4.4.27) to be met. Substituting (5.3.2) into (4.4.27) we obtain

E%I:! > [g]""‘. 5.3.11)
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The right hand side of (5.3.11) shows only a weak dependence on w and is equal to about é for
both Cases | and II. The magnitude of Eo in the center of the plasma must be at least 120 kV/m
(1.2 kV/cm) in Case I and 1.3 MV/m (13 kV/cm) in Case Il. If the widths of the waveguide arrays
are 0.1 m (10 cm) and 50 mm (5 cm) in the two cases, then it take a thermal particle 16 and 17
cyclotron periods to go through the lower hybrid cone. Thus the power gain formula, (5.1.3), that
we derived for short times in valid. We may compute v, for these fields, and we find that in both
cases vhl(mlk) is about 5% The time it takes for the plateau to disappear, 7, is 70 and 19 ps;
these times are less than the times between encounters with the field, tv in our two cases, which
are 130 and 60 ps, respectively (we have assumed that A0 = %II'). Thus collisions are effective in

channelling the energy gain by the tail particles to the bulk ions.

The fields we have quoted are the values of the electric field where the stochastic heating
is taking place. We would like to express this as a field amplitude and power density at the edge
of the plasma. To do this we use the WKB enhancement factor derived by Briggs and Parker
(1972). As long as the wave obeys the cold plasma electrostatic dispersion relation then the
amplitude of Eo is proportional to

Ik, I/,

— 3.12
(K, K4 ®312)

Close to the slow wave cutoff, w = W g and s0 K, = -K = 1 and k, = -k, thus (5.3.12) gives the
WKB enhancement of the electric field compared with the field just inside the cutoff. Evaluating
(5.3.12) at the maximum density using the cold plasma dispersion relation gives amplification
factors of 10.9 in Case 1 and 7.9 in Case II. Thus the fields near cutoff in the two cases are 11
KV/m (110 V/cm) and 160 kV/m (1.6 kV/cm) respectively. The power flow in the lower hybrid

waves is given by the electrostatic power flow formula (Bers, 1975):

5y 2 ] (53.13)

(K+K)-k
5 --i‘omx%[—-—-;‘-:-')— s Lkzl =
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where K is the dielectric tensor, and Kf its tranpose. Close to cutoff the waves are not influenced
by finite temperature effects so K is independent of k and the second term in [J's is zero.

Computing the power flow perpendicular to the wall then gives
o -2
s, =4 K ? (5.3.14)

where again the evaluation is just beyond the slow cutoff at a point where K| = -1. Using central
values of n, [(n., max * My, min’/2] and the minimum values of the fields we derived above then the

power flow is 28 kW/mZ and 9 MW/m? in the two cases.

In order to have a measurable effect on the ion temperature, we demand that the RF power
equal the ohmic heating power. Assuming that the energy confinement time is not a strong -
function of temperature this would enable us to roughly double the ion temperature. If we take
the loop voltage in our examples to be 3 V, them the ohmic power input is (VI) 300 kW in Case I
and 3 MW in Case II. With Case I it is obvious that if we used the minimum power of 28 kWImz.
we would have to use too large an area of‘waveguides. However the field strength in this case
could be increased several-fold. Unfortunately increasing the field results in an increase in the
time it takes for collisions to smooth out the plateau caused by the field; thus the wave would
have to penetrate somewhat further into the plasma where w](kvn) is smaller. In Case II, the
srea of waveguides required is & m2. Again this is larger than we would like. In this case the
field near the plasma wall is quite high (1.6 kV/cm), and, due to the lack of experimental data, it is
not clear how much this can be increased. If the field cannot be increased signifiicantly, it would
suggest that a feasible solution might be to bring the RF power to the wall of the tokamak with
only a few waveguides, and to couple to the plasma with a "leaky” waveguide; this would allow

the power to be spread over a large area of the tokamak, with a minimum of external waveguides.
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Section 5.4. Conclusion.

We have shown that a lower hybrid wave can cause stochastic ion motion. The conditons
for this are summaraized in the beginning of Sec. 5.3. It should be emphasized that this is a
nonlinesr process, and so it does not utilize linear damping at cyclotron harmonics. One of the
important results of this work is that there is no cyclotron harmonic "structure” left above the
stochasticity threshold; thus the results apply equally well to cases where the magnetic field is
non-uniform. In Sec. 5.3 we showed how this phenomenon can provide a direct method of heating
the ions using a lower hybrid wave in a present-day tokamak. However such heating will only
take place if the wave frequency is just above the central lower hybrid frequency, and thus in an

experimental situation it would be important to have good control of the density.

Scaling our results up to reactor-sized tokamaks presents some problems that still need to
be resolved. Since the ion temperature is high in a reactor, the collisions will be less effective in
channelling the energy of the heated tail particles into the bulk. Since the distribution function is
less readily Maxwellianized, it may be necessary to account for the slower stochastic heating that

takes place after the rapid initial heating.

Parametric instabilties have been observed in a number of lower hybrid heating
experiments (e.g. Porkolab et al,, 1977), and are expected to take place in lower hybrid heating in
a reactor. The decay products of the injected lower hybrid wave always are at a lower frequency
than the injected wave and they often have a larger k (kAD’ ~ %). Thus the phase velocity of the
decay products may be considerably lower than that of the injected wave, and, if the stochasticity
condition is met, ions closer to the bulk ion distribution can be heated. The work of Reiman (1977)
will enable us to make an estimate of the amplitude of the decay products, and so check whether

the stochasticity threshold will be met.

The hot ion tails that have been observed in recent experiments are probably due to
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trapping and stochastic heating either by the injected wave or its decay products. Similarly the
energy gained by the neutral beam diagnostic in the ATC experiment (Bernabei et al, 1976) is

probably due to these processes.

Lastly our results may be important in the problem of ion cyclotron resonance heating. Our
analysis has been carried out assuming that the wave frequency is much above the cyclotron
frequency. However numerical solutions, similar to those shown in Sec. 3.2, indicate that if the

wave Is of sufficient amplitude, then the motion becomes stochastic even at low harmonics.
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Appendices.

Appendix A. Numerical Integration Scheme for Orbit Equations.

We give here the method for numerically solving the equations of motion (2.1.9) and (2.1.10).
The Adams predictor-corrector method is used (egs. 25.5.3-4, Abramowitz and Stegun, 1964). The
integration is started by a Runge-Kutta method (eq. 25.5.10, Abramowitz and Stegun, 1964). Both
methods are accurate to order AfS. The coordinate, ¥, is also computed [from (2.1.9)] to provide a

check on the computation. The differential equation is written as
y =~ y,

where
Kt,y) =acos(y -vt-¢)-y.

In the following t, = t, + nAt, y, = AL, ete.

The Runge-Kutta Method.
Given: t, X, ¥, ¥,-

returns: x, ., ¥p 10 Yoot

a «Aty,, b, « M)'fn, €« Atfit, y,),
a, « Ay, + b)), b, « At(y, + k), c, + Atfit, + 3AL, y, + 3b)),
"3"“("5"-'!"2)' bs"“(j’n‘i"z ’ ‘3"5'“%’%"’ Vn*ibz)'

a, M(ya + ba), by + M(jf. + "'3) R Ca* AH(tn + Al y, + ba)’
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Xpoy & X, {-(a‘ 422,422, +2,),

ymc-yn+{(b'+2bz+2b3+b‘.

Yot & Vot He, +2cy 4 2¢5 4 ¢p).

The Adams predictor-corrector Method.
Given: bty Xn3 X2 *n1t X Va2 Vo2 Yo Yo yn-a' j’n-z' j'nbl’ j'n' 3?17-3' y’n—:’ y’n-l’ :""n'

returns: L ARTE ARY yml. )"m.
Yot p* Vot AL (B5Y, - 59y, | + 37V, , - 9V, 5
Yatip* Yn* ,‘zar(sym,’p + 197, =55, , + Voo
Vit p ¢ i Yot 9
Yo * Vn* 2‘;&!(9}""’1' pt 197, = 5¥py * Yno)s
Yt & Yo * 22BH95,,, + 195, =55, | + 3, ),
Xnet € Xp * !llu(gyml +19y, =By, * Yo

pn-l ¢ Rtml’ yml)'

A check on the accuracy of the integration was given by computing the energy £ (2.1.14).

The integration of the equations proceeded as follows:

(1) Specity xy ¥ ¥, and t,.
(2) Use the Runge-Kutta method to compute x,, y,, and jf,
ati=1(ne«0, At AD),
i =-1(n«0, At « -AD),
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| = =2 (ne -1, At « -Ab).

(3) Use for i in [-2, -1, 0, 1] set y, « Rt,, y,).

(4) Use the Adams predictor-corrector method to integrate the equations for subsequent
times (nin[1,2,... ).

(5a) For the plots of single cyclotron orbits store the values of Xp ¥, and 5!, for selected /
and terminate step (4) at a specified time, t,.

(5b) For the plots of the crossings of the w, = ¥ plane, exit step (4) after the first crossing
of the w, = w plane. Determine r = -y and w, = (vt + Dog 20 B W, =7 by linear
interpolation. Set t « 0 and ¢ « w, (this ensures that ¢t does not become so large as
to impair the accuracy of the trigonometric routines). Return to step (4) until the

desired number of crossing has been made.

The computations were carried out in MACSYMA on the Macsyma Consortium DEC KL-10 at
the Laboratory for Computer Science at MLT. The integration routines given above were written
in LISP uslr;g single precision arithmetic (8 bits for exponent, 27 bits for fraction, and 1 bit for the
sign). The routines that called the integration routines and stored and plotted the results were
written in MACSYMA.

The surface of section plots were all computed using a step size, At of 103, The running
time with this step size was about 2 s of CPU time per cyclotron orbit. Of this about 6 ms was
needed for LISP storage management activities ("garbage collection™). As a check on the accuracy
of the surface of section plots we have repeated the calculation of Fig. 3.2.3 using step sizes of
1072 (Fig. A.1) and 107 (Fig. A.2). We see that there is excellent agreement between the plots for
all three step sizes. If we check the value of &£, we see that it is accurately conserved. For
instance, consider the particle whose initial position is r = 47.25 and w, = iw in Fig. 3.24 (v =
30.23, « = 4, At = 1073). (The motion of thi§ particle is stochastic.) Initially £ is 1577.208; after
300 cyclotron orbits it is 1577.232, a change of only 15x102%X. The simulation experiment (Figs.

5.1.1-3) was run with At = 3x10~.
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Figure A.1. The surface of section, I, the same parameters as Fig. 3.2.3, and computed using a

step size, At = 1072,
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Appendix B. Calculation of Overlap Condition near a Harmonic.

We present in this appendix the derivation of the overlap condition for islands for the case
where w is close to a cyclotron harmonic (v = n). This calculation was first done by Fukuyama et
al. (1977). This analysis begins with the Hamiltonian expressed in the rotating frame that was
derived in Sec. 4.2

Fetn-nl +vl, - az, J[@n1 )" sinlmi [n - (1 - m/n)d,). (4.2.12)

Because Wl is slowly varying, the dominant contribution to the motion is given by the m = n term
in the sum. This is the term that gives the large first order islands seen in Figs. 3.2.7 and 4.2.1.
The motion around such islands is that of a nonlinear oscillator. To derive the overlap condition
we will transform to the action-angle variables of this nonlinear oscillator. The next most slowly
varying terms in the sum (m = n + 1) are then added as a perturbation. Since the oscillator is
nonlinear its frequency can resonate with the Fourier components of the perturbation leading to
the formation of sub-islands. The overlap condition is then given by comparing the size of the

sub-islands with their separation.
Including only the terms m - n = 0, +1 in (4.2.12) we obtain in the limit » >» 1
Fa(n-wl, +vl, - a @l ) Psing, -as, , 4 L0201 ) sin(@, = @,/m). @)

For simplicity we expand the Besssl functions in the limit 7 > » (eq. 9.2.1, Abramowitz and Stegun,
1964). Since in this limit the amplitude of the Bessel function is slowly varying compared with the
oscillatory part, we will regard the amplitude as a constant. In the same spirit we may replace the

argument of the Bessel functions by its Taylor series expansion about some point, so that

(201 )'/2 = (201, '/2 + rk?, -1 l2nd )2 = r + nal, Jr, (8.2)
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where r = (2n7|°)" 2 is the position of a maximum of Jn. Then (B.1) may be written as
H - SA?l + 972 - aJZTr?cos(nA?llr)sinWl + 2aV2[nr sin(nﬂ?llr)cosﬁ" sin(@,/n)  (B.3)
(3 = v - n). We transform (B.3) to a new set of conjugate variables using
M=nfijr, v= nA?llr. u= Wl - ir, Jp= nrl'zlr, 0,= ﬁlen (B.4)
(note that v and u are shifted and scaled versions of Il and w,). The Hamiltonian, M, is than
M=-3v+J, -Tcosucosv - 2T sinusinvsind,. (B5)
The quantitiy T' is defined by
T =av2frnrd/?, (8.6)

and it gives the frequency of oscillation around the first order islands; note that it is proportional
to . Now if we are very close to a cyclotron harmonic, or, more specifically, if 8 < I then the

first term in (B.5) may be neglected. The lowest order motion is then determined by
My = J, - T'cosucosv. (B.7)

This gives oscillations about pointsl for which v and v are multiples of . The trajectories are
similar to those shown in Fig. 4.2.1. For simplicity we will concentrate on the motion centered at v

= v = 0. The Hamiltonian equations given by (B.7) are straightforwardly integrated to give

sinv = gsn[T(f - fo)!qzl, sinv = ged[T(t - l‘o)lqz]. (B.8)

where sn and cd are Jacobian elliptic functions (Chapter 16, Abramowitz and Stegun, 1964) and

qf =1-M2r2, (B.9)
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The period of the elliptic functions is 4K(qz) [K is the complete elliptic integral of the first kind
(Sec. 17.3, Abramowitz and Stegun, 1964)]1 Thus the frequency of oscillation is

I'r
e — B.10)
2K(®) (

This varies from I' at the center of the first order islands (Mo = -T', g = 0) to O at the separatrix

" between Isl_ands (Mo =0,q=1). We may write Mo in the action-angle variables, Jl and @, as

My = Mo(Jl) +Jy, (8.11)
where J, is given in terms of M, by
1 219 q
Jy = gefveu=2[ =@ . (8.12)

A plot of Mo as a function of Jl is given in Fig. B.1. The frequency, I'Rl, (B.10), may also be
computed from dM,/3J; in Fig. B.2, I is plotted against J,. The variables v and v are given in

terms of J, and @, as
sinu = glJ,)sn(8, /017, sinv = ¢(J,)cd(®,/01¢P), (B.13)
where g(J,) is defined by (B.9).
We now add in the perturbation, the last term of (B5). S_ubstituting (B.13) we obtain
M = M(J,) + J, - 2T'dJ,)sn(8, /R1q) cd(®, /R1qP) sind,, (B.14)

In order to determine the effect of the perturbation we take its Fourier transform. The product
of a sn and cd function is expressible as a single sn function using eqs. 16.14.1 and 16.14.2 of
Abramowitz and Stegun (1964). This sn function may be Fourier transformed using eq. 16.23.1 of
Abramowitz and Stegun (1964) to give
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0 J, o

0 J

Figure B.2. Plot of the frequency, Ii(J,), against action. See (B.10).



Page 122 Appendix B

en®, /21%) cdl8, /21?) = sn(2KD, [xl?) ccl2Kd, /rlg?) = T A, sin[2(2m + 19,1, (B15)

where
__2rn (2m + 1K1 - ¢?)
A, AP cosech[ ) ] (B.16)
(B.13) then becomes
Moldy) + Jy ~TeXJ) £ A, cosl2(@m + 10, - 0,). (8.17)

The motion descibed by (B.17) is that of two oscillators, a nonlinear one, MO(J‘), and a linear one,
Jy The last term in (B.17) couples these two oscillators. Normally the coupling is weak; however
if the frequency of @, (as given by J,) is 2(2s + 1) times the frequency of @, (as given by MU\
then there is a resonance. The m = s term in the sum in (B.17) will then be slowly varying, and

can perturb the motion significantly.

The value of Jl at which this resonance occurs is given by
S e VA PRI 231 A (B.18)
We may determine how the motion become perturbed in this case by ignoring all but the m = s
term in the sum. Since the motion of given by MO(JI) is nonlinear, this term will only be important

for J, close to JI_ o thus we may Taylor expand My(J,) about J, = JI. . BiVing
MolJ,) % M, ) + 8J,/12(2s + 1)] + §T(30/3J,)] ), (VAR (8.19)

where AJl - Jl -J The Hamiltonian then becomes

AJ '
1 1 _Of
AM = 55115 + 373 ) .uf +d,- rqz(J,_.)A.cos[ztzs + 19, - 6,]. (B.20)

We now transform into a rotating frame using a similar .generating function to (4.2.10). The
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relation between the variables is

=225+ 1), Jy=Jy-0,8, =225+ 10, -6, §,=6,, (8.21)
and the transformed Hamiltonian is

M = drn/as, Jac2s + 1723,2 + 3, - TqJ, ) A, cosd, . (8.22)
The motion given by 31 and 3‘ is identical to the motion of a particle in an electrostatic wave. The

trapped orbit give the sub-islands; their overall width is

U, A, 112
41 | 13T, | '

This may be expressed as a width in J, as

AJ (B.23)

U, A, 112
|T7‘—|

I,a
Now the separation between the m = s and m = s + 1 regonances is Jl. 0ol = Jl' o- This may
be simply estimated by Taylor expanding f{J,) about J, _and assuming s is large. Then

arn?
oot e ¥, = ETEve (B.24)

See Fig. B.3 for the relation of AJl R to &J Neighbouring islands overlap when their width

exceeds their separation,

u o> u' o (B.25)
or
Ay A,
s= (- '] ot ST (B.26)

(Although our analysis breaks down here since we should not neglect neighbouring resonances).
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Figure B.3. Schematic picture showing the relation between the sub-island width, AJL o and the

separation between the sub-islands, SJI .
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Figure B.4. The fraction, R, of phase space that is stochastic as a function of the field, I'. See
(8.29).
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Eliminating R, 5, and A, using (B.10), (B.18), and (B.16) and using

d) _ B - (1 - KD
- (8.27)
dq (-
(E is the elliptic integral of the second kind) when evaluating 32/3J,, (B.26) becomes
8 Kl - )7 8 - (1 - AKP)
S= 2%, cosech[—-—r ] - AV >1. (B.28)

Equation (B.28) gives the stochasticity threshold as defined by Zaslavskii and Chirikov (1972). The
last factor in (B.28) becomes }w as ¢ » 0 and it diverges as (1 - qz)‘"z as g+ 1. As g 0 the
cosech term goes to zero as 2(q/4)"r. and as g » 1 it goes to a constant, cosech(iﬁlr}. Thus
near the separatrix, g = 1, S diverges (for nonzero T) while it is zero at the center of the first
order islands. This means that there is always a strip of stochasticity close to the separatrix. We
can estimate the area of the surface of section (or the volume of phase space) that is stochastic,
by finding the value of J, st which § = 1. Since J, is proportional to the area of a first order
island in the plots of T in Figs. 3.2.7-9, see (B.12), the fraction of phase space that is stochastic is

given by
Re1-J[qs=1)J(q=1). (8.29)
In Fig. B.4, R is plotted as a function of I. R is extremely small for T small; in fact for Tr-0
R+ %exp[-gf]. (8.30)

Now (B.30) is a non-analytic function of T, having an essential singularity at T' = 0, and the formal
expansion of R for T' > 0 is zero to all orders in I. This is of interest because it shows how the
theorem of Kruskal (1962), that the perturbed action is conserved to all orders in the perturbation
parameter (T'), is not inconsistent with the fact that the motion is stochastic for finite I. The curve
rises quite steeply for T > 0.15. Thus the stochasticity threshold, the field at which particles can

move freely past the first order islands, is given by
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r>0.15, (8.31)
or
a > 0.15 Vaj2r3/n. (8.32)

This result should be compared with (4.4.25) in the limit 7 » ». The assumption that 8 « T that we
made above now becomes 3 « 0.15.
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Errata

. 2, line 5: “Philosphy” — “Philosophy”.

. 3, line 1: “Acknowledgements” — “Acknowledgments”.

. 3, line 5: “proof-read” — “proofread”.

. 4, line 3: “Acknowlegements” — “Acknowledgments”.

. 8, para. 2: omit sentence “Antonsen and Ott (1976) ... exactly.”
18, eq. (2.2.16): “y,” — “yo”.

25, eq. (2.3.9), first line: integral should include dt'.

267 €q. (2316) “]” — u:| ”

32, eq. (2.4.10): “\/2/n" — “—\/2/n".

34, eq. (2.4.14): “2w6 — 2w A(r,v)...” — “2wé+2wA(r,v)...".
38, fig. 3.1.1, line 2: “and” — “and”.

52, eq. (4.1.1): “7 — “7.

53, eq. (4.1.5): «7 — «7.

55, line 1: “(4.1.13)" — “(4.1.12)".

55, eq. (4.1.18): “7 — 7.

65, line following eq. (4.3.2): “ws’

N
.<

T — .

70, last line: “computing” — “compute”.

73, line before eq. (4.4.11): “susbtitute” — “substitute”.
79, line 10: “has factor” — “has a factor”.

80, eq. (4.4.30): “(2vy/a)” — “(2v~1/a)".

81, fig. 4.4.4: “(2v/a)” — “2v-1/aQ)".

83, eq. (4.5.10): “>7 — “="

85, caption for fig. 4.5.2: append “and for v = 30.23”.
86, line 7: “dependence of (4.5.15) angle” — “dependence of (4.5.15) on angle”.
86, eq. (4.5.16): “v'/3/(10¢?)” — “v1/3/(16¢?)".

86, eq. (4.5.17) and line preceding: “0.6” — “1”.

88, eq. (4.65): “H=1 —..) — “H=1T +vly—....
88, 2 lines before eq. (4.6.7): “get” — “gets”.

93, 6 lines before end: “stochasic” — “stochastic”.

94, caption to fig. 5.1.1: “phase” — “phases”.
95, line before eq. (5.1.1): “1000” — “1100”.
98, eq. (5.2.7): “V2¢" — “Vigpg".

. 116, line 8: “r = —y” — “r = —g".

. 118, eq. (B.1): “sin(wq F we/n)” — “sin(wy £ wa/n)”.

119, eq. (B.3): “0 AL — “—8 ALY, “... 4207 — “...—2a”.

p. 119, eq. (B.8): first “siny” — “sinu”.

p. 127, ref. Bernabei et al. (1976): “M. Porkolab, T. Nagashima” — “T. Nagashima, M.
Porkolab”. “on Toroidal Devices” — “in Toroidal Devices”.

p- 130, ref. Theilhaber (1976): “Micorwave” — “Microwave”.

p. 131, ref. Zaslavskii and Filonenko (1968): “Sov. Phys. JETP 25” — “Sov. Phys. JETP 27”.
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