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Abstract

This work concentrates on features of Extreme Value statistics and bivariate dis-

tribution modeling using copulas that are widely applicable to important problems in

hydrology and financial engineering. The three-parameter Generalized Extreme Value

(GEV) distribution universally applied for modeling extreme processes is employed

throughout for data analyses. New MIXed methods for GEV parameter estimation

based on constraining the maximum likelihood estimators with different statistics

are introduced. It is shown that these methods have good asymptotic behavior and

produce better parameter estimates for small samples than do existing maximum like-

lihood and L-moments methods. The benefits of incorporating additional information

into the maximum likelihood parameter estimation methods, such as the value of the

second largest flood peak in a given year, are also developed. Annual flood peak

data for a sample of 104 drainage basins in the central Appalachians region is ana-

lyzed, and the dependence of the estimated GEV distribution parameters on basin

morphological properties is addressed.

Based on recent advances in the modeling of bivariate distributions with copulas, a

library EVANESCE (Extreme Value ANalysis Employing Statistical Copula Estima-

tion) is developed for the statistical software S-Plus, and the implemented methods

are demonstrated on examples in financial engineering. The sensitivity of copula pa-

rameter estimates to precision in the description of marginal distributions is studied,
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and it is concluded that the copula parameter estimates are robust. The possibility

of modeling the joint distribution of flood peaks and flood volumes using copulas is

explored in both Annual Maximum Series and Partial Duration Series (PDS) frame-

works. A particularly useful copula family for modeling this distribution in the PDS

framework is identified, and the use of the new approach is illustrated with examples.

Finally, the scaling behavior of flood peak distributions is examined using a sta-

tistical model of the spatio-temporal distribution of rainfall coupled to a hydrological

model describing the transformation of rainfall to discharge within a drainage net-

work (the Network Model). It is shown that the scaling behavior of the first two

moments and coefficients of variations of the distribution of annual flood peaks can

be reproduced using such simulations.
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Chapter 1

Introduction

Advanced statistical methods can be employed in fields as disparate as Cell Biology

and Electrical Engineering to enhance researchers’ ability to understand the behavior

of the processes they study. In disciplines where large volumes of data are available

for analysis, statistical approaches are a necessity, but even in situations where the

events of interest are scarce, existing statistical methods can provide a means of

extracting useful information from a minimum of data. Extreme value statistics is one

of the realms of study that addresses this extrapolation of analytical and stochastic

models to ranges beyond those of the finite data samples at hand. Extreme value

statistics concerns the patterns and the magnitudes of events that occur with a very

low probability, and more importantly, the probability with which those rare events

will occur.

In hydrology, the development of stochastic methods for the characterization of

flood peaks in drainage basins has both motivated and benefited from the treatment of

1
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classical problems in extreme value theory. Much effort has been expended to record

flood peaks and flood volumes for many watersheds and apply statistical methods to

these data to predict the probability that floods greater than any given size will occur.

In the process of understanding the detailed behavior of already well-diagnosed basins,

researchers have come to grips with the difficulty of fitting extreme value distributions

to the data, and obtaining useful parameter estimates.

The Generalized Extreme Value (GEV) distribution has been widely used for

modeling the distribution of flood peaks in at-site and regional settings [Hosking et al.,

1985a; Smith, 1987; Stedinger and Lu, 1995; Rosbjerg and Madsen, 1995; Hosking and

Wallis, 1997]. In addition to flood modeling, the GEV distribution is commonly used

to model many other natural extreme events [Smith, 1986; Bauer, 1996; Kuchenhoff

and Thamerus, 1996; Bruun and Tawn, 1998; Parrett, 1998]. The “extreme events”

are often defined to be maximum value of a quantity over a given period of time,

such as the maximum annual discharge in a stream, or the maximum volume of a

flood. Extreme value theory, in particular the extremal types theorem [Leadbetter

et al., 1983], suggests that the distribution of these maxima should be close to one of

the extreme value types. The GEV distribution, introduced by Jenkinson [1955], is a

three-parameter family that combines all three extreme value types into a single form.

Several techniques for GEV parameter estimation, such as the method of L-moments,

the method of Maximum Likelihood, and the Method of Moments have been studied.

The methods are often pushed past their applicable limit by researchers in need of
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more powerful techniques to describe the complicated interdependencies in their data.

In Chapter 2 of this dissertation, new methods for fitting the GEV distribution to

flood peak data, including the incorporation of more of the available information into

the estimation problem, are explored. The precision with which the critical shape

parameter of the GEV distribution can be estimated is improved.

One interesting avenue of research in hydrology is how the estimated parameters

of the annual flood peak distributions depend on a basin’s morphological properties.

In Chapter 2, section 2.4 we study the variability of the GEV distribution’s estimate

for a sample of basins in the central Appalachian region.

A related research direction has focused on the estimation of flood peak distri-

butions for ungauged drainage basins (see Gupta and Waymire [1998]). A point of

departure for many studies concerns the role of scale, which for a drainage basin is

most often characterized by the drainage area. In hydrology, the scaling theories

are two-fold: not only can they be used to infer the distributions of flood peaks for

ungauged basins, but also they provide a way to consolidate the observations from

different gauged basins in order to improve parameter estimates. Regional analyses

of flood peak data, however, suggest that neither of the two available scaling theories

(simple-scaling or multi-scaling) should be blindly applied to data, until certain issues

involving peculiar behavior of flood peaks are resolved. In Chapter 6, we examine the

scaling properties of flood peaks using a coupled stochastic rainfall-runoff model to

observe the interactions between the temporal and spatial variations in the rainfall,



CHAPTER 1. INTRODUCTION 4

and the network structure of the basin. Our main goal is to identify the key factors

that can explain the observed scaling behavior of flood peaks.

Financial engineers, in contrast, are interested in describing more precisely the

fluctuating behavior of the myriad of financial instruments that mediate business in

the modern world. Observation of non-Gaussian character in the tails of daily log-

return data distributions has heralded the need for extreme value statistical methods

to better approximate the infrequent extreme changes in the data. The parameter

estimation techniques developed for the fitting of flood peak distributions may be

applied to this problem as well, but the problems that financial engineers face often

involve even more complex random variables. Moreover, Monte Carlo simulations

appear to be most reliable methods to quantify and control the risks associated with

the extreme events.

Recent theoretical advances in the area of multivariate modeling provided an op-

portunity for researchers to improve their arsenal of tools for modeling dependencies in

the data. The modeling of joint distribution functions for different random variables

has been enhanced by the development of theories involving copulas, joint distribu-

tion functions with uniform (0, 1) marginals. The word copula, meaning “a bond” in

Latin, was first used by Sklar [1959], when he argued that univariate distributions

can be “joined together” by special functions (copulas) to create joint multivariate

distribution functions. Many different families and classes of copulas have been intro-

duced. Together they can describe a vast array of data dependencies. The idea behind
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copula-based approaches, is that marginals of multivariate distributions can be esti-

mated separately from the “copula part”, that determines the dependence structure

of the data.

In Chapter 3, several of the properties of copulas are described, and techniques for

estimating their parameters and simulating random variables are discussed in detail.

Chapter 4 presents several financial engineering applications of techniques involving

copulas, such as the analysis of utility stocks indexes and the computation of risk

measures, using the EVANESCE S-Plus library, written for this work to simplify

the implementation of copulas. Chapter 5 surveys applications of copula theory to

hydrological questions, such as the dependence between flood peaks in two different

basins or the relationship between the flood peaks and flood volumes for a given basin.

Chapter 7 restates several of the more important results of this work, and notes

the many related avenues of further research that could be pursued.



Chapter 2

Stochastic Modeling of Flood
Peaks Using The Generalized
Extreme Value Distribution

The Generalized Extreme Value (GEV) distribution is widely used for modeling the

distribution of flood peaks in at-site and regional analyses [Hosking et al., 1985a;

Smith, 1987; Stedinger and Lu, 1995; Rosbjerg and Madsen, 1995; Hosking and Wal-

lis, 1996]. Several parameter estimation procedures for the three-parameter GEV

distribution have been developed and extensively studied [Jenkinson, 1969; Prescott

and Walden, 1980; Hosking et al., 1985b]. The most commonly used methods are

Maximum Likelihood Estimation (MLE) and the method of L-moments (LMOM)

[Smith, 1990]. In section 2.1, we discuss the advantages and disadvantages of these

existing methods, and in section 2.2, we show how the MLE and LMOM methods can

be combined to produce improved GEV parameter estimators. The resulting “mixed”

method estimators of the shape parameter have reduced variance compared to the

6
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MLE estimator and reduced bias compared to the LMOM estimator. The behavior of

the new estimators is studied for small samples using Monte Carlo simulations, and

for large samples using asymptotic techniques. In the applications to flood peaks,

the data used for the GEV parameter estimation comprises records of the maximum

peaks for each year (this approach is usually referred to as the Annual Maximum

Series (AMS) approach).

Partial Duration Series (PDS) [Shane and Lynn, 1964; Todorovich and Zelenhasic,

1970; Karr, 1976] models assume that the arrival times of peaks above a specified

threshold form a Poisson process in time, and that the distribution of the peak mag-

nitudes has a particular form. The attraction of this procedure is that additional in-

formation to AMS data can be exploited to improve the parameter estimation. There

are, for example, many flood records in which the second largest flood peak during a

year is larger than the majority of the other annual flood peaks in the record. These

observations are relevant to the estimation of extreme flood quantiles. The Gener-

alized Pareto distribution is a common choice for the peak magnitude distribution

because it corresponds to a limiting distribution for excesses over a threshold as that

threshold is increased, and also produces a GEV distribution of annual flood peaks

[Leadbetter et al., 1983; Smith, 1984; Madsen and Rosbjerg, 1997]. Madsen et al.

[1997a] showed that errors in parameter estimation under the GP/PDS approach can

be smaller than those of the GEV/AMS approach, under certain conditions.
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In section 2.3, we introduce a Maximum Likelihood Estimation method that in-

corporates the values of the two largest observations for a given year (MLE2). This

method includes additional information from the PDS record with the entire record

of the AMS data. This approach is useful because the PDS record is shorter than

the AMS record for a majority of stream gauging stations, the threshold value may

change over time and is generally not known for many stream gauging records, and

the second largest flood peak during a given year should provide most of the addi-

tional information contained in the full PDS record. The procedure is developed and

tested with Monte Carlo simulations in a PDS framework. The results confirm that

additional data can indeed improve parameter estimates.

The GEV distribution has also played an important role in regional flood frequency

analyses [Hosking et al., 1985a; Lettenmaier et al., 1987; Chowdhury et al., 1991; Ste-

dinger and Lu, 1995; Hosking and Wallis, 1996]. Simple scaling (or index-flood) theory

assumes that appropriately scaled annual flood peaks have the same distribution in

a homogeneous geographical region [Gupta and Waymire, 1998], which, for the GEV

distribution, means that the shape parameter k and the ratio of scale to location pa-

rameters are constant across all basins in the region. In this chapter, we discuss the

scaling properties of the parameter estimates for the GEV distribution for a sample

of stations in the central Appalachians regions. Further discussion of the different

scaling theories of flood peaks can be found in Chapter 6.
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2.1 Parameter estimation methods for the GEV

distribution

The Generalized Extreme Value (GEV) distribution combines into a single form all

three Extreme Value (EV) distributions: Gumbel (EVI, k = 0), Frechet (EVII, k < 0),

and Weibull (EVIII, k > 0). The GEV distribution has the following cumulative

distribution function (cdf):

G(x) =


exp

{
−
(
1− k(x−b)

a

)1/k
}

for k 6= 0,

exp
{
−
(
e−

(x−b)
a

)}
for k = 0.

(2.1)

It has three parameters: scale a > 0, location b, and shape k. Here, −∞ < x ≤ b+a/k

for k > 0, −∞ < x < ∞ for k = 0, and b + a/k ≤ x < ∞ for k < 0. To simplify our

notation, we will write θ for the vector (a, b, k)T , and Gθ(x) for the GEV distribution

with parameter θ. The corresponding probability density function will be denoted as

gθ(x).

It has been noted that estimates of the shape parameter k of the GEV distribution

for flood peak data are usually negative [Smith, 1987; Madsen et al., 1997a; Martins

and Stedinger, 2000], implying that the distribution has heavy tails. In this disserta-

tion, therefore, we will focus on parameter estimation procedures for negative values

of k. Because the GEV distribution does not have a third moment when k < −1/3,

estimators based on the method of moments will not be considered here.
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The quantile function of the GEV distribution is given by:

Q(p) =


b + a

k

(
1− (− log p)k

)
k 6= 0,

b− a log(− log p) k = 0.

(2.2)

For a given value of p, quantile estimates are obtained by substituting estimated values

of the parameters into the formula above. We are interested in large quantile values:

for example, the 100-year-return flood magnitude Q(.99). In subsequent sections, we

examine the properties of several quantile estimators Q̂(p), in addition to properties

of different parameter estimators k̂, â, and b̂.

2.1.1 Method of Maximum Likelihood

The log-likelihood function of a random sample {x1, x2, . . . , xn} of size n is

log L(θ|x) = −n log a−
n∑

i=1

{
1− k(xi − b)

a

}1/k

+

(
1

k
− 1

) n∑
i=1

log

{
1− k(xi − b)

a

}
, (2.3)

and the corresponding MLE estimator θ̂ = (â, b̂, k̂)T is the point at which log L(θ|x)

attains its maximum. This can also be expressed as the solution to the following

optimization problem:

maximize log L(θ|x)

subject to k(xi − b) ≤ a i = 1, . . . , n

a > 0 (2.4)

The constraints in this problem guarantee that the probability density function of the

GEV distribution has to be positive at {x1, x2, . . . , xn}.
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Jenkinson [1969] first noted the complexity of the MLE method for the GEV

distribution. Traditionally, problem (2.4) is solved by setting the partial derivatives

of the log-likelihood function (2.3) to zero, and using Newton-Raphson iterations to

solve for the parameters. Historically, the lack of computational power necessitated

a replacement of the Hessian matrix of (2.3) during the solution of (2.4) by its ex-

pected value, either through tables, or explicitly through gamma functions [Jenkinson,

1969; Prescott and Walden, 1980]. Hosking [1985] and MacLeod [1989] implemented

the latter approximation in Fortran algorithms. The use of an expected Hessian

significantly reduces the computational time required to find a solution to the op-

timization problem, but also frequently results in non-convergence of the methods

when k < 0 [Hosking et al., 1985b]. The current availability of optimization solvers

(such as LOQO, Vanderbei [1999]) reduces the need for statisticians to worry about

optimization techniques and the computational complexities of Maximum Likelihood

methods. In the case of the GEV distribution, MLE reduces to a three-dimensional,

smooth optimization problem with two inequality constraints, which can be solved in

milliseconds – the complexity of the MLE method should no longer be considered a

disadvantage. In our study, we used a solver available within the statistical software

S-Plus, that employs a quasi-Newton method, to find the MLE and other estimates

based on the method of maximum likelihood [Gay, 1983; Bazaraa et al., 1993].
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2.1.2 Method of L-Moments

The term L-moment, introduced by Hosking [1986], refers to a linear function of the

expected order statistic, implying that L-moments are special cases of L-statistics.

The theory behind L-moment estimators has been developed for some time, but was

scattered in the statistical literature until the 1980s, when techniques based on L-

moments were studied both theoretically and with simulations [Hosking et al., 1985b;

Hosking, 1986; Hosking and Wallis, 1987; Hosking, 1990].

For a real-valued random variable X with cumulative distribution function H(x),

corresponding quantile function H−1(p), and order statistics X(1:n) ≤ X(2:n) ≤ . . . ≤

X(n:n) for a random sample of size n, the L-moments of X, λr, are defined as

λr =
1

r

r−1∑
k=0

(−1)k

(
r − 1

k

)
IEX((r−k):n) r = 1, 2, . . .

Using formulas for the expected value of order statistics (see David [1981, p. 33]), one

can express λr with integrals involving the quantile function H−1. The expressions

for the first three L-moments are (see Hosking [1990]):

λ1 = IEX =

∫ 1

0

H−1(p)dp

λ2 =
1

2
IE
[
X(2:2) −X(1:2)

]
=

∫ 1

0

H−1(p)(2p− 1)dp

λ3 =
1

3
IE
[
X(3:3) − 2X(2:3) + X(3:3)

]
=

∫ 1

0

H−1(p)(6p2 − 6p + 1)dp (2.5)

Hosking [1990] showed that all L-moments of X exist if and only if IEX < ∞, and

that, if IEX < ∞, the distribution of X is fully characterized by its L-moments.
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As in the case of conventional moments, parameters of the distribution H can be

estimated by estimating L-moments from independent observations and then solving

equations (2.5) for the parameters. Several different estimators for L-moments have

been proposed (see Hosking et al. [1985b]; Hosking and Wallis [1995]; Goel and De

[1993]), and the following unbiased estimators are the most frequently used:

λ̂r = (−1)r

r−1∑
k=0

(−1)r−k

(
r

k

)(
r + k

k

)
αk, r = 0, 1, 2, . . .

where

αk = n−1

n∑
i=1

(n− i)(n− i− 1) . . . (n− i− k)

(n− 1)(n− 2) . . . (n− k)
x(i),

and n is the sample size.

L-moments for the GEV distribution can be expressed in terms of the distribution

parameters in the following way [Hosking, 1986]:

λ1 = b +
a

k
[1− Γ(1 + k)]

λ2 =
a

k
(1− 2−k)Γ(1 + k)

λ3 = −a

k
(1− 3 · 2−k + 2 · 3−k)Γ(1 + k).

The LMOM estimator k̂ for the shape parameter is then the solution of the equation:

1− 3−k̂

1− 2−k̂
=

τ̂3 + 3

2
, (2.6)

and the corresponding LMOM estimators for a and b are

â =
λ̂2k̂

(1− 2−k̂)Γ(1 + k̂)
, (2.7)
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b̂ = λ̂1 −
â

k̂
[1− Γ(1 + k̂)], (2.8)

where λ̂1, λ̂2, and τ̂3 = λ̂3/λ̂2 are the estimators of the first two L-moments and

the L-skewness obtained from the sample [Hosking, 1990]. Equation (2.6) is usually

solved using Newton’s method or the solution is simply approximated (see Hosking

et al. [1985b]).

The bias of LMOM estimates of k increases with decreasing k, and is larger than

0.07 when k = −0.4 for n = 30. LMOM is also capable of producing infeasible esti-

mates (for example, estimates that imply that the lower bound of the distribution is

higher than the smallest observation in the sample), although it does this infrequently

[Martins and Stedinger, 2000]. The MLE method, in comparison, produces almost

unbiased estimates of k, but the variance of these estimates is larger than the variance

of LMOM estimates. MLE also produces absurd estimates of k ( such as k < −1),

which leads to very large errors in quantile estimation [Martins and Stedinger, 2000].

This is why, despite the fact that it tends to produce biased estimates, the LMOM

method is considered to be preferable to MLE [Hosking et al., 1985b; Madsen et al.,

1997a]. MLE-based methods, however, can easily incorporate additional information

such as censored data, or a known prior distribution for k [Prescott and Walden,

1983; Martins and Stedinger, 2000]. This property is a great advantage of the MLE

methods [Smith, 1990].
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In the next section, we present a combination of the LMOM and MLE methods,

and show that it provides improved estimates of the shape parameter k for several

cases.

2.2 Mixed L-Moments – Maximum Likelihood

Methods

2.2.1 Combination of the MLE and LMOM Methods

One way to improve MLE estimates of k is to impose additional constraints on the

optimization problem in (2.4). We would like these constraints to be based on the

sample rather than on additional assumptions about the process that we have ob-

served. One such constraint could be calibration to the empirical L-moments. For

example, we can require the first L-moment of the estimated GEV distribution to

be the same as that estimated from the sample. The addition of this constraint to

the MLE problem (2.4) produces the first MIXed (MIX1) method. Heuristically, in

the MIX1 method we maximize the likelihood function of the sample over a set of

distribution parameters, such that the resulting expected value of the distribution is

equal to the sample mean.

In the MIX1 method, we maximize the log-likelihood function L(θ|x) as a function

of a and k after substituting b from the L-moment equation (2.8). The MIX1 estimator

θ̂ of the parameters of the GEV distribution, then, is the solution to the following
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optimization problem:

maximize log L(θ|x)

subject to b = λ̂1 −
a

k
[1− Γ(1 + k)]

k(xi − b) ≤ a i = 1, . . . , n

a > 0 (2.9)

In the second MIXed method (MIX2), we maximize the likelihood function L(θ|x)

as a function of k after substituting both b and a from the L-moment equations (2.7

– 2.8). The optimization problem for this method is

maximize log L(θ|x)

subject to b = λ̂1 −
a

k
[1− Γ(1 + k)]

a =
λ̂2k

(1− 2−k)Γ(1 + k)
,

k(xi − b) ≤ a i = 1, . . . , n (2.10)

We can also consider MIX2 to be an LMOM method where we maximize the

likelihood function to obtain the estimate k, instead of using equation (2.6). From

this perspective, we avoid using the estimator for τ3, which has a large bias if the true

value of k is less than −0.2 and the sample size is small (less than 50).

Both MIXed methods are based on the solution of a nonlinear optimization prob-

lem with nonlinear constraints involving one or two variables. As was mentioned

previously, such problems can be easily solved using quasi-Newton methods. Be-

cause the optimization in these methods is performed over fewer variables than MLE,
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MIXed methods are faster than MLE. The initial point for the optimization can be

taken to be the LMOM estimate, and, if it is infeasible, the value of k can be adjusted

to make it feasible.

At the end of this chapter (section 2.5), we show that MIXed methods have desir-

able asymptotic properties: they are strongly consistent and have an asymptotically

jointly Gaussian distribution. The determinant of the asymptotic covariance matrix

is larger than the respective determinant of the MLE estimator, but we are interested

in studying the performance of the MIXed methods for small sample sizes anyways.

2.2.2 Comparison of Performance of Different Methods

In order to evaluate the performance of the MIXed methods, we conducted a series

of simulation experiments. We simulated random samples of different sizes from

GEV distributions with values of k ranging from −0.5 to 0.0. For each sample, we

estimated the parameters of the GEV distribution using the MLE, LMOM, MIX1, and

MIX2 methods. We present the results for the estimators of the shape, location and

scale parameters, as well as flood quantiles, although we are mostly interested in the

performance of the estimators of the shape parameter. Each simulation experiment

was performed using 10,000 replicates of the samples.

The bias and root mean square error (RMSE, defined as
(
IE
[
(k̂ − k)2

])1/2

) were

computed for MLE, LMOM, MIX1 and MIX2 estimators of k for sample size n = 35,

and plotted in Figure 2.1. For k ≤ −0.2, the MIX1 and MIX2 estimators have

smaller biases than the LMOM methods and smaller variances than MLE, resulting
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in smaller RMSE in the estimation of k that for LMOM and MLE. Neither MIXed

method produced any absurd estimates for k. The differences in performance decrease

with increasing sample size (Table 2.1). An attractive feature of the MIX1 method

is that the RMSE of the estimator k̂ is insensitive to the value of k. This is a very

desirable property for the estimator if we would like to examine the regional variation

in estimates of k. In Section 2.4, we examine the regional distribution of estimates of

the shape parameter in the central Appalachian region and examine the dependence of

k estimates on basin properties, such as basin area, land use and land cover (LULC),

and drainage density.

The RMSE of estimators of the quantile function Q(p) (

(
IE

[(
Q̂(p)−Q(p)

)2
])1/2

)

for LMOM, MLE, MIX1 and MIX2 were computed for p = 0.99 (100-year return)

and p = 0.999 (1000-year return) for different values of n (Table 2.2.2). The ratio

(RMSEQ-MIX2)/(RMSEQ-LMOM) is between 0.98 and 1.02 for n = 35, implying

that the two methods perform almost equally well in terms of quantiles. This result

seems somewhat unusual in comparison to the estimation results in parameter space,

where analogous ratios range from 0.84 when k = −0.5 to 0.97 when k = −0.1.

The differences between the performance of the MIXed method and LMOM esti-

mators in the parameter and quantile spaces lead to a more detailed analysis of the

distribution of the quantile estimators. Surprisingly, the bias of the LMOM estima-

tor of k plays an important role in producing good LMOM quantile estimators. We

demonstrate this feature with an example using n = 30 and GEV parameter values,
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n = 35 and four different estimation methods: MLE, LMOM, MIX1,
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Q̂(.99) RMSE/Q(.99) Q̂(.999) RMSE/Q(.999)

n k MLE LMOM MIX1 MIX2 MLE LMOM MIX1 MIX2

30 -0.5 1.53 0.555 0.576 0.559 9.12 1.10 1.19 1.14

30 -0.4 1.03 0.53 0.552 0.54 3.63 1.12 1.16 1.14

30 -0.3 0.96 0.499 0.512 0.501 5.44 1.08 1.09 1.07

30 -0.2 0.627 0.436 0.448 0.439 2.04 0.898 0.905 0.884

30 -0.1 0.525 0.369 0.4 0.388 1.7 0.672 0.774 0.73

30 0 0.37 0.304 0.331 0.33 0.767 0.52 0.607 0.596

50 -0.5 0.736 0.482 0.539 0.497 1.87 0.971 1.14 1.01

50 -0.4 0.623 0.450 0.46 0.456 1.86 0.961 0.952 0.957

50 -0.3 0.477 0.392 0.387 0.386 1.05 0.786 0.733 0.741

50 -0.2 0.388 0.343 0.342 0.339 0.77 0.652 0.617 0.616

50 -0.1 0.329 0.288 0.299 0.292 0.624 0.497 0.525 0.507

50 0 0.258 0.235 0.248 0.248 0.443 0.378 0.414 0.413

100 -0.5 0.404 0.366 0.371 0.372 0.79 0.723 0.71 0.72

100 -0.4 0.348 0.338 0.328 0.336 0.658 0.683 0.602 0.638

100 -0.3 0.3 0.293 0.279 0.284 0.541 0.564 0.487 0.508

100 -0.2 0.252 0.241 0.236 0.234 0.435 0.417 0.397 0.392

100 -0.1 0.203 0.194 0.196 0.193 0.333 0.316 0.318 0.313

100 0 0.168 0.163 0.166 0.167 0.263 0.251 0.259 0.261

Table 2.2: Relative RMSE of quantile estimates for MLE, LMOM,

MIX1, and MIX2 methods for selected sample sizes and values of k.
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a = 1, b = 0 and k = −0.3. The covariance matrix of MIX2 estimators (Table 2.3,

based on 10,000 simulation runs) is smaller than that for LMOM estimators for each

element. Only the bias of â is larger for MIX2 than for LMOM. Overall, the RMSE

computed using all three parameters is about 11% smaller for MIX2 than for LMOM.

Under the assumption that the estimators have a jointly Gaussian distribution,

we can compute the moments of Q̂(.99) by numerically integrating expression (2.2)

with the appropriate Gaussian probability density function (pdf) of the estimators.

If we neglect the bias of the estimators and assume that they are centered at (1,0,-

0.3)T , we will find that the MIX2 method performs more precisely, as expected (Table

2.3, center). Note that the bias of the quantile estimator that we obtain under this

assumption is large, nearly 12%. Taking into account the biases of the parameter

estimators by centering the Gaussian pdf at the estimators’ expected values in the

computation, we obtain better results for the quantile estimators: biases and vari-

ances of the quantile estimators are decreased and the RMSEQ obtained from LMOM

is slightly smaller than that from MIX2. These corrected values agree with the esti-

mates of RMSEQ obtained from direct calculations of equation(2.2) for the simulation

experiments mentioned above (Table 2.3, bottom).

The difference between the theoretically computed and simulated variances and

RMSEs can be attributed to non-Gaussian properties of the estimators. Further anal-

ysis suggests that the RMSEQ is most sensitive to IEk̂. This is not surprising, because

k contributes to (2.2) exponentially. RMSEQ decreases with increasing IEk̂, provided
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LMOM MIX2

Expected values of the

estimators,

IE
[
(â, b̂, k̂)T

]


1.002

0.0142

−0.2529




0.9538

−0.0010

−0.2871



Covariance matrix of

the estimators, B

1
100


4.79 2.91 1.26

2.91 4.26 1.02

1.26 1.02 3.05

 1
100


4.60 2.47 1.03

2.47 3.21 0.54

1.03 0.54 2.62


det B 3.2212× 10−5 2.0724× 10−5

Theoretically computed values for Q(.99),

assuming unbiased parameter estimators

Expected value 11.1817 11.0946

Variance 36.2456 31.9329

RMSE 6.1519 5.7723

Theoretically computed values for Q(.99),

accounting for biased parameter estimators

Expected value 9.7986 10.1838

Variance 26.3093 26.7793

RMSE 5.1305 5.1817

Simulation results

Expected value 9.7756 10.1427

Variance 24.4626 24.6872

RMSE 4.9475 4.9733

Table 2.3: Comparison of performance of LMOM and MIX2 methods

in parameter and quantile spaces (see text for more details). The true

values of the parameters are (1, 01,−0.3)T and the true value for Q(.99)

is 9.9169
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that the covariance between k̂ and â is positive. This result agrees with results of Lu

and Stedinger [1992], who show that smaller RMSEQ can be achieved by setting k̂ = 0

for certain pairs of k and n. In addition, it is clear that decreasing the covariance

between k̂ and â will result in better estimates of the quantiles. Although accurate

estimation of the shape parameter k is important for proper characterization of the

tail of the flood peak distribution, slight overestimation of k for the LMOM proce-

dure results in smaller values of RMSEQ. Improvement of the parameter estimators,

therefore, does not necessarily mean improvement of the quantile estimators.

We also compared the performance of the four methods for positive values of

k. We found that the MIXed methods and MLE performed roughly the same, and

LMOM performed slightly better than the other methods.

It is important to note here that we can add associated constraints to the MLE

optimization problem, if we have prior knowledge of the underlying physical process,

and the estimates of the model parameters will almost certainly be improved. One

example of such prior knowledge is including an estimate of a lower bound of the

GEV distribution corresponding to (b + a/k). Indeed, absurd estimates of k usually

occur in situations where the smallest value in the sample is relatively close to the

estimated lower bound. If we know, in addition to our sample {x1, x2, . . . , xn}, that

a value x0 < min{x1, . . . , xn} is a value that could possibly be observed, we know

b + a/k ≤ x0. Adding this lower bound condition to the MLE problem (2.4) will

reduce the chance of obtaining absurd estimates, if not eliminate it completely. This
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property is used later in the discussion of Partial Duration Series approaches, so we

will illustrate it here with an example.

Martins and Stedinger [2000] discuss a sample of size 15 generated from the GEV

distribution with parameters a = 1, b = 0, and k = −0.2 for which the MLE estimate

of k is less than −2.4. This resulted in an estimate of the .999 quantile on the order of

6× 106, while the value of the real quantile was only 14.9. The true distribution has

a lower bound of −5, while the lowest value in the sample was −0.39. Suppose that

we had the additional information that the value x0 = −1 is feasible, i. e., there is a

strictly positive probability of obtaining −1 from the underlying process. If we add

this information into the problem (2.4), our estimate of k for Martins and Stedinger

[2000] sample will be −0.74, resulting in an estimate of the 0.999 quantile of 208.

Although the error of this estimate is still quite large, it is almost 30,000 times smaller

than without the condition. Simulation experiments show that adding such lower

bound condition reduces the overall error in the MLE quantile estimates by a factor

of 8 in comparison with the standard MLE method. In applications involving natural

events (floods, winds, etc.), it is possible that some useful additional information

of this kind is available. For instance, the data might say that there was no flood

peak above certain threshold during a certain year, but the value of the maximum

flood peak for that year was not recorded. While it is very hard to incorporate such

information into the LMOM method, it is very easy to insert it into MLE. We will

discuss this approach further in the next section.
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To summarize this section, for negative values of k, we conclude that : 1) MIXed

methods produce better estimates of the parameters of the GEV distribution than

MLE and LMOM; 2) Quantile estimates produced by MIXed methods have RMSE

close to that of LMOM; 3) Difference between the performances of the MIXed and

LMOM methods in quantile and parameter spaces can be explained by the corre-

lation between parameter estimates, nonlinearity of the quantile function, and the

favorable bias of the LMOM estimates; 4) MIXed methods are modifications of the

MLE method, that preserve all of the advantages of the MLE method concerning

incorporation of additional information; 5) Adding constraints on the lower bound of

the distribution to the MLE method reduces the frequency of absurd estimates of k,

and improves quantile estimation.

2.3 Extension to PDS Methods

2.3.1 GEV Parameter Estimation - PDS Approach

Partial Duration Series (PDS) models of flood peaks [Shane and Lynn, 1964; Todor-

ovich and Zelenhasic, 1970; Karr, 1976; Lang et al., 1999] (sometimes referred to as

the peaks-over-threshold approach) assume that the arrival times of peaks greater

than a specified threshold form a Poisson process in time, and that the distribu-

tion of peak magnitudes has a particular form. If we assume that the distribution

is a Generalized Pareto (GP) distribution (as in Davison and Smith [1990]; Madsen

and Rosbjerg [1997]), the annual flood peaks derived from this model have a GEV

distribution (with an atom at zero, see Smith [1984]).
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Assume that flood peaks above the threshold δ arrive according to a (stationary)

Poisson process with rate λ [Karr, 1976], and that the peaks’ magnitudes Z1, Z2, . . .

are i.i.d. random variables independent of the arrival process, each having a GP

distribution with location parameter δ, scale parameter α, and shape parameter κ.

The cumulative distribution function of Zj is then

F (x) =


1−

(
1− κx−δ

α

)1/κ
κ 6= 0,

1− exp
{
−x−δ

α

}
κ = 0.

(2.11)

To simplify our notation, we will write η to represent the vector (α, δ, κ)T , and

refer to the distribution function with this particular set of parameters η as Fη(x).

The corresponding probability density function will be denoted as fη(x). Under our

assumptions, the distribution of annual flood peaks (for values greater than δ) is the

same as the GEV distribution with parameters

k = κ,

a = αλ−κ,

b = δ +
α

κ
(1− λ−κ). (2.12)

After estimating the parameters for the GP/PDS model, then, we can subsequently

deduce the appropriate parameters for the GEV model. Madsen and Rosbjerg [1997]

showed that the PDS approach can improve MLE and LMOM estimates if κ < 0 and

the arrival rate of flood peaks above threshold is greater than 2 peaks per year.

Although PDS-based methods seem to perform quite well, especially for negative

values of κ, there are problems with data availability that must be addressed in
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applying the PDS approach to real basins. For a majority of the stream gauges

maintained by USGS, the length of the PDS record is shorter than that of the annual

flood peak record. In our sample of basins (section 2.4), for example, PDS data were

available for only 67% of the period of record of annual flood peak data, on average.

Current PDS methods for parameter estimation do not allow us to incorporate annual

flood peak data for any years for which PDS data is not available into the estimation

procedure. Another problem with the available data is that the value of the threshold

level δ may change over time without any documentation of the fact.

With these considerations in mind, we developed a maximum likelihood method

based on the magnitudes of the two largest floods each year (MLE2). This method is

designed to take into account situations where there are fewer than two peaks for some

years in a particular realization of the PDS process. This is not only necessary for

the model to be applicable to real data, but also for the mathematical completeness

of the model. Methods based on more than one peak per year have been studied

previously in application to sea level heights [Smith, 1986; Dupuis, 1997].

2.3.2 The MLE2 Method

Suppose that flood peaks for a given basin obey the GP/PDS process described above.

Let X and Y be random variables representing the annual maximum flood peak and

the second largest flood peak for a given year, respectively.
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Under the GP/PDS model, we can write the probability distribution for X:

IP {X ≤ x} =


e−λ(1−Fη(x)) for x ≥ δ,

e−λ for x < δ.

(2.13)

The joint distribution for the two largest peaks in a given year is then:

IP {X ≤ x, Y ≤ y} =



e−λ(1−Fη(y)) (1 + λFη(x)− λFη(y)) for δ < y < x,

e−λ(1 + λFη(x)) for 0 ≤ y < δ < x,

e−λ for 0 ≤ y < x < δ,

0 otherwise

(2.14)

Under the GEV/AMS approach, we approximate the expression in (2.13) by Gθ(x)

with parameters θ related to those of GP/PDS η through the relationships (2.12).

That means that (2.14) will be approximated by

IP {X ≤ x, Y ≤ y} = Gθ(y)[1 + log Gθ(x)− log Gθ(y)] for δ < y < x, (2.15)

and the joint probability density function for X and Y is just gθ(y)gθ(x)/Gθ(x) for

δ < y < x. Using this argument, we can construct a likelihood function for the

observations of the two largest peaks per year. Also note that

IP {X < δ} = Gθ(δ) = e−λ. (2.16)

Consider a basin with m years of PDS record with threshold δ. Among these m

years of PDS record, there are m0 with no peaks above δ, m1 years with only one peak

above δ (let z1, z2, . . . , zm1 denote the magnitudes of these peaks), and m2 years with
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2 or more peaks (the largest peaks per year will be denoted by x1, x2, . . . , xm2 and the

second largest by y1, y2, . . . , ym2). The log-likelihood function of these observations

is, then:

log Λ(θ|z, x, y) = − m0λ + m1(log(λ)− λ) + m2 log(1− e−λ − λe−λ)

+

m1∑
i=1

log(fη(zi))

+

m2∑
j=1

[log(gθ(yj) + log(gθ(xj))− log(Gθ(xj))] , (2.17)

where the parameters θ, η, and λ are connected through the relationships in (2.12).

Here, the first three terms on the right hand side correspond to the probability of

having 0, 1, or “2 or more” peaks in a given year, respectively. The term on the second

line is the log-likelihood of obtaining the particular values z1, z2, . . . , zm1 of the single

flood peaks over threshold that occurred during the m1 years, and the term on the

last line corresponds to the log-likelihood of obtaining the particular pairs of two

largest peaks for the m2 years that we observed two or more peaks. Substituting into

(2.17) the derivative of (2.11) for fη, Gθ and gθ from (2.1), and using the relationships

(2.12), we obtain the following expression for the log-likelihood function of the two

maxima:

log Λ(θ|z, x, y) = −m0e
h(δ) + m1(h(δ)− eh(δ)) + m2 log(1− exp(−eh(δ))(1 + eh(δ)))

− (m1 + 2m2) log a + (1− k)

m1∑
i=1

h(zi)

+ (1− k)

m2∑
j=1

[h(yj) + h(xj)]−
m2∑
j=1

eh(yj), (2.18)



CHAPTER 2. GENERALIZED EXTREME VALUE DISTRIBUTION 31

where h(x) =
1

k
log

(
1− k(x− b)

a

)
. The time required to evaluate this expression

computationally is not much greater than the time necessary to evaluate the standard

likelihood function for the MLE method.

The maximum likelihood estimator based on the two largest maxima per year

(MLE2) is the (local) maximum of the likelihood function in (2.18). This can be

equivalently written as the solution to the following optimization problem:

maximize log Λ(θ|x)

subject to k(zi − b) ≤ a i = 1, . . . ,m1

k(xj − b) ≤ a

k(yj − b) ≤ a, j = 1, . . . ,m2

k(δ − b) ≤ a,

a > 0 (2.19)

The first three conditions correspond to the restriction that the measured peak mag-

nitudes must be feasible values for the varying GP distribution. The last condition

is the restriction that the scale parameter is positive. The second-to-last constraint

(“the δ constraint”) is the condition that the threshold level itself must be a feasible

value for the GEV distribution. This constraint is necessary to ensure that the like-

lihood function can be evaluated. When k > 0, since all zi, xj, and yj are greater

than δ, the δ constraint never becomes binding on the problem (the upper bound

of the GEV distribution is obviously greater than δ); when k = 0 the δ constraint
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becomes a ≥ 0, which is less restrictive than the last constraint. For k < 0, the δ

constraint has an effect, as it requires that the lower bound for annual flood peaks

be less than δ. This corresponds to the positive probability of having no peaks above

the threshold during a given year. As mentioned in section 2.2, finding an a priori

expression for a tighter upper bound than the smallest observation in the sample

for the lowest value the GEV distribution can produce is valuable for reducing the

number of absurd estimates of k.

As with the regular MLE method, we investigated different constraints that can

be added to problem (2.19) in order to improve the estimates of the quantiles. The

equivalent of the MIX1 method in this case involves adding to problem (2.19) the

constraint:

b =
λ̂1

1− e−hθ(δ)
− a

k
(1− Γ(1 + k)) , (2.20)

where λ̂1 is the mean value (estimate of the first L-moment) of all annual maxima

above the threshold δ, that is, λ̂1 =
1

m1 + m2

[
m1∑
i=1

zi +

m2∑
j=1

xj

]
. This condition helps

to eliminate absurd estimates of k, and improves the estimation. We will refer to this

method as MLE2-MIX1.

The procedure that we used for Monte Carlo simulations in order to test the MLE2

and MLE2-MIX1 methods is the same as described in Madsen et al. [1997a]. It is

designed so that we can compare the performance of the AMS methods to that of the

PDS-based methods. It exploits the fact that in GP/PDS model peaks above higher

threshold levels from the same process also have a GP distribution with the same
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value of k . Specifically, if peaks above the threshold level δ0 arrive according to a

Poisson process with rate λ0, and have i.i.d. magnitudes independent of the Poisson

process with GP distribution with parameters η0 = (α0, δ0, κ), peaks above the higher

threshold

δ1 =


δ0 + α0

κ

[
1−

(
λ1

λ0

)k
]

κ 6= 0,

δ0 + α0 log
(

λ0

λ1

)
κ = 0.

(2.21)

arrive according to a Poisson process with rate λ1 (λ1 < λ0), are i.i.d., and have a

GP distribution with scale parameter α1 = α0 + κ(δ1 − δ0), location parameter δ1,

and the same value of shape parameter κ (see Madsen et al. [1997a]).

The simulation procedure for testing can be described as follows:

• Pick parameters for GP/PDS model to produce simulated samples: Choose a

large arrival rate λ0 so that the probability of obtaining zero peaks during any

given year is very small. Choose a threshold level δ0, scale parameter α0, and

number of years in the record m. Choose the value of the shape parameter κ

and the arrival rate λ1 for which we will test the procedure. Compute α1 =

α0 + κ(δ1 − δ0) and δ1 from Equation (2.21).

• Generate arrival times from the Poisson process with rate λ0, and generate flood

peak magnitudes from the GP distribution with parameters δ0, α0, and κ for

each arrival time.

• Extract the PDS sample corresponding to all peaks higher than δ1 and their

arrival times: compute the number of years with no peaks, m0, the number
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of years with 1 peak, m1, and the number of years with more than one peak,

m2 = m − m0 − m1. For years with only one peak, record the magnitude of

the peak zi, i = 1, . . . ,m1, and for years with two or more peaks record the

magnitudes of the largest and second largest peaks, xj and yj, j = 1, . . . ,m2.

• Solve the optimization problem (2.19), and record the MLE2 estimates.

• Extract the AMS sample from the original process by recording the largest peak

for each year.

• Use LMOM and MIX1 method to estimate the parameters of the GEV distri-

bution based on the AMS sample.

Monte Carlo simulations were performed according to the procedure above for

records 20-100 years long, values of λ1 from 2 to 7, and values of shape parameter k

between -0.5 and 0.0. The results (Figure 2.2) for 35-year records show that incor-

porating information about the second maxima decreases the estimation error of the

shape parameter for. The results obtained for all other sets of the model parame-

ters were similar to this one (Table 2.4), and the decrease in the error was especially

significant for very negative values of k. Although the MLE2 method sometimes pro-

duces absurd results, it does so far less frequently than MLE, in part due to the “δ

condition” in problem (2.19) (see the example in the previous section). The MLE2-

MIX1 method did not produce any absurd estimates of k, and its estimates of k

have the smallest RMSE. In terms of quantiles, though incorporating second maxima
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Figure 2.2: Bias (a) and RMSE (b) of the estimator k̂ for record length

35 years and four different estimation methods: MLE2, LMOM, MIX1,

and MLE2-MIX1.
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k̂ RMSE

n k LMOM MLE2 MLE2-MIX1

35 -0.5 0.194 0.139 0.129

35 -0.4 0.173 0.135 0.121

35 -0.3 0.170 0.128 0.121

35 -0.2 0.152 0.12 0.113

35 -0.1 0.141 0.110 0.108

35 0 0.136 0.113 0.113

50 -0.5 0.180 0.122 0.118

50 -0.4 0.153 0.109 0.104

50 -0.3 0.151 0.105 0.102

50 -0.2 0.130 0.10 0.0964

50 -0.1 0.114 0.0872 0.0868

50 0 0.111 0.0864 0.086

100 -0.5 0.129 0.0815 0.0847

100 -0.4 0.117 0.078 0.0786

100 -0.3 0.105 0.0704 0.07

100 -0.2 0.0937 0.0685 0.0681

100 -0.1 0.0818 0.0655 0.0655

100 0 0.075 0.0569 0.0572

Table 2.4: RMSE of the estimates of k from LMOM, MLE2, and MLE2-

MIX1 methods for selected sample sizes and negative values of k.
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Q̂(.99) RMSE/Q(.99) Q̂(.999) RMSE/Q(.999)

n k LMOM MLE2 MLE2-MIX1 LMOM MLE2 MLE2-MIX1

35 −0.5 0.482 0.655 0.502 1.02 1.67 1.02

35 −0.4 0.418 0.55 0.412 0.882 1.23 0.798

35 −0.3 0.416 0.452 0.402 1.01 1.03 0.83

35 −0.2 0.304 0.331 0.295 0.642 0.664 0.552

35 −0.1 0.248 0.242 0.243 0.538 0.461 0.45

50 −0.5 0.456 0.536 0.465 0.964 1.16 0.92

50 −0.4 0.38 0.408 0.371 0.807 0.807 0.717

50 −0.3 0.361 0.341 0.332 0.81 0.675 0.638

50 −0.2 0.263 0.264 0.252 0.562 0.502 0.469

50 −0.1 0.202 0.187 0.192 0.395 0.323 0.330

100 −0.5 0.363 0.331 0.375 0.795 0.611 0.736

100 −0.4 0.316 0.274 0.308 0.719 0.494 0.595

100 −0.3 0.259 0.218 0.232 0.599 0.394 0.43

100 −0.2 0.188 0.173 0.173 0.365 0.303 0.301

100 −0.1 0.145 0.143 0.145 0.265 0.245 0.248

Table 2.5: RMSE of quantile estimates for LMOM, MLE2, and MLE2-

MIX1 methods for selected sample sizes and values of k.
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with MLE2 decreased the RMSE in the quantiles by a factor of 8 in comparison with

the standard MLE method, the LMOM/AMS and MIX1/AMS methods still produce

better quantile estimates than MLE2 for small record sizes (≤ 50) years, primarily

due to the absurd estimates of k. MLE2-MIX1 has the smallest RMSEQ (see Table

2.5) for k ≤ −0.2, and n ≤ 50.

2.4 Analysis of Flood Peak Data from the Cen-

tral Appalachian Region

GEV parameter estimation procedures were applied to flood peak observations from

a sample of 104 USGS stream gauging stations in the central Appalachian region (see

Smith [1992] and Hosking and Wallis [1996] for previous analyses of this data set).

The gauging station locations are shown in Figure 2.3, on a map of the underlying

elevation. These stations were selected because they each recorded at least 30 years

of data and their basins are unregulated by dams (see Smith [1992]). The important

questions that we would like to address in our analysis are: 1) how variable are at-

site estimates of the shape parameter k within the region; 2) how can this variability

be explained; and 3) how do the estimates of the three GEV distribution parameters

depend on morphological and land cover properties of the drainage basins? To address

the third question, basin morphological information was computed for each of the

basins from digital elevation data (DEM), and land use - land cover (LULC) data

(based on LANDSAT Thematic Mapper images from 1990 - 1992; see Loveland and
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Figure 2.3: A map of the central Appalachians region showing the

locations of stream gauging stations. Solid circles denote urban basins

and empty circles denote rural basins.
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Shaw [1996]). From these sources, we computed the basin drainage area, basin relief,

relief ratio, and drainage density.

The MLE2-MIX1 and LMOM methods were used to estimate the parameters of

the GEV distribution for each of the basins, and the range of LMOM k estimates for

the central Appalachian basins was between −0.74 and 0.02, with a median value of

−0.37. The MLE2-MIX1 method, estimates of k ranged from −0.82 to 0.01, with a

median value of −0.40. In Hosking and Wallis [1996], the same sample of basins is

divided into 5 groups, and regional estimates of k for each group was determined. The

values of these estimates ranged from -0.45 to -0.24, which agrees with our distribution

of at-site estimates. These values are more negative than what has conventionally

been considered physically reasonable [Martins and Stedinger, 2000]. When k is less

than −1/3, the flood peak distribution has an infinite third moment, and when k

is less than −1/2, the distribution has infinite variance. Very negative values of k

suggest that the distribution of flood peaks has very heavy tails.

Figure 2.4 shows the values of at-site estimates of k obtained using the LMOM

and MLE2-MIX1 methods plotted against the corresponding empirical quantiles of

the standard Gaussian distribution. The lines on the plot correspond to Gaussian ap-

proximations of the distributions of the respective estimates of k for the two methods,

assuming the true value of the k is −0.42 and the period of record is 46 (the average

number of years of record available for our sample). From this plot, we conclude that

the distribution of the estimates of k for our sample is approximately Gaussian, and
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the variability of the estimates can be explained by the variability of the estimators

used.

The estimates of the shape parameter k for the central Appalachian basins do not

exhibit a systematic dependence on basin morphological properties or land cover. The

relationship between estimates of k and basin area (Figure 2.5) is representative of the

relationship for other basin descriptors. Regression analysis between the estimates of

k and the basin descriptors (Table 2.6) produced R2 values ranging from 0.006 (for

the gauge elevation) to 0.04 (for drainage density).

According to index flood theory, values of the scaling parameter a and the location

parameter b should exhibit a log-log relationship with drainage area A. For the central

Appalachian basins, this property holds (Figure 2.6). A significant contribution to

the variability in this scaling relationship is related to land cover properties. It was

found that basins with a higher percentage of urbanized land have higher values of

the scaling parameter a and b (Figure 2.6). These basins respond as though they have

larger effective areas than their true basin drainage area (see Leopold [1968]; Smith

et al. [2001]). If we define the effective area to be:

Aeff = A(1 + C × fraction of impervious cover),

where C is a constant we can find the C that maximizes the R2 of the linear regression

between log â and log Aeff . The value of C determined for our sample is 9.5, and the

new relationship log â ∼ log Aeff is shown in Figure 2.7. Notably, the effect of urban
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Basin Descriptor R2

Drainage Area (log) 0.0072

Elevation (log) 0.008

Relief Ratio (log) 0.03

Percent of Forest Cover 0.002

Percent of Urban Cover 0.03

Drainage Density 0.06

Table 2.6: R2 of linear regression between basin descriptors and MLE2-

MIX1 estimates of k
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hydrology on GEV parameter estimates is quite important for location and scale, but

not as important for the shape parameter k (Figure 2.5).

The “extreme” estimates of the shape parameter k are dependent on the spe-

cific flood hydrological properties of the central Appalachian region. A sample of 34

drainage basins from the southern Appalachians yields estimates of k ranging from

-0.53 to 0.24, with a median value of -0.11. Selection of the 34 basins (all of which are

in North Carolina) was based on identical constraints to those used for the 104 central

Appalachian basins. A systematic difference in flood peak distributions between the

two regions is that southern Appalachian basins exhibit markedly lower variability

than central Appalachian basins, as indicated by the coefficient of variation of annual

flood peaks. This contrast in flood peak distributions is linked to contrasts in magni-

tudes of extreme flood peaks, as illustrated in Figure 2.8 by envelope curves of flood

peaks for the two samples. The central Appalachian region has experienced some of

the largest unit discharge flood peaks in the United States east of the Rocky Moun-

tains [Smith et al., 1996; Eisenlohr, 1952; Hack and Goodlett, 1960] from summer

thunderstorms. The “extreme” estimates of k reflect the influence of extreme flood

magnitudes.

A key question to resolve is whether extreme estimates of the GEV tail parameter

k necessarily mean that the distribution of flood peaks indeed has heavy tails or

whether alternative stochastic models can explain the estimated values of k. One

possible scenario for negative estimates of k without thick tails is that the GEV
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distribution is not an appropriate distribution for annual flood peaks. If, for example,

we estimate the three parameters of the GEV distribution for samples of size n = 50

drawn from an exponential distribution the estimated values of k will be centered at

−0.38 for MIX1 estimators and at −0.2 for the LMOM estimators. The exponential

distribution is from the Gumbel domain of attraction (k = 0), so it does not have

thick tails, but can easily be shown to be a poor choice for modeling flood peak

distributions. We must determine if there are good alternative models for annual

flood peak distributions with thin tails, but large negative estimates of k.

One heuristic explanation for the contrasts in flood distributions between the cen-

tral and southern Appalachians given above, relies on the influence of a particular

type of flood event produced by summer thunderstorms. This notion points to a par-

ticular class of alternative models which involve a mixture of different distributions.

Let V1 and V2 be independent random variables having distributions from the same

family, with IE [V2] > IE [V1]. Again, let X be a random variable representing an an-

nual flood, and suppose that X = V1 with probability p and X = V2 with probability

(1−p). V1 and V2 can be thought of as flood peaks occurring from different classes of

storms; for example, V2 might represent flood peaks occurring due to tropical storms

and V1 might represent flood peaks due to summer thunderstorms [Sturdevant-Rees

et al., 2001; Smith et al., 1996]. If V1 and V2 have a GEV distribution with k = 0, i.e.,

both flood populations have a Gumbel distribution, it is possible to obtain estimates

of k centered at −0.4 for flood-length samples with the following formulation:
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• V1 ∼ GEV with k1 = 0 (Gumbel), a1 = ν1, b1 = 0;

V2 ∼ GEV with k2 = 0, a2 = cν1, b1 = 2cν1, c > 1;

Table 2.7 demonstrates how quantiles of this Gumbel mixture model differ from

those of the GEV distribution for a particular set of parameters: although Q(.90)

is very similar for the two models, Q(.99) for the Gumbel mixture is less than half

that for GEV, and Q(.999) for GEV is approximately 5 times larger than that for

the Gumbel mixture. This simple example shows the importance of the particular

parametric model for quantile estimation. Figure 2.9 demonstrates the distribution

of LMOM estimates of k for both models and sample size n = 50. This distribution

is centered at −0.37 for both models, and the variance of estimates for the Gumbel

mixture is smaller than that for GEV estimates.

The next question is whether we can distinguish between the two models based on

observations of random samples. Figure 2.10 shows the probability density functions

for the two models, and they are, unfortunately, very close to one another. Figure 2.11

shows a typical quantile-quantile plot of Gumbel mixture and GEV sample quantiles

versus theoretical quantiles of the GEV distribution with shape parameter k = −0.42

(the true shape for the GEV model in the simulations). The two samples are so

similar that it is impossible to distinguish between the two models solely on the basis

of the sample observations. To conclude that central Appalachians flood peaks have

thick tails, it is necessary to determine that the GEV rather than the Gumbel mixture

distribution is the appropriate model for the flood peaks. Detailed studies of basin
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GEV Gumbel Mixture

a = 1.4 ν1 = 1

Model Parameters b = 0.2 c = 3.3

k = −0.42 p = 0.83

Q(.90) 5.31 5.58

Q(.99) 18.74 8.23

Q(.999) 52.16 10.57

Table 2.7: Comparison of the quantiles of the two stochastic models.

The Gumbel mixture model is described in the text.
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Figure 2.9: Distribution of the estimates of k for GEV distribution and

the Gumbel mixture model with the parameters given in Table 2.7 and

sample size n = 50.
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the Gumbel mixture model with the parameters given in Table 2.7.
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CHAPTER 2. GENERALIZED EXTREME VALUE DISTRIBUTION 55

response to different types of extreme rainfall might help to address this problem by

providing a physical basis upon which to choose one of the models.

2.5 Asymptotic Properties of MIXed Estimators

In this section, we study the asymptotic properties of the MIXed estimators in the gen-

eral case; we will consider a Maximum Likelihood method with additional constraints

in its optimization problem imposed by U -statistics. We show that such estimators

are strongly consistent, under certain regularity conditions, and have asymptotically

jointly Gaussian distributions. Since L-moments can be represented with U -statistics

[Hosking, 1986], these results can be immediately applied to the MIX1 and MIX2

methods. For simplicity, we will analyze a distribution function depending on only

two parameters. The extension of these arguments to higher dimensions is straight-

forward.

The arguments below can be outlined as follows: we consider a density function

p(x, θ, φ) of a random variable X, dependent on two parameters θ and φ, and a

functional U(θ, φ) with an unbiased estimator Û such, that the equation U(θ, φ) = u

can be solved for φ and the solution is f(θ, u). In the traditional Maximum Likelihood

(ML) method, we write the likelihood function L(θ, φ) for our sample, and take the

ML estimator θ̂(ML) to be the point at which L(θ, φ) attains its maximum. In MIXed

methods, we replace φ in the likelihood function by f(θ, Û) and take θ̂(MIX) to be the

point at which the new likelihood function is maximized. In Proposition 1, based on
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the Taylor expansion of the new likelihood function, we show that this substitution

the estimator θ̂(MIX) remains strongly consistent. The proof of the Proposition 1 is

similar to that of the traditional ML method. Proposition 3 extends this result to

show that (θ̂(MIX), Un) have asymptotically jointly Gaussian distribution. Since the

MIXed estimator of φ is φ̂(MIX) = f(θ̂(MIX), Û) the transformation theorems are then

applied to show that φ̂(MIX) is strongly consistent (Proposition 2), and that θ̂(MIX)

and φ̂(MIX) have asymptotically jointly Gaussian distribution.

Let (Ω, F, IP(θ0,φ0)) be the underlying probability space. Let X be a real valued

random variable with distribution µ that is absolutely continuous with respect to the

Lebesgue measure with density p(x, θ0, φ0). Here, θ and φ are the parameters of the

distribution that we are trying to estimate. The admissible set of (θ, φ) is assumed

to be a non-degenerate rectangle Θ×Φ ⊂ IR2, and (θ0, φ0) ∈ Θ×Φ denotes the

true value of the distribution parameters. Suppose the function p(x, θ, φ) satisfies the

following regularity conditions:

(R - 1): For each (θ, φ) ∈ Θ×Φ, all first, second, and third order partial deriva-

tives of log p(x, θ, φ) exist for almost all x. This condition also implies the continuity

of the first and second partial derivatives on Θ×Φ for almost all x. Hereafter, by

“partial derivatives” we refer only to partial derivatives with respect to θ and φ ( ∂
∂θ

,

∂
∂φ

, ∂2

∂φ2 ,
∂2

∂φ∂θ
, etc. ).

(R - 2): For every (θ, φ) ∈ Θ×Φ, the absolute value of all first and second partial

derivatives of log p(x, θ, φ) are bounded by some integrable function M1(x), that is
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not a function of θ or φ. All third partial derivatives of log p(x, θ, φ) are bounded by

an integrable function M2(x), and IE(θ,φ) [M2(x)] < ∞. The last expectation is with

respect to a particular probability measure p (x, θ, φ) dx.

(R - 3): At the true value (θ0, φ0), the information matrix

I =


−IE

[
∂2

∂2θ
log p (x, θ, φ)

∣∣∣
(θ0,φ0)

]
−IE

[
∂2

∂θ ∂φ
log p (x, θ, φ)

∣∣∣
(θ0,φ0)

]
−IE

[
∂2

∂θ ∂φ
log p (x, θ, φ)

∣∣∣
(θ0,φ0)

]
−IE

[
∂2

∂2φ
log p (x, θ, φ)

∣∣∣
(θ0,φ0)

]
 (2.22)

is finite, nonsingular, and positive definite. The elements of I will be denoted by I11,

I12, and I22.

These assumptions are standard regularity conditions for the maximum likelihood

estimation (e.g., Rao [1973], section 5f). Condition (R - 1) ensures that the partial

derivative of the likelihood function, ∂
∂θ

∑
log p(Xi, θ, φ), has a Taylor expansion with

respect to θ. Assumption (R - 2) justifies the commutivity of differentiation with

respect to either θ or φ and integration with respect to x. (R - 2) also ensures that

higher-order terms in the Taylor expansion can be made sufficiently small. Assump-

tion (R - 3) ensures that ∂
∂θ

log p(x, θ, φ)
∣∣
(θ0,φ0)

has a finite variance.

Let U(θ, φ) be a functional defined on the family of possible distribution functions

of X, such that

U(θ, φ) =

∫
. . .

∫
h(x1, . . . , xk) p (x1, θ, φ) dx1 . . . p (xk, θ, φ) dxk,
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for some function h. That is, given a random sample X1, X2, . . . , Xn of size n, there

is a U -statistic:

Un =

(
n

k

)−1 ∑
(n,k)

h(X1, . . . , Xk), (2.23)

that provides an unbiased estimator of U(θ0, φ0) (See Lee [1990] for properties of

U -statistics).

We will denote the range of possible values of U(θ, φ) for (θ, φ) ∈ Θ×Φ as

U ⊂ IR. We assume that Un is a good estimator of u0 = U(θ0, φ0), meaning that, as

n →∞,

(U - 1) Un
a.s.→ u0

and

(U - 2) Un − u0 converges in distribution to a Gaussian random variable with

mean 0 and variance σu/n.

Hereafter,
a.s.→ denotes almost sure convergence.

Finally, we assume that, for every u ∈ U, the equation U(θ, φ) = u can be solved

for φ, and the solution is a “smooth” function of u and θ. More precisely, we assume

that there is a function f : Θ×U −→ Φ satisfying the following conditions:

(F - 1) f(θ, u) is continuous and bounded, and so are all of its first, second, and

third partial derivatives on Θ×U.

(F - 2) U(θ, f(θ, u)) = u, for all θ ∈ Θ and u ∈ U.
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Obviously, we have:

φ0 = f(θ0, u0). (2.24)

We also assume that, for a fixed u and x, p(x, θ, f(θ, u)), is indeed a function of θ.

If it is not, it means that p(x, θ, φ) can be reparameterized to depend on a single

parameter, and there is no need for a two parameter estimation.

Consider the following estimator (θ̂n, φ̂n) of the parameters (θ, φ), based on a

sample X1, X2, . . . , Xn of size n:

θ̂n = argmax
n∑

i=1

log p(Xi, θ, f(θ, Un)),

φ̂n = f(θ̂n, Un), (2.25)

where Un is a given by (2.23).

Proposition 1: Under the assumptions (R - 1) – (F - 2), the optimization problem

(2.25) admits a sequence of solutions θ̂n such that θ̂n −→ θ0 almost surely as n −→∞.

Let

L(θ, u|X1, . . . , Xn) =
n∑

i=1

log p(Xi, θ, f(θ, u)). (2.26)

The estimator θ̂n can found by setting the partial derivative of L(θ, Un|X1, . . . , Xn)

with respect to θ to zero, and then solving the obtained equation for θ. That is, θ̂n

is a solution of

∂

∂θ
L(θ, Un|X1, . . . , Xn) = 0. (2.27)
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We need to show that such a solution exists for almost all samples X1, . . . , Xn,

L(θ, Un|X1, . . . , Xn) actually attains a local maximum at θ̂n (as opposed to a local

minimum), and θ̂n almost surely converges to θ0 as n −→∞.

To simplify our formulas, we introduce the following notation:

a(x) =
∂

∂θ
log p(x, θ, φ)

∣∣∣∣
(θ0,φ0)

b(x) =
∂

∂φ
log p(x, θ, φ)

∣∣∣∣
(θ0,φ0)

c(x) =
∂2

∂θ2
log p(x, θ, φ)

∣∣∣∣
(θ0,φ0)

d(x) =
∂2

∂θ∂φ
log p(x, θ, φ)

∣∣∣∣
(θ0,φ0)

g(x) =
∂2

∂φ2
log p(x, θ, φ)

∣∣∣∣
(θ0,φ0)

(2.28)

We will abbreviate linear combinations of second- or third- order derivatives of

log p(x, θ, f(θ, u)) multiplied by second or third order derivatives of f(θ, u) evaluated

at a point (x, θ′, u′), by rj(x, θ′, u′). These types of expressions arise in the the higher-

order terms of the Taylor expansion. Conditions (R-2) and (F - 1) ensure that the

rj(X, θ′, u′) have finite expectations for any values of θ′ and u′. This is the only

property of rj(X, θ′, u′) that we will use.

We denote differentiation of f(θ, u) by indexes. For example, we write fθu(θ, u)

instead of ∂2

∂θ∂u
f(θ, u), and fθ(θ0, u0) for ∂

∂θ
f(θ, u)

∣∣
(θ0,u0)

.
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Using (R - 1) and (F - 1), we can expand ∂
∂θ

[log p(x, θ, f(θ, u))] in the neighborhood

of (θ0, u0). We have:

∂

∂θ
[log p(x, θ, f(θ, u))] = a(x) + b(x)fθ(θ0, u0)

+
[
c(x) + 2d(x)fθ(θ0, u0) + g(x) (fθ(θ0, u0))

2 + b(x)fθθ(θ0, u0)
]
(θ − θ0)

+ [d(x)fu(θ0, u0) + g(x)fu(θ0, u0)fθ(θ0, u0) + b(x)fθu(θ0, u0)] (u− u0)

+ r1(x, θ′, u′)(θ − θ0)
2 + r2(x, θ′, u′)(θ − θ0)(u− u0) + r3(x, θ′, u′)(u− u0)

2, (2.29)

where θ′ = θ0 + λ(θ − θ0), and u′ = u + λ(u− u0), for some 0 < λ < 1.

Now introduce the following random variables:

An =
1

n

n∑
i=1

a(Xi) + b(Xi)fθ(θ0, u0)

Bn =
1

n

n∑
i=1

[
c(Xi) + 2d(Xi)fθ(θ0, u0) + g(Xi) (fθ(θ0, u0))

2 + b(Xi)fθθ(θ0, u0)
]

Cn =
1

n

n∑
i=1

[d(Xi)fu(θ0, u0) + g(Xi)fu(θ0, u0)fθ(θ0, u0) + b(Xi)fθu(θ0, u0)]

Rj,n =
1

n

n∑
i=1

rj(Xi, θ
′, u′), j = 1, 2, 3. (2.30)

Note that all of the random variables above are averages of i.i.d. random variables,

and therefore we can apply the strong law of large numbers to determine how these

random variables behave as n −→∞.

First, note that

IE [a(X)] =

∫ ∂
∂θ

p(x, θ, φ)
∣∣
(θ0,φ0)

p(x, θ0, φ0)
p(x, θ0, φ0)dx =

[
∂

∂θ

∫
p(x, θ, φ)dx

]∣∣∣∣
(θ0,φ0)

= 0

(2.31)
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and, similarly,

IE [b(X)] = 0 (2.32)

Also, from (2.22),

IE [c(X)] = −I11, IE [d(X)] = −I12, and IE [g(X)] = −I22.

Let IE [rj(X)] = ρj, j = 1, 2, 3. From conditions (R - 2) and (F - 1), rj(X) has finite

expectation, meaning that there is a constant K < ∞, such that

IE [rj(X)] < K, j = 1, 2, 3.

Applying the strong law of large numbers, we conclude that, as n −→∞

An
a.s.−→ 0 (2.33)

Bn
a.s.−→ −I11 − 2I12fθ(θ0, u0)− I22 (fθ(θ0, u0))

2 = −β, (2.34)

Cn
a.s.−→ −I12fu(θ0, u0)− I22fu(θ0, u0)fθ(θ0, u0) = γ, (2.35)

and Rj,n
a.s.−→ ρj, |ρj| < K < ∞, j = 1, 2, 3 (2.36)

Note that, since I is positive definite and (2.34) can be rewritten as a quadratic form,

we have

0 < β < ∞. (2.37)

According to conditions (R - 2) and (F - 1), we also find that |γ| < ∞.
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Using the Taylor expansion in (2.29) and the definition of the random variables

in (2.30), we can write

∂

∂θ
L(θ, Un|X1, . . . , Xn) = An + Bn(θ − θ0) + Cn(Un − u0)

+ R1,n(θ − θ0)
2 + R2,n(θ − θ0)(Un − u0) + R3,n(Un − u0)

2. (2.38)

Let Ω′ ⊂ Ω be the set of all ω ∈ Ω for which the limits (2.33 – 2.36) and Un(ω) −→

u0 take place and the conditions (R - 1) and (F-1) are satisfied. Note that IP {Ω′} = 1.

Next, fix ε > 0 such that ε < β/(3K) and the points θ1 = θ0 − ε and θ2 = θ0 + ε are

in Θ, and fix an ω ∈ Ω′. Then, there is a Nε(ω) such that, for all n > Nε(ω), we have

|Un(ω)− u0| < max

(
βε

8|γ|
,
ε

8

)
,

|An| <
βε

4
,

|Bn + β| < β

4
.

Using equation 2.38, we find

∣∣∣∣( ∂

∂θ
L(θ, n, ω)

)∣∣∣∣
θ−ε

− βε

∣∣∣∣ = |An(ω)− (Bn(ω) + β)ε + Cn(ω)(Un(ω)− u0)

+ R1,n(ω)ε2 −R2,n(ω)ε(Un(ω)− u0) + R3,n(ω)(Un − u0)
2
∣∣

≤ |An(ω)|+ |Bn(ω) + β|ε + γ|Un(ω)− u0|

+ K(ε2 + ε|Un(ω)− u0|+ |Un(ω)− u0|2)

<
3βε

4
, (2.39)
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and, similarly,

∣∣∣∣( ∂

∂θ
L(θ, n, ω)

)∣∣∣∣
θ+ε

+ βε

∣∣∣∣ = |An(ω) + (Bn(ω) + β)ε + Cn(ω)(Un(ω)− u0)

+ R1,n(ω)ε2 −R2,n(ω)ε(Un(ω)− u0) + R3,n(ω)(Un − u0)
2
∣∣

<
3βε

4
. (2.40)

Here, we wrote L(θ, Un(ω)|X1(ω), . . . , Xn(ω)) as L(θ, n, ω), since ω determines all

X1(ω), . . . , Xn(ω), and Un(ω). Inequalities (2.39) and (2.40) imply that

∂

∂θ
L(θ, n, ω)

∣∣∣∣
θ−ε

>
βε

4
> 0, and

∂

∂θ
L(θ, n, ω)

∣∣∣∣
θ+ε

< −βε

4
< 0.

These inequalities, together with the assumed continuity of ∂
∂θ

L(θ, n, ω), imply that

the equation ∂
∂θ

L(θ, n, ω) = 0 has at least one root between θ0 − ε and θ0 + ε, and,

since β > 0, the function L(θ, n, ω) achieves its maximum at one of the roots. For

example,

θ̂nε(ω) = inf

{
θ ∈ [θ0 − ε, θ0 + ε] :

∂

∂θ
L(θ, n, ω) = 0

}
(2.41)

will be one of the solutions of the likelihood equation (2.27). It is easy to see that θ̂nε

is a random variable, that is, it is measurable. Indeed, for all t ≥ θ0− ε, we have (by

the continuity of
∂

∂θ
L(θ, n, ω), it is measurable with respect to F⊗B, where B is a

Borel σ-algebra):

{
θ̂nε > t

}
=

{
inf

θ0−ε≤θ≤t
θ rational

∂

∂θ
L(θ, n, ω) > 0

}⋃ sup
θ0−ε≤θ≤t
θ rational

∂

∂θ
L(θ, n, ω) < 0


Thus,

{
θ̂nε > t

}
is a measurable set.
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The estimator θ̂nε(ω) depends on the choice of ε, and we need to construct an

estimator θ̂n(ω) independent of ε. To this end, we replace ε by a sequence εm = 1/m,

m = 1, 2, . . . . Then, without loss of generality, we may assume that

N1(ω) ≤ N1/2(ω) ≤ N1/3(ω) ≤ . . .

and for N1/m(ω) ≤ n < N1/(m+1)(ω), we set

θ̂n(ω) = θ̂n,1/m(ω).

For n < N1(ω) or for ω /∈ Ω′, we can set θ̂n(ω) = 0.

Under this construction, θ̂n is the desired solution to the equation (2.27), and

converges to θ0 almost surely as n −→∞. This completes the proof of Proposition 1.

Our construction of θ̂n ensures that it is a local maximum of L(θ, Un|X1, . . . Xn),

but we did not consider whether it is actually a global maximum. As in the case

of maximum likelihood, additional regularity conditions have to be imposed on the

density function p(x, θ, φ) to show that θ̂n is a global maximum. Doing so is beyond

the scope of this section, but the same arguments as for the MLE estimators, e.g.

[Prakasa Rao, 1987, section 3.6], can be readily applied to our case, so the global

properties for MIXed estimators should be similar to that of the MLE estimators.

Proposition 2: Under assumptions (R - 1) – (F - 2), the estimator φ̂n defined in

(2.25) converges to φ0 almost surely as n −→∞.
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This directly follows from Proposition 1, the almost sure convergence of Un, and

the continuity and boundedness of the derivatives of f . See Rao [1973], section 6a.2

for the appropriate theorems.

Propositions 1 and 2 imply strong consistency of MIXed-type estimators. We now

consider their asymptotic distribution and show that it is jointly Gaussian.

Proposition 3: Under assumptions (R - 1) – (F - 2), the estimator θ̂n, defined

as a solution to (2.27), and Un have an asymptotically jointly Gaussian distribution

with mean (θ0, u0)
T and covariance matrix 1

n
B, where

B =
1

β

1 + 2σauγ+γ2σu

β
σau + γσu

σau + γσu βσu

 , (2.42)

σu is the asymptotic variance of Un, β is defined in (2.34), γ is defined in (2.35), and

σau is given by (2.43).

An, defined in (2.30), is an average of i.i.d. random variables a(X)+b(X)fθ(θ0, u0).

By (2.31) and (2.32),

IE [a(X) + b(X)fθ(θ0, u0)] = 0

To compute the variance of a(X) + b(X)fθ(θ0, u0), note that

IE
[
(a(X))2

]
=

∫ (
∂
∂θ

p(x, θ, φ)
∣∣
(θ0,φ0)

)2

p2(x, θ0, φ0)
p(x, θ0, φ0)dx

=

∫ ∂2

∂2θ
p(x, θ, φ)

∣∣∣
(θ0,φ0)

p(x, θ0, φ0)
p(x, θ0, φ0)dx︸ ︷︷ ︸

=0

−
∫

∂

∂θ

(
∂
∂θ

p(x, θ, φ)

p(x, θ0, φ0)

)∣∣∣∣∣
(θ0,φ0)

p(x, θ0, φ0)dx

= −IE

[
∂2

∂θ2
log p(X, θ, φ)

∣∣∣∣
(θ0,φ0)

]
= I11
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Similarly,

IE
[
(b(X))2

]
= I22 and IE [a(X)b(X)] = I12.

This implies that

Var(a(X) + b(X)fθ(θ0, u0)) =
[
I11 + (fθ(θ0, u0))

2 I22 + 2fθ(θ0, u0)I12

]
= β < ∞.

Thus, by the central limit theorem, An is asymptotically a Gaussian random variable

with mean zero and variance β/n. An, as defined in (2.30), can actually be viewed

as a U -statistic with first order kernel

ha(x) = a(x) + b(x)fθ(θ0, u0).

Therefore, according to the theory of U -statistics, the random variables An and Un−u0

have a jointly Gaussian distribution with covariance

σau =
k

n
Cov (ha(X1), h(X1, . . . Xk)), (2.43)

where k is the degree of Un in (2.23) [Lee, 1990, p. 76]. Thus, the asymptotic

distribution of the vector
√

n(An, Un−u0)
T is a bivariate Gaussian with mean vector

(0, 0)T and covariance matrix

A =

 β σau

σau σu

 .

The vector (θ̂n, Un)T satisfies the following system of equations, written in matrix

form (see (2.38)): 0

0

 =

 An

Un − u0

+

Bn + R1(θ̂n − θ0) Cn + R2(θ̂n − θ0) + R3(Un − u0)

0 −1


 θ̂n − θ0

Un − u0

 .

(2.44)
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By equations (2.34 – 2.36) and the strong consistency of the estimators,

−Jn =

Bn + R1(θ̂ − θ0) Cn + R2(θ̂ − θ0) + R3(Un − u0)

0 −1

 a.s.−→

−β γ

0 −1

 = −J

(2.45)

as n −→ ∞. Notice that matrix J is nonsingular, so matrix Jn is almost surely

nonsingular for large n. Employing (2.44), this yields θ̂ − θ0

Un − u0

 = J −1
n

 An

Un − u0

 , (2.46)

which can be rewritten as

√
nJ

 θ̂ − θ0

Un − u0

−
√

n

 An

Un − u0

 =
√

n(JJ −1
n − 1)

 An

Un − u0

 . (2.47)

From (2.45), we see that JJ −1
n − 1

a.s.−→ 0 as n −→ ∞. Equation (2.47), then,

implies that vectors
√

nJ (θ̂n − θ0, Un − u0)
T and

√
n(An, Un − u0)

T have the same

limiting distribution (see e.g. Rao [1973], p.122). Since the asymptotic distribution

of (An, Un − u0)
T is a bivariate Gaussian with mean vector (0, 0)T and covariance

matrix 1
n
A, the asymptotic distribution of (θ̂n, Un)T is also a bivariate Gaussian with

mean vector (θ0, u0)
T and covariance matrix

1

n
B =

1

n
J −1A(J −1)T .

Noting that J −1 =
1

β2

1 γ

0 β

, we see that B is exactly the same as in (2.42). This

completes the proof of proposition 3.
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Proposition 4: Under assumptions (R - 1) – (F - 2), the estimators θ̂n and φ̂n

have asymptotically jointly Gaussian distribution, with mean (θ0, φ0)
T and covariance

matrix 1
n
C, where

C =
1

β

 1 0

fθ(θ0, u0) fu(θ0, u0)


1 + 2σauγ+γ2σu

β
σau + γσu

σau + γσu βσu


1 fθ(θ0, u0)

0 fu(θ0, u0)


The statement follows directly from Proposition 3 and the continuity and bound-

edness of the derivatives of f (see Rao [1973], p. 388).

The results established above, can be easily extended to higher dimensions. Note

from the form of asymptotic covariance matrix C that det C ≥ 1
β

= − det(I−1),

meaning that the overall asymptotic variance of the MIXed estimators is greater

than that of the MLE, as expected. Also, we were able to prove the asymptotic

properties of the MIXed estimator under conditions, where both MLE and U -statistic

estimators exist. This implies that MIXed methods underperform MLE methods for

large samples which we saw in section 2.2.

To conclude, we have established that MIXed parameter estimates possess de-

sirable asymptotic properties, under certain regularity conditions: they are strongly

consistent, and have an asymptotically jointly Gaussian distribution. The regularity

conditions correspond to the regularity conditions for the MLE method. Smith [1985]

shows that the GEV density function satisfies this conditions for k ≤ 1/2.
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2.6 Summary of Chapter 2

New methods (MIX1 and MIX2) of parameter estimation for the GEV distribution

are introduced based on a combination of the MLE and LMOM methods. These

procedures can be viewed as LMOM-constrained MLE methods. MIX1 and MIX2

estimators are strongly consistent and have asymptotically jointly Gaussian distri-

butions (section 2.5). The performance of the MIX1 and MIX2 methods has been

studied using simulations for small samples. MIX1 and MIX2 do not produce absurd

estimates of k, and the RMSE of these estimators are smaller than that of LMOM and

MLE for k < −0.2 for small sample sizes (n ≤ 50). The new methods are based on

the maximum likelihood principle and can easily incorporate additional information.

The MIX method estimators are extended to incorporate PDS information. The

MLE2 method which employs both AMS and PDS records, is introduced and its

performance is studied using simulations. We show that, for k ≤ −0.1, the MLE2-

MIX1 method results in smaller values of RMSE for quantiles.

These techniques were applied to the sample of 104 basins in the central Appalachi-

ans, and no dependence of the shape parameter on basin descriptors was detected.

We conclude that the intrinsic variability of the parameter estimates correspond to

the variability of the estimation techniques and observe that basins with a higher

percentage of urban area have larger values of the scale and location parameters.

The estimated values of the shape parameter k were found to be more negative than

previously considered physically realistic, implying that the distribution has thick
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tails. The estimates of k for central Appalachian watersheds are shown to differ from

those of southern Appalachian watersheds, and that difference is compared to the

contrasting properties of extreme floods. The negative values found for k might be

explained by a stochastic model with tails thinner than those of the GEV distribution

with very negative k.

The methods described in this chapter are implemented in the EVANESCE (“Ex-

treme Value ANalysis Employing Statistical Copula Estimation”) package for S-Plus,

which is described in the next chapter.



Chapter 3

Modeling Joint Distributions
with Copulas: EVANESCE

Multivariate statistical models have attracted attention recently, due to the increasing

need for stochastic models that address sophisticated relationships between multiple

related datasets and the increases in computing power that have made complicated

computational problems more tractable [Joe, 1997]. A number of important theo-

retical constructions and techniques for modeling the interdependencies of random

variables have recently been established, and we have written a library for bivariate,

trivariate, and extreme value analysis for the statistical package S-Plus (by Insight-

ful) that simplifies the application of these advanced concepts for data analysis. This

library is named EVANESCE (Extreme Value ANalysis Employing Statistical Cop-

ula Estimation). It provides a comprehensive suite of ready-to-use functions for data

analysis using copulas.

72
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In this chapter, we describe the theory and methods for modeling bivariate distri-

butions with copulas, focusing on the methods that allow direct, practical application.

Section 3.8 summarizes the basic capabilities of EVANESCE, and Chapters 4 and 5

illustrate the use of copulas for data analysis.

A two dimensional copula is essentially a distribution function of two random

variables with marginals uniform on (0, 1). The theory indicates that, by mapping

two random variables of interest to uniform (0, 1) random variables, we can use the

properties of copulas to infer information about their mutual dependence. A full

introduction to this concept is presented below.

3.1 A Brief Introduction to Copulas

Suppose we are interested in modeling the stochastic behavior of two random vari-

ables X and Y based on a set of n independent observations of the couple (X, Y ), say

{(x1, y1), (x2, y2), . . . , (xn, yn)}. Furthermore, suppose that we have estimated their

respective marginal distributions, G1(x) and G2(y), using standard statistical tech-

niques. We are then interested to know whether X and Y are independent, how we

test whether they are independent, and how we describe their dependence if they are

not independent.

One of the best ways to describe the dependence between two random variables

is to estimate their joint distribution function

F (x, y) = IP {X ≤ x, Y ≤ y} ,
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since any other measure of the dependence is ultimately some function of this joint

distribution. Tests of hypotheses concerning the independence of X and Y reduce to

tests of whether F (x, y) is a product of the respective marginal distributions.

The random variables G1(X) and G2(Y ) are uniformly distributed between 0 and

1 (see Nelsen [1999], p. 11), and their joint distribution is

C(u, v) = IP {G1(X) ≤ u, G2(Y ) ≤ v} = F (G−1
1 (u), G−1

2 (v)), (3.1)

where G−1
1 and G−1

2 are the quantile functions of X and Y respectively (G−1
1 (q) =

inf{x ∈ IR : G(x) > q}). If we can estimate the function C, we will then be able to

compute F by setting

F (x, y) = C(G1(x), G2(y)). (3.2)

Under this construction, C is a distribution function of two random variables

with uniform (0, 1) margins. Such functions are called two-dimensional copulas, and

have been extensively studied in the past few years (Nelsen [1999] and Joe [1997] are

only two of several recently-published textbooks that provide a detailed review of the

subject).

It is not difficult to prove that C is a two-dimensional copula if and only if it is a

function C(u, v) : I2 7→ I (I = [0, 1]) that satisfies the following two conditions:

• For every u and v in I:

C(u, 0) = C(0, v) = 0, C(u, 1) = u, and C(1, v) = v;
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• For every u1 ≤ u2, and v1 ≤ v2, and u1, u2, v1, v2 ∈ I, the following inequality

holds:

C(u1, v1)− C(u2, v1)− C(u1, v2) + C(u2, v2) ≥ 0

If C is considered to be a distribution function of two random variables U and V ,

the first condition ensures that U and V have uniform marginal distributions. The

second condition, often referred to as the rectangular inequality, simply requires that

C is a valid distribution function, i.e. IP {u1 ≤ U ≤ u2, v1 ≤ V ≤ v2} ≥ 0.

Of course, the notion of copula extends into higher dimensions: n-dimensional

copulas are joint distribution functions of n random variable with uniform (0, 1)

marginals. For the next few sections, we will focus on two-dimensional copulas and

their application and discuss the extension of the methods to higher dimensions in

section 3.7.

Formula (3.1) shows that, if X and Y are continuous random variables, the func-

tion C satisfying (3.1) is unique. If X and Y are not continuous random variables,

C is uniquely determined on Range G1 × Range G2 (this result is known as Sklar’s

theorem [Sklar, 1959], see also Nelsen [1999], p. 15). In order to estimate F , we can

transform the observations of X and Y , (x1, y1), (x2, y2), . . . , (xn, yn), into observa-

tions of U = G1(X) and V = G2(Y ), (u1, v1), (u2, v2), . . . , (un, vn), where ui = G1(xi)

and vi = G2(yi), i = 1, 2, . . . , n, and C may then be estimated as the joint distri-

bution of U and V . Then we can use formula (3.2) to produce an estimate of F .

The function C is a copula, and there have been a few non-parametric methods de-
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veloped for its estimation [Deheuvels, 1978; Genest and Rivest, 1993; Genest et al.,

1995; Capéraà et al., 1997a]. One can also assume that the copula has a particular

parametric form and estimate its parameters using, for example, the method of max-

imum likelihood. The various non-parametric techniques that are implemented in

EVANESCE are summarized in section 3.5, and section 3.2 lists several widely used

families of parametric copulas, all of which are implemented in EVANESCE.

Other issues that might be of interest in practical applications of bivariate statis-

tics include measuring the association between two random variables and generating

random pairs from a particular copula. In section 3.3, we discuss different measures

between the association of the random variables, and explain why the most com-

mon measure of association, the coefficient of correlation, might not be the best.

Alternative measures that are implemented in EVANESCE, namely Kendall’s tau

and Spearman’s rho, are discussed in that section, along with the concept of tail

dependence. Algorithms suggested by Genest and Mackay [1986a] and Capéraà et al.

[2000] for the generation of random pairs from certain parametric copulas that are

implemented in EVANESCE are discussed in Section 3.4.

Alternatives to copula-based models include multivariate threshold exceedances

and Markov chain models [Tawn, 1988, 1990; Joe et al., 1992; Smith, 1994; Smith

et al., 1997]. These models provide estimates of the tails of joint distribution functions

of two random variables on the basis of certain theorems in multivariate extreme value

theory, but do not always allow direct simulation of the random variables. In addition,
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they are not as generally applicable as copula-based models [Joe, 1997]. For these

reasons, bivariate threshold exceedances models are not included in EVANESCE, and

are not discussed here.

3.2 Parametric Copula Classes and Families

In this section, we describe the parametric copula families implemented in EVANESCE.

EVANESCE users can use these families to construct joint cumulative and probabil-

ity density functions, generate random variables, compute Kendall’s tau, Spearman’s

rho, and the tail index parameter, or use the maximum likelihood method to estimate

parameters of any of these copulas.

• One of the most frequently used copulas (especially for financial modeling) is the

copula of a bivariate Gaussian distribution with correlation δ. It is defined by

C(u, v) =

∫ Φ−1(u)

−∞
dx

∫ Φ−1(v)

−∞
dy

1

2π
√

1− δ2
exp

{
−x2 − 2δxy + y2

2(1− δ2)

}
= Φδ

(
Φ−1(u), Φ−1(v)

)
, (3.3)

where Φ−1 is the quantile function of the standard univariate Gaussian distribution,

and Φδ is the joint cumulative distribution function of a standard bivariate Gaussian

distribution with correlation coefficient δ (0 ≤ δ ≤ 1). Since this copula is a very

familiar object to most researchers (especially when used with Gaussian margins), it

has been incorporated in a number of applications simply because it was the only

tool available for quite some time [Embrechts et al., 2000b]. In fact, J. P. Morgan’s
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RiskMetrics [1995] has been using this copula for portfolio risk management by Monte

Carlo simulations long before it was related that one were dealing with copulas.

• An important class of copulas is the Extreme Value (EV) class. A copula is said

to be an EV copula if for all t > 0 the scaling property

C(ut, vt) = (C(u, v))t

holds for all (u, v) ∈ I2. Such copulas are max-stable, meaning that, if

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are i.i.d. random pairs from an EV copula C and

Mn = max{X1, X2, . . . , Xn}, Nn = max{Y1, Y2, . . . , Yn}, a copula associated with the

random pair (Mn, Nn) is also C. It can be shown [Joe, 1997, p. 175] that EV copulas

can be represented in the form:

C(u, v) = exp

{
log(uv) A

(
log(u)

log(uv)

)}
,

where A : [0, 1] → [1
2
, 1] is a convex function such that max(t, 1 − t) ≤ A(t) ≤ 1 for

all t ∈ [0, 1]. The function A(t) is called the dependence function. As in the case of

univariate random variables, it can be shown that the limiting copula for the sequence

{(an + bnMn, cn + dnNn)} is an EV copula, if the sequence {(an + bnMn, cn + dnNn)}

converges weakly in distribution for some sequences of numbers an, bn, cn, and dn,

under certain regularity conditions [Galambos, 1987].

• The Gumbel copula [Gumbel, 1960], probably the next-best-known copula to the

Gaussian copula [Nelsen, 1999], has the following form:

C(u, v) = exp
{
−
[
(− log u)δ + (− log v)δ

]1/δ
}

, (3.4)
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where δ ≥ 1 is a parameter. It has a rather simple form, and it is easy to generate

random samples from this copula [Johnson, 1987, p. 197]. It is an EV copula, and

its dependence function is

A(t) = (tδ + (1− t)δ)1/δ.

Dependence functions for four other EV copula families that are implemented in

EVANESCE are listed in Table 3.2. Several of the copulas in this chapter (and in

the EVANESCE library) are taken from Joe’s [1997] textbook, and we retain their

abbreviated names from the textbook, e.g., BB5, BB2, etc.

• As can be seen from equation (3.4), the Gumbel copula can be written in the

following form:

C(u, v) = φ−1[φ(u) + φ(v)], (3.5)

for φ(t) = (− log t)δ. Copulas that can be written in this form are called Archimedean

copulas, and the function φ is called the Archimedean generator [Nelsen, 1999, chapter

4]. In order for the function C in (3.5) to be a valid copula, the function φ(t) : I 7→ IR+

has to be continuous, strictly decreasing, convex, and satisfy φ(1) = 0. φ(0) is defined

as limt→0+ φ(t), and φ−1(z) = 0 for all z > φ(0), if φ(0) < ∞ [Nelsen, 1999, p. 91].

We have implemented seven Archimedean copulas in EVANESCE. Five of these

are two-parameter families that correspond to the BB1 – BB3 and BB6 – BB7 families

from Joe [1997]. The Archimedean copulas implemented and their generators are

listed in Table 3.6.
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Name Description

Galambos

[1975]
C(u, v) = uv exp

{[
(− log u)−δ + (− log v)−δ

]−1/δ
}

, 0 ≤ δ < ∞.

The dependence function for this copula is

A(t) = 1− (t−δ + (1− t)−δ)−1/δ

Hüsler and

Reiss [1989]
C(u, v) = exp

{
−ũ Φ

[
1

δ
+

1

2
δ log

(
ũ

ṽ

)]
−ṽ Φ

[
1

δ
+

1

2
δ log

(
ṽ

ũ

)]}
,

where 0 ≤ δ < ∞, ũ = − log u, ṽ = − log v, and Φ is the cdf of

a standard Gaussian. The dependence function for this copula

is

A(t) = t Φ

[
δ−1 +

1

2
δ log

(
t

1− t

)]
+ (1− t) Φ

[
δ−1 − 1

2
δ log

(
t

1− t

)]
.

Tawn [1988] This is an asymmetric extension of the Gumbel copula. The

dependence function for this copula is

A(t) = 1− β + (β − α) + {αrtr + βr(1− t)r}1/r,

0 ≤ α, β ≤ 1, 1 ≤ r < ∞.

BB5 copula
C(u, v) = exp

{
−
[
ũθ + ṽθ −

(
ũ−θδ + ṽ−θδ

)−1/δ
]1/θ
}

,

δ > 0, θ ≥ 1, ũ = − log v, ũ = − log v.

This is a two-parameter extension of the Gumbel copula. The

dependence function for this copula is

A(t) =
[
tθ + (1− t)θ −

(
t−δθ + (1− t)−δθ

)−1/δ
]1/θ

.

Table 3.1: Several parametric families of Extreme Value copulas implemented in the

EVANESCE library.
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• Capéraà et al. [2000] combined the EV and Archimedean copula classes into a

single class called Archimax copulas. The Archimax copulas are copulas which can

be represented in the following form:

C(u, v) = φ−1

[
(φ(u) + φ(v)) A

(
φ(u)

φ(u) + φ(v)

)]
, (3.6)

where A(t) is a valid dependence function and φ is a valid Archimedean generator.

Archimax copulas reduce to Archimedean copulas for A(t) = 1, and to EV copulas

for φ(t) = − log(t). Capéraà et al. [2000] proved that (3.6) is a valid copula, for any

combination of valid functions φ(t) and A(t). For example, one might take

φ(t) = t−θ − 1 and A(t) = 1− (t−δ + (1− t)−δ)−1/δ

and obtain the following copula:

C(u, v) =

(
x−θ + u−θ − 1−

[(
u−θ − 1

)−δ
+
(
v−θ − 1

)−δ
]− 1

δ

)− 1
θ

.

This copula family is denoted as BB4 in Joe [1997], and is also implemented in

EVANESCE.

• Some Archimedean copulas can also be represented an the Archimax form with

dependence functions not equal to 1. For example, the BB1 copula

C(u, v) =
{

1 +
[
(u−θ − 1)δ + (v−θ − 1)δ

]1/δ
}−1/θ

,

which is an Archimedean copula with a two-parameter generator (Table 3.6), can be

represented as an Archimax copula with the Gumbel dependence function

A(t) = (tδ + (1− t)δ)1/δ and φ(t) = t−θ − 1
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where θ > 0 and δ ≥ 1. This representation is important, since Capéraà et al. [2000]

demonstrated how to determine the maximum attractors of these distributions. This

representation is also convenient from a purely computational standpoint, especially

for the generation of random variables (see section 3.4).

To get a feeling of how copula families differ from one another and what type of

dependencies they can describe, we plotted contours of joint density for several bivari-

ate distributions with different copulas and standard Gaussian margins (Figures 3.1

and 3.2). The parameters were chosen so that all the copulas have the same Kendall’s

tau τ = 0.5 (see (3.7) for the definition of the Kendall’s tau). The Pearson correlation

coefficients of these distributions range from 0.66 to 0.72 (see figure captions), which

is inconsequential. Note how different resulting density contours are.

EV copulas are very similar to each other, especially if one considers one parameter

families. The contour plots of density of the three one-parameter EV copulas with

Gumbel margins is shown in Figure 3.3. This is one of the reasons that it is very hard

to discern the best copula from these families to describe the observed data for similar

values of Kendall’s tau [Cistinot et al., 2000]. Fortunately, it is usually not necessary

to do this, since a bivariate model based on any of these copula, will produce a very

similar dependence between random variables to that of the best copula that could

be chosen. The same is true for the two-parameter extension of the Gumbel copula

(BB5): for a fixed Kendall’s tau, the copula density it is very insensitive changes for

in the parameters.
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Figure 3.1: Contours of density for different copula families with stan-

dard Gaussian margins. a) Gaussian, δ = 0.707, ρP = 0.71 (Pearson

correlation coefficient); b) Frank, δ = 5.74, ρP = 0.66; c) Kimeldorf

and Sampson, δ = 2, ρP = 0.69; d) Gumbel, δ = 2, ρP = 0.70.
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Figure 3.2: Contours of density for different copula families with stan-

dard Gaussian margins. a) BB1, θ = 0.42, δ = 1.65, ρP = 0.71 (correla-

tion coefficient); b) BB2, θ = 0.5, δ = 2.05, ρP = 0.70; c) BB3, θ = 1.4,

δ = 0.85, ρP = 0.72; d) BB4, θ = 0.7, δ = 0.75, ρP = 0.72.
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Figure 3.3: Contours for one-parameter copula families with Gumbel

margins and Kendall’s tau = 0.5: dashed lines – Gumbel, δ = 2; solid

lines – Galambos, δ = 1.28; dotted lines – Hüsler and Reiss, δ = 1.8.
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Unlike EV copulas, Archimedean copulas can describe a variety of dependencies,

even for a fixed Kendall’s tau (compare Figures 3.1 b), c), 3.2 a), b), and c)). The

two-parameter Archimedean families described here can also describe quite different

dependencies at fixed Kendall’s tau. Figure 3.4 shows density contours for BB1 and

BB7 copulas with standard Gaussian margins.

3.3 Dependence Summaries

A bivariate copula provides complete information regarding the dependence between

its two marginal random variables, but sometimes we would like to condense this

information into one number.

A dependence measure can be defined as a functional on a space F of joint distri-

bution functions, or alternatively defined as a function of two random variables [Em-

brechts et al., 2000b]. We will use the former definition in order to avoid notational

ambiguity arising with the latter. Technically speaking, any functional d : F 7→ IR

can be considered a dependence measure, but the following properties are considered

desirable for such measures [see Hutchinson and Lai, 1990]:

1. −1 ≤ d(F ) ≤ 1 for all F ∈ F (this normalization is customary; it is motivated

by the properties of the Pearson correlation coefficient).

2. Symmetry: F1(x, y) = F2(y, x) ∀(x, y) ∈ IR2 =⇒ d(F1) = d(F2)

3. Invariance under increasing transformations: if F, G ∈ F , and F (x, y) =

G(g1(x), g2(y)) for some strictly increasing functions g1 and g2, then d(F ) =
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Figure 3.4: Contours for two-parameter copula families BB1 and BB7

with standard Gaussian margins and Kendall’s tau = 0.5: a) BB1,

θ = 0.8, δ = 1.43; b) BB1, θ = 0.1, δ = 1.90; c) BB7, θ = 1.9, δ = 1.11;

d) BB7, θ = 1.43, δ = 1.64. The upper tail index for the copulas is

0.38 in figures a) and c) and 0.56 in figures b) and d).
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d(G). Additionally, if g1 is strictly increasing and g2 is strictly decreasing, then

d(F ) = −d(G).

4. For X and Y as the two random variables with joint distribution F :

a) d(F ) = 1 ⇐⇒ X = g(Y ) and d(F ) = −1 ⇐⇒ X = −g(Y ) for some strictly

increasing function g.

b) d(F ) = 0 ⇐⇒ X and Y are independent.

It is a well-known result that there is no measure for bivariate distributions that can

satisfy all of the properties above, (see, for example, Hutchinson and Lai [1990]), so we

must sacrifice at least one property when defining a dependence measure. The usual

victim is property 4 b): it is difficult to require that a zero dependence measure implies

the independence of two random variables for all distributions, but this property

usually holds for a number of the distributions of interest, regardless.

• The traditional measure of the dependence between two random variables X and

Y is the Pearson correlation coefficient:

ρP =
Cov(X, Y )√

Var(X)
√

Var(Y )
.

It can be easily seen that ρP satisfies properties 1 and 2 from the above, but not

properties 3 and 4 [Joe, 1997, p. 32]. Another drawback of ρP is that the random

variables are required to have a finite second moment for ρP to exist. This is not

always true for distributions with heavy tails of crucial importance in hydrology and

financial engineering.
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Two very common measures that satisfy all of the properties except 4 b) are

Kendall’s tau and Spearman’s rho.

• Let F be a continuous bivariate cumulative distribution function (cdf), and let

(X1, Y1) and (X2, Y2) be two independent pairs of random variables from this distri-

bution. The Kendall’s tau for the distribution F is defined as

τ = IP {(X1 −X2)(Y1 − Y2) > 0} − IP {(X1 −X2)(Y1 − Y2) < 0}

If C is the copula associated with F , then

τ = 4

∫
CdC − 1 = 4

∫ 1

0

∫ 1

0

C(u, v)c(u, v)dudv − 1, (3.7)

where c(u, v) is the copula density. Kendall’s tau can be viewed as a functional on

the space of copulas, and is the same for all distributions associated with the same

copula. (A copula C is said to be associated with the distribution F if C and F are

related by equation (3.2).).

In general, it is impossible to express the value of Kendall’s tau as a function of an

individual copula’s parameters. However, simple formulas are available for Gaussian

copulas (τGauss = 2
π

arcsin δ), Kimeldorf and Sampson copulas (τKimSamp = δ
δ+2

), and

Gumbel copulas (τGumbel = δ−1
δ

). For Archimedean, EV, and Archimax copulas,

the double integration in (3.7) can be reduced to a one-dimensional integral; for an

Archimedean copula with generator φ(t),

τArchm = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt,
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(see Genest and Mackay [1986b]), and for an EV copula with dependence function

A(t),

τEV =

∫ 1

0

t(1− t)A′′(t)

A(t)
dt

(see Ghoudi et al. [1998]). For Archimax copulas, we also have

τArchimax = τEV + (1− τEV)τArchm,

where τEV and τArchm are computed using the formulas above with the dependence

function and the Archimedean generator of the Archimax copula [Capéraà et al.,

2000].

The EVANESCE library contains functions for computing Kendall’s tau for all

parametric families introduced in section 3.2. The library is designed so that the call

Kendalls.tau(copula) in the least-computationally-intensive way will result in the

computation of Kendall’s tau for this specific parametric copula.

• For a pair of random variables (X, Y ) with joint distribution F and marginal distri-

butions G1 and G2, Spearman’s rho is defined as the correlation between G1(X) and

G2(Y ). Since G1(X) and G2(Y ) are uniform (0, 1) random variables, IE [G1(X)] =

IE [G2(Y )] = 1
2

and Var(G1(X)) = Var(G2(Y )) = 1
12

. For a copula C associated with

X and Y , then,

ρS = 12

∫ 1

0

∫ 1

0

u v dC(u, v)− 3 = 12

∫ 1

0

∫ 1

0

C(u, v) du dv − 3.
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Though there is no simplification of this formula for the Archimedean copulas, it has

been shown for EV copulas that

ρS = 12

∫ 1

0

dt

(A(t) + 1)2
− 3,

(see Capéraà et al. [1997a]). EVANESCE can compute Spearman’s rho for all para-

metric copulas described in section 3.2.

For three random variables of interest X, Y , and Z, one important question to

answer is whether variable X has greater dependence on Y or Z, and how we can best

make the distinction. The underlying idea is that one can define different orderings

on the space of all copulas, and ask whether C(X,Y ) ≺ C(X,Z) or C(X,Y ) � C(X,Z) under

any particular ordering (see Joe [1997], section 2.2, for several dependence orderings).

The most common ordering is the concordant ordering:

C1 ≺c C2 ⇐⇒ C1(u, v) ≤ C2(u, v) ∀ (u, v) ∈ I2.

Unfortunately, it is not always convenient to use copulas for this sort of analyses.

Moreover, this ordering is not total and it can very easily occur that C1(u1, v1) <

C2(u1, v1) for one point (u1, v1) ∈ I2 , and C1(u2, v2) > C2(u2, v2) for another point

(u2, v2). Sometimes, we can compare copulas by mapping the area where C1(u2, v2) >

C2(u2, v2) [Cistinot et al., 2000] (this can be done automatically in EVANESCE), but

it is more convenient to use another ordering. Let (U1, V1) and (U2, V2) be two pairs

of random variables from copulas C1 and C2, respectively. Define W1 = C1(U1, V1),

and W2 = C2(U2, V2) and let K1(w) and K2(w) denote the cumulative distribution
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functions of W1 and W2, respectively. Capéraà et al. [1997b] showed that one can

define a copula ordering by

C1 ≺K C2 ⇐⇒ K1(w) ≥ K2(w) ∀w ∈ [0, 1].

This ordering is neither stronger nor weaker than the concordance ordering ≺c. As

in the case of concordance ordering, C1 ≺K C2 =⇒ τC1 ≤ τC2 , where τCi
denotes

the Kendall’s tau of copula Ci, i = 1, 2. The ordering ≺K has some very convenient

properties for Archimedean, EV, and Archimax copulas. Let CA denote an EV copula

with dependence function A, Cφ denote an Archimedean copula with generator φ, and

Cφ,A denote an Archimax copula with generator φ and dependence function A. The

following properties hold (see Capéraà et al. [1997b, 2000]):

CA1 ≺c CA2 =⇒ τCA1
≤ τCA2

⇐⇒ Cφ,A1 ≺K Cφ,A2 ⇐⇒ CA1 ≺K CA2 ;

τCφ1
≤ τCφ2

⇐= Cφ1 ≺K Cφ2 ⇐⇒ Cφ1,A ≺K Cφ2,A =⇒ Cφ1 ≺c Cφ2

We will only use the ≺K ordering in this dissertation, so hereafter we omit the K

index.

The last quantity of interest to define is the tail index. The copula’s upper tail

index λU is defined as

λU = lim
α−→1−

1− 2α + C(α, α)

1− α
, (3.8)

whenever the limit exists. If the distribution of a pair (U, V ) is given by a copula

with upper tail index λU , then

λU = lim
α−→1−

IP {U > α|V > α} . (3.9)
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This measure is very important for risk management, as it specifies how much the

tails of the marginal distributions are correlated [Embrechts et al., 2000b]. Similarly,

the lower tail index is defined as

λL = lim
α−→0+

C(α, α)

α
.

EVANESCE includes functions that compute upper and lower tail indexes for each

parametric copula. For EV copula with generator A(t), note that we will always have

λL = 0 and λU = 2 − 2A(1/2). The upper and lower tail indexes for the Gaussian

copula are zero. Formulas for upper and lower tail indexes for several parametric

families from section 3.2 are listed in Table 3.3.

The ability to compute different measures of dependence becomes very useful in

providing a feel for the dependence between several random variables. In section 4.1,

for example, we will see how computing these measures will help us to choose between

the possible parametric copulas for describing a given set of data.

3.4 Simulation of Random Pairs

The ability to perform Monte Carlo simulations from a given (or estimated) bivari-

ate distribution is a powerful tool in financial engineering and statistical hydrology.

EVANESCE contains the function rcopula that returns simulated observations from

a given parametric bivariate copula. Used with marginal quantile functions, it allows

the user to simulate random observations from many different bivariate distributions.

In this section, we describe the simulation algorithms implemented in EVANESCE.
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Copula family Lower tail index Upper tail index

BB1 2−
1
δθ 2− 21/δ

BB2 1 0

BB3 2−1/δ if θ = 1

1 if θ > 1

2− 21/θ

BB4
(
2− 2−1/δ

)−1/θ
2−1/δ

BB6 0 2− 2−
1
δθ

BB7 2−1/δ 2− 21/θ

Table 3.3: Formulas for upper and lower tail indexes for several para-

metric copula families.
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One standard method for simulating a random observation (u, v) from a bivariate

copula C involves using the inverse of the conditional distribution

IP {V ≤ v|U = u} = CV |U = ∂C(u,v)
∂v

. Of all the families listed in section 3.2, the

inverse of CV |U exists in a closed form only for the Frank copula and the Kimeldorf

and Sampson copula, and the inverse method is therefore used in EVANESCE for only

these two bivariate copulas. It is also employed in simulations from three-dimensional

copulas (see section 3.7), however.

Genest and Mackay [1986a] introduced the following algorithm for generating pairs

(u, v) of random observations from an Archimedean copula with an Archimedean

generator φ:

• Generate two independent random numbers u and t from the uniform (0, 1)

distribution.

• Set w = φ′(−1)

(
φ′(u)

t

)
, where φ′(t) = d

dt
φ(t).

• Set v = φ−1 [φ(w)− φ(u)].

• Take (u, v) to be the random observation.

Another algorithm for generating random pairs from an Archimedean copula is

based on the following theorem (from Genest and Rivest [1993]):

Let U and V be uniform random variables with a joint distribution given by an

Archimedean copula C with generator φ. Let S =
φ(U)

φ(U) + φ(V )
and T = C(U, V ).
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Then, S and T are independent random variables, S is uniformly distributed on (0, 1),

and the distribution of T is given by

K(t) = IP {T ≤ t} = t− φ(t)

φ′(t)
,

where φ′(t) = d
dt

φ(t).

It immediately follows from this theorem that the following algorithm generates

an observation (u, v) from an Archimedean copula.

• Draw a number r from a distribution uniform on (0, 1). Set t = K−1(r) (K−1

denotes the inverse of K).

• Draw another number s from a distribution uniform on (0, 1), independently of

r.

• Set u = φ−1 [sφ(t)] and v = φ−1 [(1− s)φ(t)].

The Genest and Mackay [1986a] algorithm uses the inverse of φ′, and the algorithm

above uses the inverse of K. For some parametric Archimedean copulas in section 3.2,

neither function is invertible in closed form, and we employed the Newton method for

computationally inverting them. The points at which the inverse is to be computed

are sorted, and the value of the inverse at each point is used as the initial guess

for the next point. The number of iterations performed to find a solution is thusly

minimized. The second algorithm can also be used to simulate random observations

from empirically estimated copulas (see section 3.5).
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Capéraà et al. [2000] suggested an algorithm for generating random pairs from

Archimax copulas. Let C be an Archimax copula of with Archimedean generator φ

and dependence function A, and (U, V ) be a pair of random variables joint cumula-

tive distribution function C. Under the assumption that A has a continuous second

derivative, it can be shown that the function H defined by:

H(z) = z − z(1− z)
A′(z)

A(z)
0 ≤ z ≤ 1.

is the cumulative distribution function of a random variable Z of the form Z =

φ(U)
φ(U)+φ(V )

, and that, if W = C(U, V ), the conditional distribution of W given Z is

IP {W ≤ w|Z = z} = p(z)w + (1− p(z))Kφ(w),

where

p(z) =
z(1− z)A′′(z)

H ′(z)A(z)

and Kφ(t) =
(
1− φ(t)

φ′(t)

)
. Note that Kφ is the distribution of φ−1 [φ(R) + φ(S)], where

(R,S) is a random pair from an Archimedean copula with the generator φ. The

following algorithm will then generate an observation (u, v) from an Archimedean

copula C [Capéraà et al., 2000]:

• Generate z from the distribution H. Notice that, since A′′ is continuous, H ′ is

bounded on [0, 1] and the rejection method can be used for this purpose.

• Generate t from the uniform (0, 1) distribution. If t ≤ p(z), draw w from

a uniform distribution, otherwise, generate a pair of numbers (r, s) from the

Archimedean copula with generator φ, and set w = φ−1 [φ(r) + φ(s)].
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• Set u = φ−1

[
zφ(w)

A(z)

]
and v = φ−1

[
(1− z)φ(w)

A(z)

]
.

Recall that φ(t) = − log t for EV copulas, and the Archimedean copula with this

generator is simply an independence copula (C(u,v) = uv). For EV copulas, then, r

and s can be independently drawn from the uniform distribution.

All of the algorithms above are implemented in EVANESCE. The library is de-

signed so that a call rcopula(copula,n) automatically employs the most efficient

algorithm for generating random observations from the copula.

3.5 Estimation of Copulas

Again, starting with a sample of n independent observations of random pairs

(u1, v1), (u2, v2), . . . (un, vn) from the distribution C(u, v) with uniform marginals, we

discuss how to estimate C.

3.5.1 Empirical Copulas

Similarly to the univariate case, Deheuvels [1978] introduced non-parametric empir-

ical estimate for copulas called empirical copulas. Let u(1) ≤ u(2) ≤ . . . ≤ u(n) and

v(1) ≤ v(2) ≤ . . . ≤ v(n) be the order statistics of the univariate samples. The empirical

copula Ĉemp is then defined at the points

(
i

n
,
j

n

)
by the formula:

Ĉemp

(
i

n
,
j

n

)
=

1

n

n∑
k=1

1{uk≤u(i),vk≤v(j)}, i, j = 1, 2, . . . , n (3.10)
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One can also define an empirical copula frequency ĉemp as

ĉemp

(
i

n
,
j

n

)
=

1

n
·


1 if (u(i), v(j)) is an element of the sample,

0 otherwise.

The empirical copula frequency can be considered an analog of empirical copula den-

sity, since

Ĉemp

(
i

n
,
j

n

)
=

i∑
k=1

j∑
m=1

ĉemp

(
k

n
,
m

n

)
Deheuvels [1978] showed that the sequence of empirical copulas converges to the true

copula of the data as the sample size increases.

Empirical copulas can be a useful tool for exploratory data analyses. Figure 3.5,

shows contours of a Gumbel copula with parameter δ = 2.0 and of an empirical

copula from a random sample of size 100 generated from this Gumbel copula. If we

did not know the true copula of our sample, we could have inferred from this plot

that the Gumbel copula was a good model for our data. One can also construct

non-parametric tests for independence based on the empirical copulas. Details about

these tests can be found in Deheuvels [1981a,b].

3.5.2 A Non-Parametric Estimate for Archimedean Copu-

las

The following non-parametric estimate for Archimedean copulas was proposed by

Genest and Rivest [1993]. The Archimedean generator φ(t) can be written as

φ(t) = exp

{∫ t

t0

1

λ(s)
ds

}
, (3.11)
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Figure 3.5: Contours of a Gumbel copula (dashed lines) with parameter

δ = 2.0 and of an empirical copula (solid lines) from a random sample

of size 100 generated from this Gumbel copula.
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where λ(s) = φ(s)
φ′(s)

= s −K(s) and t0 is an arbitrary constant. Genest and Rivest’s

[1993] non-parametric procedure consists of using a kernel estimator for K(s), using

(3.11) to estimate φ (numerical integration is required), and then using (3.6) to obtain

the actual estimate of C. To compute the kernel estimate for K(s), one computes

zi = 1
n−1

· Card {(uj, vj) : uj < ui, vj < vi}. For a given kernel k(s) (which integrates

to 1), the estimator of K(s) is then

K̂(s) =
1

n

n∑
i=1

k(s− zi). (3.12)

Genest and Rivest [1993] show that this estimator is consistent under certain regular-

ity conditions. A nice property of this estimator is that it can also be applied directly

to raw data points before the marginal transformation. Also, if the true copula of

(U, V ) is not an Archimedean copula, this estimator (asymptotically) approaches a

projection of the true copula of (U, V ) onto the class of Archimedean copulas.

Figure 3.6 illustrates the estimate of a function λ(s) for a sample of size 100

from a BB1 copula (solid curve), and the true function λ(s) for this copula (dashed

curve). It is important to note, that the non-parametric estimator K̂ constructs a

copula from which we can generate random observations, using the algorithm on page

97. This procedure is implemented in EVANESCE (function rcopula.archm.est),

but it is much slower than the procedures that generate random observations from

parametrically defined copulas.
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Figure 3.6: The estimate of a function λ(s) for a sample of size 100

from a BB1 copula (solid curve), and the true function λ(s) for this

copula (dashed curve).



CHAPTER 3. EVANESCE 104

3.5.3 A Non-Parametric Estimate for EV Copulas

Capéraà et al. [1997a] introduced a non-parametric estimate for the dependence func-

tion of EV copulas. It can be computed using the following algorithm:

• Compute zi =
log(ui)

log(uivi)
, i = 1, 2, . . . , n. Let z(1), z(2), . . . , z(n) denote ordered

z′is.

• Compute

qi =

[
i∏

k=1

z(k)

1− z(k)

] 1
n

i = 1, 2, . . . , n

• The estimator of A(t) is given by the following formula

Â(t) =


(1− t)q

1−p(t)
n if 0 ≤ t ≤ z(1),

ti/n(1− t)1−i/nq
1−p(t)
n q−1

i if z(i) < t ≤ z(i+1) i = 1, 2, . . . , n− 1,

tq
−p(t)
n if z(n) < t ≤ 1,

where p(t) is a weighting function. p(t) must to be bounded on [0, 1] and satisfy

p(0) = 1 − p(1) = 1. One can choose several expressions for p(t), the simplest

one being p(t) = 1− t.

• The copula estimate is then

ĈCap(u, v) = exp

{
log(uv)Â

(
log u

log(uv)

)}

Capéraà et al. [1997a] showed that, though the estimator Â(t) is biased for finite

samples, it is asymptotically unbiased and strongly consistent. It is also easy to see

that the estimate of A is a valid dependence function. Capéraà et al. [1997a] compared
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the performance of this estimator using simulations for Gumbel and Tawn copulas on

small and medium samples to two other estimators proposed by Pickands [1981] and

Deheuvels [1991], and concluded that this estimator Â(t) performed better than the

other two, which is why we chose to implement only this estimator in EVANESCE.

3.5.4 Parametric Copula Estimation

The major advantage of the non-parametric estimators is that we do not have to

make any assumptions about the true copula structure, or only minimal assumptions

that it belongs to a certain class. Unfortunately, simulation of random samples using

these estimates is not practical, since it requires a consistent definition of the inverse

of an empirical copula’s conditional distribution function. One could instead use

the Archimedean estimator described above, but the procedure is not particularly

efficient. As a result, parametric estimation of copulas are more desirable.

For a parametric estimation, methods of maximum likelihood are the first choice

[Joe, 1997]. The interesting question that arises is how to choose the best parametric

copula for our data.

One method for doing this is based on Pearson goodness-of-fit statistics [D’Agostino

and Stephens, 1986, p. 66]: a) divide I2 into M cells; b) compute from a sample of size

n the number of observations Nj falling in each cell Ej for j = 1, 2, . . . M ; c) compute

the probability of obtaining an observation in each cell pj = IP {(X, Y ) is in cell Ej}

for j = 1, 2, . . . M , for the parametric copula after its parameters have been estimated

using, say, maximum likelihood method; d) compute X 2 =
∑N

j=1(Nj − npj)
2/(npj);
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e) claim that X 2 has a χ2 distribution with M − ν − 1 degrees of freedom, where ν

is the number of parameters of the parametric copula that we estimated. Based on

this test, we can reject or not reject the hypothesis that data comes from a particular

parametric family of copulas. Genest and Rivest [1993] also suggested that this test

be used to choose the “best” copula of the several copulas, i.e., that we should choose

the parametric copula with the smallest value of X 2.

Non-parametric estimates of Kendall’s tau and Spearman’s rho can also help to

evaluate the copulas’ fit: After estimating parameters for a parametric copula using

the method of maximum likelihood, we can compare the implied Kendall’s tau and

Spearman’s rho of the estimated copula with that of the sample. The estimate of

Kendall’s tau for a sample of size n is the number of the sample’s concordant pairs

minus the number of discordant pairs divided by the total number of pairs
(

n
2

)
. (A

pair (ui, vi) and (uj, vj) of the sample is called concordant if either ui < uj and vi < vj

or ui > uj and vi > vj. It is called discordant if either ui < uj and vi > vj or ui > uj

and vi < vj.) The estimate of the Spearman’s rho for a sample of size n can be

computed from an empirical copula Ĉn

(
i

n
,
j

n

)
by the following formula:

ρ̂S =
12

n2 − 1

n∑
j=1

n∑
i=1

[
Ĉn

(
i

n
,
j

n

)
− i

n
· j

n

]
EVANESCE implements functions for computing both Spearman’s rho and Kendall’s

tau from a sample.

Similarly, empirical estimates of the upper and lower tail index might be useful

for comparison between copulas. Recall that the definition of the upper tail index
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( λU = limα−→1−
1−2α+C(α,α)

1−α
) involves taking a limit as α −→ 1−. For empirical

copulas the estimate of λU involves creating a plot of 1−2α+Ĉ(α,α)
1−α

for some empirical

estimate of copula Ĉ and visually observing possible convergence (see Coles et al.

[1999]). EVANESCE implements functions for producing such plots for both upper

and lower tails.

Non-parametric estimates of λ(s) and A(t) can be used in choosing among different

parametric copula families with estimated parameters (see Genest and Rivest [1993]

and Capéraà et al. [1997a]). We will use these non-parametric estimates in exploratory

analysis of data (sections 4.1 and 4.5).

3.6 Sensitivity of Parametric Copula Estimates

to Errors in the Estimates of Marginal Dis-

tributions

The methods for copula estimation described in the previous section assume that

the respective marginal distributions G1(x) and G2(y) of X and Y are known. In

practice, the marginals of X and Y must be estimated from the data. As shown in

chapter 2, errors in the quantile estimates can be very large for distributions with

heavy tails, implying that there can be large errors in the cdf estimates. To avoid

problems with parametric cdf estimates, Genest et al. [1995] proposed using empirical

estimates of marginal cdfs for copula estimation rather than estimated parametric

marginals. Specifically, instead of assuming that the marginal distributions G1 and

G2 have a particular parametric form and estimating the appropriate parameters,
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set Ĝ1(xi) = (ri − 0.5)/n, where ri is the rank of the observation xi in the sample

{x1, . . . , xn} and n is the sample size, and use a similar expression for Ĝ2. In section

3.6.1, we explore how much the errors in the copula parameter estimates are different

for the two methods of marginal cdf estimation. We address this issue for small- to

medium-size samples using Monte Carlo simulations, and focus on cases where X

and Y have heavy tails. If we find the sensitivity of copula estimates to imprecision

in the marginal estimates to be small for heavy-tailed distributions, it indicates that

there is an even smaller sensitivity for distributions with bounded or Gaussian tails,

since estimation of the cdfs for these distributions can be performed with much better

precision than for heavy-tailed distributions.

Another interesting problem, is to determine how much the copula estimates are

affected by estimating the marginals parameters before the copula parameters instead

of determining all the parameters at once by maximizing the full likelihood (as sug-

gested by Cook and Johnson [1981]). This problem is studied in section 3.6.2 for

bivariate distributions with GEV marginals and Gumbel copula.

3.6.1 Comparison of Parametric and Empirical Estimation

of the Marginals

To compare the errors made in copula parameter estimation for the two different

marginal estimation procedures, we will generate sample data from a known bivariate

distribution with Generalized Pareto (GP) marginals, and perform both estimation

procedures. The performance of the copula parameter estimation technique depends



CHAPTER 3. EVANESCE 109

on the Kendall’s tau of the data’s true copula [Capéraà et al., 1997a], so we will also

compare the behavior of the estimates at different values of Kendall’s tau. We have

performed the following simulation experiment:

1. Choose a parametric copula family, C, and a set of parameters for C corre-

sponding to a predetermined value of Kendall’s tau. Choose a sample size n

and a shape parameter k.

2. Generate a sample of n observations {(x1, y1), (x2, y2), . . . , (xn, yn)} from a bi-

variate distribution associated with the copula C and GP marginals with iden-

tical scale parameters α = 1, location parameters δ = 0, and shape parameters

k.

3. Perform the transformations ui = G1(xi), vi = G2(yi), i = 1, 2, . . . , n, where

G1 and G2 are the true marginal distributions used in step 2. Based on the

observations {(u1, v1), (u2, v2), . . . , (un, vn)}, estimate the parameters of copula

C using the maximum likelihood method (In this and the following step, only

the true copula family was fitted to the data).

4. , Estimate the parameters of the marginal GP distributions of X and Y , using

the MLE method. Perform the transformations u
(GP)
i = Ĝ1(xi), v

(GP)
i = Ĝ2(yi),

i = 1, 2, . . . , n, where Ĝ1 and Ĝ2 are the estimated GP marginal distributions.

Based on the observations {(u(GP)
1 , v

(GP)
1 ), (u

(GP)
2 , v

(GP)
2 ), . . . , (u

(GP)
n , v

(GP)
n )}, es-

timate the parameters of copula C using MLE.
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5. Let Ĥ1(x) and Ĥ2(y) be the empirical estimates of the marginals. Perform the

transformations u
(emp)
i = Ĥ1(xi), v

(emp)
i = Ĥ2(yi), i = 1, 2, . . . , n. Based on the

observations {(u(emp)
1 , v

(emp)
1 ), (u

(emp)
2 , v

(emp)
2 ), . . . , (u

(emp)
n , v

(emp)
n )}, estimate the

parameters of copula C using MLE.

6. Record the estimates of the copula parameters obtained in steps 3, 4, and 5 for

later comparison.

The above procedure was repeated 1,000 times for each choice of copula, k, and n.

The results of the copula parameter estimation may be characterized in several

different ways. One could compute some norm (e.g. L1, L2, or L∞) between the

estimated copula function and the true copula, compute the distance in parameter

space between the vector of estimated parameters and the true parameter vector, or

compare the Kendall’s tau, Spearman’s rho, or tail indexes of the fitted and true

copulas [Genest et al., 1995; Genest and Mackay, 1986b; Capéraà et al., 1997a, 2000].

We choose to compare the RMSEs of the parameter estimates (computed in the two-

dimensional parameter space for the two-parameter copulas) and the RMSEs of the

Kendall’s tau estimates.

We have conducted simulations with a variety of parametric copulas, sample sizes,

and values of k. Figure 3.7 provides an illustration of these result for n = 250, k =

−0.3, and the BB1 parametric copula, with different sets of parameters corresponding

to different values of Kendall’s tau. One definitive result was observed for all the

simulation experiments: the estimation errors in step 3 were lower than those in step
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4, which, in turn, were lower that the errors obtained in step 5, but the difference

between the errors obtained in steps 4 and 5 was not large. Overall, the errors in

copula estimation with true margins constitute between 77% and 97% of the error in

copula estimation with estimated parametric marginals, and between 65% and 93%

of the error obtained when using empirical marginals.

• Our results indicate that imperfect specification of the marginal distributions does

not significantly increase the copula estimation error.

Even more interesting results were obtained for EV copulas with GEV marginals.

The RMSEs of the Gumbel copula parameter estimates in Figure 3.8 are plotted

against different values of the marginals shape parameter k. For a given copula, the

errors in the copula parameter estimates when using the true marginals were about

80% of those when using estimated marginals, but there was almost no difference be-

tween the errors in the estimated copula parameters in the cases were parametrically

estimated or empirical marginals where used to transform data for the copula param-

eter estimation. The error in the estimates when using true or empirical marginals

should not depend on k, and the small variations that we observe are an artifact of the

simulation experiments. From Figure 3.8, we note that the RMSEs for the estimates

using parametrically estimated marginals also do not depend on the value of k.

• Overall, the implication of this analysis is that parametric methods do such a

poor job of estimating the GEV cdf that we can replace the parametrically estimated
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timates (bottom) for the BB1 copula using different estimates of the

GP marginals.
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Figure 3.8: RMSE of the Gumbel copula δ parameter estimates us-

ing GEV marginals for different sample sizes (n = 50 – dotted lines,

n = 100 – solid lines, and n = 250 – dashed lines), and marginal es-

timation techniques. There is no difference in RMSEs for empirically

and parametrically estimated marginals.
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margins by empirical estimates, without negatively impacting our copula parameter

estimates.

Our analysis supports the suggestion of Genest et al. [1995] that we replace GEV

marginal estimates by the empirical estimates.

3.6.2 Comparison of the Separate Marginals Parameter

Estimation Procedure and the Full Likelihood

Method

The performance of the full likelihood method was tested on samples generated from

a bivariate distribution with a Gumbel copula and GEV marginals. The distribution

has seven parameters: three parameters for each marginal, and one parameter for the

Gumbel copula.

To estimate the parameters, we could first estimate the marginals (using the MIX1

method, for instance), and then use the transformed data to estimate the copula, or

we could write the total likelihood function of this bivariate distribution involving all

7 parameters, and estimate all parameters together from the original data. The first

approach (which we have been using) is less difficult, but the second, full likelihood

approach might produce better parameter estimates. We compared the errors in the

parameter estimates from both approaches for sample sizes between 50 and 500 using

Monte Carlo simulations.

For the full likelihood estimation, we a solver available within S-Plus was used to

find the point in seven dimensions where the full likelihood function achieves its max-
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imum. When performing maximization in seven dimensions, one might encounter

serious difficulties if the likelihood function is not convex. In our simulations ex-

periments, this occurred for fewer than 1% of the samples, and these samples were

excluded from the analysis. It is worth noting that in most of the cases when the seven-

dimensional likelihood did not converge, the MIX1 method for one of the marginals

did not converge, either.

The parameter estimation error was defined for our comparison as the Euclidean

distance between the vector of estimated parameters and the true parameter vector

in the seven-dimensional parameter space. Table 3.4 reports the RMSEs of the pa-

rameter estimates for selected sample sizes and values of k. It also provides RMSEs

of the Gumbel copula parameter δ estimates. It is evident from Table 3.4 that there

is very little difference between the results of the two methods. Similar results were

also obtained using Gaussian marginals.

• For a Gumbel copula with GEV marginals, it appears that there is no significant

benefit to using the full likelihood method to estimate copula and marginals param-

eters together, rather than separately estimating the marginals parameters and the

copula parameters.

In summary, we have observed that

• The method for the estimation of the marginal (either parametric or empirical)

parameters has little impact on the error in the copula parameter estimates.
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Sample size Shape RMSE of 7 parameters RMSE of δ

n k Separate Full Separate Full

50 0 0.452 0.443 0.301 0.305

50 -0.1 0.453 0.446 0.31 0.315

50 -0.2 0.464 0.462 0.302 0.319

50 -0.3 0.468 0.474 0.306 0.325

50 -0.4 0.469 0.474 0.294 0.313

50 -0.5 0.464 0.475 0.275 0.294

100 0 0.312 0.304 0.212 0.216

100 -0.1 0.309 0.301 0.202 0.204

100 -0.2 0.313 0.306 0.203 0.205

100 -0.3 0.327 0.320 0.214 0.218

100 -0.4 0.333 0.331 0.205 0.212

100 -0.5 0.333 0.331 0.207 0.212

500 0 0.135 0.130 0.094 0.092

500 -0.1 0.138 0.134 0.095 0.095

500 -0.2 0.139 0.134 0.09 0.09

500 -0.3 0.142 0.137 0.092 0.091

500 -0.4 0.154 0.144 0.093 0.089

500 -0.5 0.159 0.148 0.095 0.092

Table 3.4: Comparison of the performance of the full likelihood estima-

tion method (Full) to the separate estimation of marginals and copula

parameters (Separate). There is little difference between the two meth-

ods’ parameter estimates.
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• Estimation of the marginals of the bivariate distribution separately from the

copula performs approximately as well as using full likelihood method (for dis-

tributions with Gumbel copula and GEV or Gaussian marginals).

3.7 Extension of Gumbel Copulas to Include a

Third Dimension

We observe a set of n independent observations, {(u1, v1, w1), (u2, v2, w2), . . .,

(un, vn, wn)}, of three random variables U , V , and W , each having a uniform dis-

tribution between 0 and 1. We are interested in constructing a model for the joint

distribution of U , V , and W , fit such a model to the observations, and later sim-

ulate random samples from it. Among other things, the model should also be able

to adequately describe the bivariate marginal distributions for (U, V ), (V, W ), and

(W, U). Assume that U , V , and W correspond to maxima of some other random

variables, so that it is reasonable to model their joint distribution with an EV copula.

Moreover, we will focus on extensions of the Gumbel copula, which is both an EV and

Archimedean copula. It should be noted here that the Hüsler and Reiss copula does

allow extension to a third dimension with different bivariate margins, but simulation

of random observations from this copula can be computationally inefficient because

of its complicated algebraic form. The Gumbel copula, on the other hand, has a

simple algebraic form, but its direct extension to a third dimension requires that two

of the three bivariate margins are the same. We introduce a different extension of the

Gumbel copula that can describe a wide range of dependencies.
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We denote the two-dimensional Gumbel copula from (3.4) as C(G2)(u, v). The

generalization of the Gumbel copula to three dimensions is [Joe, 1997, p. 157]

C(G3)(u, v, w) = exp

{
−
([

(− log u)β + (− log v)β
]α/β

+ (− log w)α
)1/α

}
, (3.13)

where β ≥ α ≥ 1 are two parameters. To refer to Gumbel copulas with a specific set

of parameters, we will write C
(G2)
δ for two-dimensional copula and C

(G3)
α,β for three-

dimensional copula.

Assume that the dependence of U , V , and W is described by copula C
(G3)
α,β . The

bivariate distribution of U and V is then given by the two-dimensional Gumbel copula

with parameter β, C
(G2)
β , and the bivariate distributions of V and W , and W and U

are both described by a Gumbel copula with parameter α, C
(G2)
α . Since β ≥ α, the

dependence between U and V is larger than that between either V and W or W and U .

This does not constitute a problem, however, since we can always reassign our model

random variable names to reflect the dependence we observe in the data. A serious

problem is created by the fact that two out of the three bivariate margins of C
(G3)
α,β are

the same. It is likely that a real world data that we want to model will not possess

this property. For example, in application to flood peaks, the degree of dependence

between annual flood peak data might be a function of distances between stream

gauging station, so if the three distance are different, all three bivariate margins

should be also different. It is also worth noting that the three dimensional extension

of the Galambos copula has this same property (see [Joe, 1997, p. 186]). This is the
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reason that we are interested in finding alternative extensions of the bivariate Gumbel

copula to three dimensions.

3.7.1 Model Formulation and Properties

Here, we introduce a three-parameter modification of (3.13) that allows three different

bivariate EV margins, study the dependence properties of the new copula. To begin,

let’s consider the following two-parameter bivariate copula

C(E2)(x, y) = exp
{
−1

2

([
(− log x)δ1 + (− log y)δ1

]1/δ1
+
[
(− log x)δ2 + (− log y)δ2

]1/δ2
)}

,

(3.14)

where δ1 ≥ δ2 ≥ 1 are the two parameters. Certainly, if δ1 = δ2, copula C(E2) becomes

the Gumbel copula C
(G2)
δ1

. If δ1 6= δ2, C(E2) is still an EV copula, with dependence

function A(E2)(t) = 1
2
A

(G2)
δ1

(t) + 1
2
A

(G2)
δ2

(t), where A
(G2)
δ (t) represents the dependence

function of C
(G2)
δ , a two dimensional Gumbel copula with parameter δ.

From the properties of copulas ordering (see page 92) we see that

C
(G2)
δ1

≺ C
(E2)
δ1,δ2

≺ C
(G2)
δ2

,

and

C
(E2)
α,δ ≺ C

(E2)
β,δ , and C

(E2)
δ,α ≺ C

(E2)
δ,β , (3.15)

for α ≤ β. This means that the copula C(E2) can describe a wide range of dependen-

cies. Hereafter, we will write C
(E2)
δ1,δ2

to refer to a copula C(E2) with specific parameters

δ1 and δ2.
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To illustrate that the copula C(E2) can be very close to a Gumbel copula for

δ1 6= δ2, we plot the dependence functions of C
(E2)
3.34,1.5 and C

(G2)
2.0 in Figure 3.9. Figure

3.10 shows the contour levels of these two copulas. It very difficult to distinguish

between the two copulas. The L1 norm of the difference between functions A
(E2)
3.34,1.5

and A
(G2)
2.0 is less than 0.005, which is less than a quarter of the L1 norm of the error

of the estimators of A for samples of size 100 [Capéraà et al., 1997a]. In contrast,

Kendall’s τ for C
(G2)
3.24 is 0.7, while it is 0.33 for C

(G2)
1.5 , so by changing just one of the

two parameters of C
(E2)
3.34,1.5, we can create copulas with values of Kendall’s τ ranging

from 0.33 to 0.7.

Another property of the copula C(E2) is that similar dependencies can be described

with different sets of parameters. Though this feature is not desirable at all when

talking about modeling random variables in two dimensions, we will see later how it

is important for three dimensional modeling.

Copula C(E2) has a straightforward interpretation: If (U1, V1) and (U2, V2) are

two pairs of uniform random variables, having Gumbel copulas with parameters δ1

and δ2, respectively, (U1, V1) is independent of (U2, V2), and Ũ = (max{U1, U2})2

and Ṽ = (max{V1, V2})2, the random variables Ũ and Ṽ have copula C
(E2)
δ1,δ2

. This

property allows us to easily simulate random samples from copula C(E2), if we can

already simulate random samples from the Gumbel copula.
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Figure 3.9: Dependence functions of copulas C
(E2)
3.34,1.5 (curve) and C

(G2)
2.0

(circles)
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Now consider a three dimensional copula C(E3) that has bivariate margins C(E2).

We will show that this copula can describe different marginal dependencies in all

three bivariate margins.

Copula C(E3) has the following form:

C(E3)(u, v, w) = exp

{
−1

2

([
(− log u)β + (− log v)β

]α/β
+ (− log w)α

)1/α

−1

2

(
[(− log w)γ + (− log u)γ]α/γ + (− log v)α

)1/α
}

, (3.16)

where β ≥ α ≥ 1 and γ ≥ α are the three parameters. When β = γ = α, this

copula is equivalent to the three dimensional Gumbel copula with equal parameters.

C(E3) has the following bivariate margins: (U, V ) ∼ C
(E2)
β,α = C(U,V ), (V, W ) ∼ C

(E2)
α,α =

C
(G2)
α = C(V,W ), and (W, U) ∼ C

(E2)
γ,α = C(W,U). Also, since α ≤ γ, and α ≤ β,

we have C(V,W ) ≺ C(U,V ) and C(V,W ) ≺ C(W,U). Depending on which parameter β

or γ is greater, we will have either C(U,V ) ≺ C(W,U) or C(U,V ) � C(W,U). In any

case, the dependence ordering of bivariate margins is precisely specified by the copula

parameters. The parameters also have a straightforward interpretation: α determines

the smallest dependence between the two of the three random variables, β specifies

how much more dependence there is between U and V than between V and W , and

γ acts similarly for W and U .

Since C(E2) can describe a wide range of dependencies, the same thing is true for

C(E3). It is important to note that this copula will be close to the three dimensional

Gumbel copula only when the difference between the three bivariate marginals is
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not very large, for instance, if the differences in the marginals’ Kendall’s taus are

not more than 0.5. This is due to the fact that copula C(E2) is very different from

the Gumbel copula if δ1 � δ2 in (3.14), especially in the patterns generated by the

sample observations (Figure 3.11). In fact, these patterns become similar to the ones

observed for the Tawn copula in section 4.5. If using the Gumbel copula for modeling

a trivariate distribution is desirable, and the dependence between one pair (V, W )

is much less than that of the other two pairs, no models based on extensions of

the Gumbel copula or the Archimedean copula would work well, since those models

require two identical bivariate marginals have smaller dependence than the third

bivariate margin. In such a case, it might be easier to see whether an assumption

of the independence of (V, W ) is appropriate. If two of the three bivariate marginals

imply a very small dependence, which occurs if one of the three variables does not

significantly depend on the other two, one might want to use a regular C(G3) copula.

Copula C(E3) might be a good choice if all of the bivariate marginals have a similar

but not exactly equal dependence, for example, when the values of Kendall’s tau for

the bivariate marginals are 0.27, 0.35 and 5.0.

The relationship of copula C(E3) to the three dimensional Gumbel copula is sim-

ple: if (U1, V1, W1) and (U2, V2, W2) are two triplets of uniform random variables

having C(G3) copulas with parameters (β, α) and (γ, α), respectively, (U1, V1, W1) is

independent of (U2, V2, W2), and Ũ = (max{U1, V2})2, Ṽ = (max{V1, W2})2, and

W̃ = (max{W1, U2}), the random variables Ũ , Ṽ , and W̃ have the copula C
(E3)
α,β,γ.
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Figure 3.11: 1000 point simulated from the C(E2) copula with δ1 = 8

and δ2 = 1.1 (δ1 � δ2).
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This property allows us to easily simulate random samples from the copula C(E3), if

we can already simulate random samples from the three-dimensional Gumbel copula.

To simulate random variables from the trivariate Gumbel copula, we implemented

a procedure that numerically computes the inverse of the conditional distribution

C(G3)(w|u, v):

C
(G3)
α,β (w|u, v) =

∂2

∂u∂v
C

(G3)
α,β (u, v, w)

C
(G2)
β (u, v)

.

This conditional distribution has a complex algebraic form, and we do not express it

here. After simulating a pair (U, V ) from copula C
(G2)
β , we then set

W = C
(G3)
α,β

[−1]
(S|U, V ), where S is a uniform (0, 1) random variable independent of

U and V .

We also implemented a maximum likelihood estimation procedure that estimates

the parameters of both C(G3) and C(E3) by maximizing the likelihood function in

three dimensions. Parameters of the C(E3) copula can be estimated either using this

procedure or by fitting each bivariate marginal distribution independently. Indeed,

by fitting C(G2) to observations of V and W , we can easily obtain an estimate of

α. We can, then, estimate β by fitting C
(E2)
β,α to observations of U and V , and then

estimate γ by fitting C
(E2)
γ,α to observations of W and U . Simulation experiments show

that the second approach generally provides better parameter estimates.

3.8 Summary of EVANESCE features

The capabilities of EVANESCE for bivariate data analysis include:



CHAPTER 3. EVANESCE 127

• Functions for evaluating copula distributions and densities for 17 parametric

copula families.

• Generation of random observations from these copulas.

• Analytical computation of Kendall’s tau and Spearman’s rho for the parametric

families.

• Construction of empirical copulas from data points.

• Computation of empirical Kendall’s tau and Spearman’s rho for data.

• Maximum Likelihood parameter estimation procedure for all parametric copula

families available with the library.

• Additional non-parametric copula estimators due to Capéraà et al. [1997a] and

Genest and Rivest [1993].

• Visualization functions for plotting copula contour levels, densities, etc.

The library harnesses the object-oriented capabilities of S-Plus, and is designed in

such a way that adding new copula families is very easy. For example, to add a new

EV copula family, one must simply provide a formula for its dependence function and

its two derivatives. All pertinent methods from this library will then be available for

the new copula.

The library also includes a set a functions useful in univariate extreme value

analysis. Not only does it implement all of the methods described in the previous
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chapter, but also provides a semi-parametric estimator for marginal distributions

based on the Peaks-Over-Threshold model described in section 4.2.

Furthermore, as explained in section 3.7, we implemented an extension of a Gum-

bel copula to the third dimension with relevant parameter estimation and random

sample generation for three dimensional models. EVANESCE also has several useful

functions specifically designed for financial engineers, such as an analytic computa-

tion of the risk measure VaR and and a function returning holidays and closings of

the New York Stock exchange.

The EVANESCE library is written in the S-Plus scripting language. Since any for

or while loops are evaluated very slowly in S-Plus (see Venables and Ripley [1997, p.

158]), the entire library is written without them. When using a for statement was

inevitable, it was placed in an external C code, and only one call from S-Plus to a C

code is made when needed.

The next two chapters of this dissertation illustrate applications of the meth-

ods described in this chapter to analyses of several data sets of interest to financial

engineers and hydrologists.



Chapter 4

Financial Engineering
Applications of Tails and Copula
Estimations

In this chapter, we illustrate how methods based on copula estimation can be used

to enhance financial engineering data analysis.

Before proceeding, it is important to draw attention to the different parame-

terizations of the Generalized Extreme Value (2.1) and Generalized Pareto (2.11)

distributions in financial engineering and hydrology applications. In financial appli-

cations, it is common to replace k in (2.1) and (2.11) with −ξ, so that positive values

of the shape parameter ξ correspond to heavy tails in the distribution [Embrechts

et al., 2000a; McNeil and Saladin, 1997]. For example, the following form of the GP

cumulative distribution function

Fα,δ,ξ(x) =


1−

(
1 + ξ x−δ

α

)−1/ξ
ξ 6= 0,

1− exp
{
−x−δ

α

}
ξ = 0,

(4.1)

129
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is traditional in the financial engineering applications. One of the options of the

EVANESCE library is to set a boolean parameter SHAPE.XI to TRUE it the latter

parameterization should be used. Since this chapter presents examples from financial

engineering, we will change k to −ξ and use the GP distribution in form (4.1) for

the duration of this chapter. We consider only distributions with heavy tails in this

dissertation, and changes of notation from chapter to chapter should not be a cause

for confusion.

4.1 Utility Stocks Indexes

The following example illustrates that the assumption that two samples have a bi-

variate Gaussian distribution does not necessarily result in a good estimate of the

joint distribution function, even for financial data. We have at our disposal the daily

values of indexes reflecting the stock prices of electric and gas companies from Jan-

uary 1, 1992 to May 30, 2000 [Sales, 2001]. Figure 4.1 shows the time series of each

index. Obviously these series are not stationary. To make the sequences stationary,

it is customary to consider the difference between the logarithms of a stock index

(log-returns) on two consecutive days. We will denote a random variable representing

the log of a daily return for the electric index as X (dataset UTI.ELEC), and a similar

random variable for the gas index as Y (dataset UTI.GAS). Figure 4.2 shows the time

sequence of log-returns for each data set, and Figure 4.3 shows the log-returns for the

gas and electric indexes plotted against one another. Some correlation between the
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Figure 4.1: Time series of indexes reflecting the stock prices of electric

(top) and gas (bottom) companies.
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log-returns is seen, which is not surprising, as both indexes represent utility compa-

nies. We are interested in estimating the joint probability distribution of X and Y ,

meaning that we want to find probabilities of the form

F (x, y) = IP {X ≤ x, Y ≤ y}

for any x and y. The tails are usually the most challenging part of the distribution

to work with, and we will be estimating the above probability when it is either small

(≤ 0.1) or large (≥ 0.9). In particular, we intend to estimate this probability “beyond

the data”, i. e., when it is smaller than 1/n (or larger than 1− 1/n), where n is the

number of data points in the sample.

The marginals of F (x, y) will be denoted as G1(x) and G2(y). Assuming that

F (x, y) is continuous, F (x, y) = C(G−1
1 (x), G−1

2 (y)) for some copula C(u, v). In order

to estimate the function F , we will estimate the functions G1, G2, and the the copula

C.

According to the Samuelson’s approach in which stocks are modeled as a geomet-

ric Brownian motion, it is reasonable to assume that the log-returns have a jointly

Gaussian distribution with mean vector a and variance matrix b. The estimated

values for our dataset are

a = 10−4

1.34

2.92

 and b = 10−5

5.78 2.85

2.85 2.92

 .

If we were to work with the assumption that X and Y have a jointly Gaussian bivariate

distribution we would use the estimator F̂Gaussn.(x, y) given by the jointly Gaussian
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Figure 4.2: Time series of the daily log-returns of two indexes

UTI.ELEC (top) and UTI.GAS (bottom).
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Figure 4.3: Dependence between the log-returns of the electric and gas

company indexes.
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distribution with parameters a and b given above. We can also estimate F (x, y) from

the data as

F̂data est.(x, y) =
Card{i : xi ≤ x, yi ≤ y}

n
,

and compare it to F̂Gaussn.(x, y) (Table 4.1). To understand why the estimates from

the jointly Gaussian distribution disagree with the data, first observe from Table

4.1 that the jointly Gaussian distribution estimate of F (−0.015,−0.015) is 0.0031,

but the estimate from the data is 0.0071. The sample size n of our data is n =

2125, and the data contains 15 points where both coordinates less than −0.015. If

IP {X ≤ −0.015, Y ≤ −0.015} was 0.0031, the probability that we would observe 15

points with both coordinates less than −0.015 in a sample of size 2125 is less than

0.003. If we repeat this comparison at other points, we arrive at the same conclusion:

the tails of the bivariate jointly Gaussian distribution are not heavy enough to describe

our data. To see that with standard univariate tools, we may compare the tails of the

marginal distributions of X and Y to the tails of the univariate Gaussian distribution

separately. Quantile-quantile plots (QQ-plots) for the log-returns against quantiles

of a Gaussian distribution are shown in Figure 4.4. Notice that these plots deviate

strongly from straight lines, which indicates the non-Gaussian nature of both series

of log-returns.

The next question to address is whether the source of the disagreement with the

jointly Gaussian distribution is the marginals of our data (see Figure 4.4), the copula

associated with our data, or both.
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IP {X ≤ x, Y ≤ y} IP {X > x, Y > y}

x -0.005 -0.015 -0.02 -0.01 0.005 0.015 0.02 0.01

y -0.005 -0.015 -0.01 -0.025 0.005 0.015 0.01 0.025

Data Estimates 0.0979 0.0071 0.0066 0.0009 0.0941 0.0075 0.0061 0.0009

Gaussian approx. 0.1155 0.0031 0.0022 0.0001 0.1292 0.0039 0.0026 0.0001

F̂emp 0.0974 0.0069 0.0066 0.0009 0.0939 0.0071 0.0057 0.0005

Non-Gauss. margins,
Gauss. copula 0.1854 0.0190 0.0106 0.0021 0.2012 0.0213 0.0131 0.0019

Fitted copula 0.0936 0.0080 0.0072 0.0020 0.0938 0.0081 0.0077 0.0014

Bootstrap 0.0929 0.0073 0.0069 0.0017 0.0919 0.0072 0.0068 0.0011

Table 4.1: Comparison of F (x, y) estimates from the data with estimates obtained

using different methods.
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Figure 4.4: Gaussian quantile-quantile plots for the log-returns.
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4.2 Peaks-Over-Threshold Marginal Estimate

To proceed, we estimate the marginal distributions of X and Y separately. EVANESCE

implements a semi-parametric estimate of the cumulative distribution and corre-

sponding quantile functions based on the Peaks-Over-Threshold method. This method

is based on the idea that, if G1(x) is in the domain of attraction of the Extreme Value

distribution with shape parameter ξ1, the distribution of excesses over a high thresh-

old u can be closely approximated by a Generalized Pareto Distribution (GPD) with

the same shape parameter (ξ1):

IP {X ≤ s + u|X > u} =
G1(u + s)−G1(u)

1−G1(u)
∼ Fa1,u,ξ1(s),

where Fa1,u,k1 is a GPD distribution function with scale parameter a1, location pa-

rameter u, and shape parameter ξ1 (see (4.1)). In this example, we are inter-

ested in modeling both the upper and lower tails of G1, so we also approximate

IP {X ≥ −t− v|X < −v} by Fa2,v,ξ2(t). Given an upper threshold u and a lower

threshold −v, the parameters of the tail GPD distributions are estimated from the

points in the sample that are either less than −v or greater than u, G1(x) is approx-

imated by an empirical cdf for −v < x ≤ u and a appropriate GPDs for x > u and

x ≤ −v:

Ĝ1(x) =



N2

n

(
1 + ξ̂2(x+v)

â2

)−1/ξ̂2
if x ≤ −v,

i−0.5
n

if x(i) ≤ x < x(i+1) and − v < x ≤ u,

1− N1

n

(
1 + ξ̂1(x−u)

â1

)−1/ξ̂1
if y > u,

(4.2)
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where x(1), x(2), . . . , x(n) is the order statistics, N1 = max{i : x(i) ≤ u}, and N2 =

min{i : x(i) > −v}. Not only is this estimate implemented in EVANESCE function

cdf.estimate.2tails, but also the function has an optional argument that toggles

on linear interpolation of Ĝ(x) for −v < x ≤ u. Estimates of ξ1, a1, ξ2, and a2 are

calculated using either the method of L-moments or MLE (see Hosking and Wallis

[1987] for a comparison of these estimators for the GPD).

EVANESCE also implements single-tail versions of the above estimator for cases

where we want to approximate only one tail of the marginal distribution of X (for

example, when X ≥ 0).

In order to estimate the two-tailed cumulative distribution function of X, we must

determine the upper and lower thresholds that we will use in (4.2) to estimate tails.

To that end, we can use the function shape written by Alexander McNeil [McNeil

and Saladin, 1997], which plots an estimate of the shape parameter versus the value

of the upper threshold (the top axis on the plots), to choose the threshold value that

we want to use. The general rule in this case is that we want the shape plot to

be rather flat in the vicinity of a good threshold, but we don’t want the number of

exceedances above the threshold to be too low (indicated on the bottom axis of the

plot). Since we want to estimate both the upper and lower tails, we produced (Figure

4.5) the shape plots for {x1, x2, . . . , xn}, which lets us to determine the appropriate

threshold of the upper tail, and the shape plots for {−x1,−x2, . . . ,−xn} to determine

the threshold for the lower tail. We choose a 0.005 threshold for the upper tail and



CHAPTER 4. FINANCIAL ENGINEERING APPLICATIONS 140

a −0.005 threshold for the lower tail for both X and Y . A detailed review of the

methods for choosing the best threshold can be found in Lang et al. [1999], but it is

believed that there is no good algorithm that can be generally applied for doing so

[Embrechts et al., 2000a].

The estimates of the shape parameter for the tails of both electric and gas indexes

are around zero. This means that both G1 and G2 are in the domain of attraction of a

Gumbel distribution, but this does not necessarily mean that they have Gaussian tails;

the exponential distribution, for example, is also in the domain of attraction of the

Gumbel distribution. Quantile-quantile plots of the tail quantiles against exponential

quantiles appear to be quite linear, so we adopt the hypothesis that the tails of G1

and G2 have an exponential decay. Figure 4.6 shows fits of the estimated marginal

distributions to the data tails.

Using the marginal estimates, we construct paired observations of (U, V ), where

U = G1(X) and V = G2(Y ). We then set ui = Ĝ1(xi), and vi = Ĝ2(yi), i =

1, 2, . . . , n.

4.3 Copula Estimation

From the transformed observations (u1, v1), (u2, v2), . . . , (un, vn), we can estimate the

copula of U and V (and therefore of X and Y ) empirically (using (3.10)), and estimate

F (the joint distribution function of X and Y ) with the empirical estimates Ĉemp, Ĝ1
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tribution as a function of threshold. a) UTI.ELEC, upper tail; b)
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and Ĝ2 using the formula:

F̂emp(x, y) = Ĉemp(Ĝ1(x), Ĝ2(y))

This formula is implemented in EVANESCE by the function called

jointcdf.empest.2tails. Values of the F̂emp(x, y) for our data at selected points

are reported in Table 4.1. We see that the agreement with the data estimate of F is

better than for the Gaussian approximation.

Unfortunately, this non-parametric estimation does not allow us to generate ran-

dom variables with a joint distribution similar to X and Y . The ability to produce

simulated variables is necessary for the use of bootstrapping techniques and risk anal-

ysis. In particular, we will later see how the Monte Carlo method might help us to

evaluate the Value-at-Risk (VaR) of a linear portfolio. Using the non-parametric

estimation of F also abandons any attempt to characterize the tail index of F .

Our next step, then, is fitting different families of parametric copulas into the

data. We estimated parameters for all 15 parametric copulas described in section 3.2

for the data. Based on a Pearson χ2 goodness of fit test (see section 3.5), we had to

reject most of the parametric families at the 0.0001 significance level. The rejected

families included all EV copulas, Kimeldorf and Sampson, Joe, and BB6 copula. The

Frank copula was rejected at the 0.05 significance level. This result should not be

surprising, since none of these copulas have lower-tail dependence. From observing

Figure 4.3 one might suspect that neither the upper tails, nor the lower tails are

independent.
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It is interesting to determine whether the Gaussian copula is a good approximation

to the data copula. If it is, it will mean that, the joint distribution of X and Y is

simply a monotonically transformed bivariate Gaussian, even though the marginals

of X and Y are not Gaussian. The MLE estimate of the parameter δ for the Gaussian

copula is 0.558, which is decent, since the correlation coefficient computed directly

from the original data is 0.549. Table 4.1 also reports estimates of F based on a

Gaussian copula with semi-parametric estimated margins, which are much higher

than the values implied by the data. Gaussian copula have a zero upper and lower

tail dependence parameter, but the convergence in the tail index expression in (3.8)

and (3.9) is very slow [Borlot et al., 2000], which explains the fact that we could not

reject the Gaussian copula immediately. In order to reproduce the data tail, Gaussian

copula must allocate too much of the probability density to the tails, resulting in a

significant overestimation of the probabilities of interest.

Estimated parameters for the four remaining parametric copula families and their

implied values of Kendall’s tau, Spearman’s rho, and the upper and lower tail indexes

are reported in Table 4.2. Also reported is the L2 norm of the difference between

the empirically estimated copula and the fitted parametric copulas. The BB1 and

BB4 families result in approximately the same estimates of all dependence measures.

Kendall’s tau and Spearman’s rho for the data (τdata = 0.380, and ρdata = 0.537) are

very close to those implied by all of the fitted copula, with the BB7 copula giving

the worse values. The lower tail index for the BB3 copula is always 1, unless there
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is no upper tail dependence, which doesn’t seem likely for our data. Since the BB3

copula cannot represent any arbitrary dependence in the lower tail, we exclude this

copula from consideration. It is evident from Table 4.2 that the fitted copulas BB1

and BB4 are effectively the same, and are somewhat different from BB7 estimate.

Since both BB1 and BB7 copulas are Archimedean copulas, we plotted the Genest

and Rivest [1993] non-parametric estimate for the function λ(t) = φ(t)/φ′(t), along

with the λ(t) for the fitted BB1 and BB7 copulas (λ(t) is virtually the same for BB1

and BB4 copulas) in Figure 4.7. It can be seen from this figure that λ(t) for the non-

parametric estimate is closer to that of the BB1 copula than to the λ(t) of the BB7

copula. In addition, both Kendall’s tau and Spearman’s rho for the BB7 copula are

farther from those estimated from the data than for the BB1 copula. Accordingly, we

decided to use the BB1 copula family to model our data. The results below would not

change significantly should we have chosen the BB7 copula (even for risk measures),

however, as all three of these copulas describe the data sufficiently well to model it.

Figure 4.8 shows the contour plots of the empirical copula and the fitted BB1 copula,

which are very close.

The estimate of F using a fitted parametric copula Ĉparam and the estimated

marginal quantile functions is then

F̂param = Ĉparam(Ĝ1(x), Ĝ2(y)). (4.3)

The values of F̂param for selected points are also reported in Table 4.1. These estimates

are in good agreement with the data.
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Copula Estimates Kendall’s Spearman’s Tail Index L2(∆C)

θ δ tau rho Lower Upper ×106

BB1 0.433 1.302 0.368 0.522 0.292 0.297 7.582

BB3 1.261 0.482 0.365 0.516 1.000 0.267 13.234

BB4 0.436 0.559 0.367 0.522 0.292 0.289 8.402

BB7 1.370 0.699 0.353 0.500 0.371 0.341 22.342

Table 4.2: Parametric copulas that provide a good fit to the utility

index data. The Kendall’s tau and Spearman’s rho estimates for the

data are τdata = 0.380, and ρdata = 0.537. L2(∆C) is the L2 norm of

the difference between the empirical copula and the fitted parametric

copula.
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Figure 4.7: Non-parametric estimate of the λ(t) = φ(t)/φ′(t) function

for Archimedean copulas (solid line), and λ(t) for the BB1 (dashed line)

and BB7 (dotted line) copulas with parameters given in Table 4.2.
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We can now simulate random pairs (X̃, Ỹ ) from the estimated joint distribution

F̂param by generating a random pair (Ũ , Ṽ ) from the estimated BB1 copula and setting

X̃ = G−1
1 (Ũ) and Ỹ = G−1

2 (Ṽ ). (As seen from the form of (4.2), the inverse of the

marginal estimates can be readily computed.) Figure 4.9 shows a plot of 10, 000

points generated in this way, together with the observed points, and the estimate of

the joint probability density function of X and Y computed by differentiating (4.3)

and using the kernel density estimator for the derivative of the second line in the rhs

of (4.2). The distribution of simulated points is close to that of the observed X and Y

(there are approximately 5 times more simulated points in Figure 4.9 than observed

points). Table 4.1 also contains estimates of F computed from the fitted copula’s

simulated samples (based on 50,000 simulated samples). Since these estimates (the

“Bootstrap” values in Table 4.1) match the data very well for points not in the tail,

the estimation of the tail probabilities can be considered good.

4.4 Computing Measures of Risk

In applications of this type of analysis to risk management, several measures of risk

can be computed either directly from the estimated values or through Monte Carlo

simulations. We will limit our illustration to the two measures of risk for the daily

loss of a linear portfolio: Value-at-Risk (VaRq) and expected shortfall (IE [Θq]). The

initial value V0 of a portfolio comprised of b1 shares of the stock index of electric
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Figure 4.9: Observed data points (bottom), estimate of the joint den-

sity function (middle), and 10,000 simulated points from that density

function (top).
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companies S1 and b2 shares of the stock index of gas companies S2 is given by

V0 = b1S1 + b2S2.

At the end of the day, the stock index of electric companies will be S1e
X , and the stock

index of gas companies will be S2e
Y , where X and Y represent the daily log-returns.

The value of the portfolio at the end of the day is

V = b1S1 eX + b2S2 eY ,

and the log return of the portfolio is

R = log

(
V

V0

)
= log

(
b1S1

b1S1 + b2S2

eX +
b2S2

b1S1 + b2S2

eY

)
= log

(
λ1 eX + λ2 eY

)
.

Here, λ1 and λ2 are the fractions of the initial portfolio value invested in the electric

and gas company indexes, respectively. These quantities are assumed to be determin-

istic in this model.

For a given level q, the value at risk VaRq is defined as the q · 100th percentile of

the loss distribution. In this example, negative values of R are considered losses, so

VaRq is the solution to

q = IP {−R ≥ VaRq} . (4.4)

Though this measure of risk is very popular (in fact, company regulations often require

managers to control the VaR of their exposures), it involves only the probability of

the loss and not the size of the loss, and it also does not satisfy some of the desirable

properties of a risk measure (for example, it might unduly discourage diversification
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[Artzner et al., 1999]). For these reasons, we also consider the expected short fall,

IE [Θq]:

IE [Θq] = IE [−R| −R > VaRq] . (4.5)

Again, let G1(x) and G2(y) be marginal distributions of X and Y , let C(u, v) be

a copula associated with X and Y , and let c(u, v) be the copula density

c(u, v) =
∂2

∂u∂v
C(u, v).

The joint probability density function of X and Y is then

f(x, y) = c(G1(x), G2(y)) g1(x) g2(y),

where g1(x) = d
dx

G1(x) is the probability density function of X, and g2(y) = d
dy

G2(y)

is the probability density function of Y . Then, for any r ∈ IR,

IP {−R ≥ r} = IP
{
log
(
λ1 eX + λ2 eY

)
≤ e−r

}
=

∫ −r−log λ1

−∞
dx

∫ log(e−r/λ2−λ1/λ2 ex)

−∞
dy c(G1(x), G2(y)) g1(x) g2(y)

=

∫ G1(−r−log λ1)

−∞
du

∫ G2(log(e−r/λ2−λ1/λ2 eG−1
1 (u)))

−∞
dv c(u, v)

=

∫ G1(−r−log λ1)

−∞
du

∂

∂u
C(u, v)

∣∣∣∣
v=G2(log(e−r/λ2−λ1/λ2 eG−1

1 (u)))

Generally speaking, it is not possible to compute the above integral analytically, but

EVANESCE includes a function (fbar.exp.portf) that calculates it numerically for

a given parametric copula and estimated marginals, and the function VaR.exp.portf

uses fbar.exp.portf to solve equation (4.4) for a given q. This function is virtually
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instantaneous if the marginals have only moderately heavy tails and the values of q

are sufficiently large, since we must simply compute a one-dimensional integral. If

the marginal distributions have very heavy tails or q is very small, the integration

routine’s precision must be increased, but the computation time is still a matter

of seconds. The EVANESCE library also includes a function VaR.lin.portf that

computes VaR for models with R = λ1X + λ2Y .

Figure 4.10 shows estimates of V aR computed using simulations and theoretical

estimates for λ1 = 0.5 and λ2 = 0.5, with q taking values between 10−2 and 10−5.

Also shown are estimates obtained directly from the data. It would appear that the

model does a good job of estimating VaRq. Moreover, this plot gives us an idea of

the sample size that should be used in our simulations to estimate V aR and other

derived risk measures.

The expected short fall can be calculated either by directly computing the expec-

tation in (4.5), or through Monte Carlo simulations. S-Plus has a fast routine for

computing one-dimensional integrals, integrate, that we used in the calculation of

VaR. The integrate routine exploits S-Plus’ capability to evaluate functions simulta-

neously at several points. The two-dimensional version of integrate doesn’t benefit

from this capability in the second dimension, which slows the computation. Overall,

it take more time to compute the expectation in (4.5) with a relative tolerance of only

10−3 than it does to simulate 1,000,000 pairs from the model (see Venables and Ripley

[1997], section 4.10 for a detailed discussion of computational issues that arise when
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Figure 4.10: Estimates of VaRq for the utility indexes, obtained using

simulations (symbols) and direct integration (lines) for different values

of q as functions of the samples size used in the simulations. Bold

symbols correspond to the data estimates.
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Figure 4.11: Estimates of the expected shortfall for the utility indexes,

obtained using simulations for different values of q as functions of the

samples size used in the simulations. For q = 10−5, good convergence

is not seen even for 1,000,000 simulation points.
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using S-Plus for statistical modeling). Accordingly, we recommend using simulations

to compute the expected short fall. Figure 4.11 shows estimates of expected short fall

for λ1 = 0.5 and several values of q as functions of the sample size used. This plot

suggest that simulation of 1,000,000 points is not enough to estimate the expected

short fall for q = 10−5. Simulation of 5 and 10 million points suggests an estimate of

0.78 for IE [Θ10−5 ].

To conclude, we have demonstrated how the daily time series of the utility stock

indexes can be easily analyzed using tools available in the EVANESCE package. Our

analysis suggests that the daily log-returns of the indexes of both electric and gas

companies have exponential tails. Neither a bivariate Gaussian distribution nor a

bivariate Gaussian copula with estimated margins appeared to satisfactorily model

our data. There is dependence in both upper and lower tails between the two series,

and we can model this dependence with copula. Based on our model, we estimated

VaR and expected short fall for a linear portfolio.

4.5 Prices of Brazilian and Columbian Coffee

Another interesting illustration of the capabilities of EVANESCE involves the analysis

of a time series of Brazilian and Columbian coffee prices, which are plotted in Figure

4.12. Again, we are interested in modeling the dependence of the daily log-returns

of the prices. Figure 4.13 shows the price log-returns plotted against one other. We
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Figure 4.12: Time series of Brazilian and Columbian Coffee prices.
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Figure 4.13: Daily log-returns of Brazilian (x axis) and Columbian (y

axis) coffee prices.
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denote the daily log-return of the Brazilian price by X, and the log-return of the

Columbian price by Y .

From Figure 4.13, we notice several important characteristics of the data:

1. Most of the data points in the figure are very close to the x = y line, implying

a strong dependence between X and Y . This dependence was expected, since

both quantities represent the daily change in price for the same commodity in

the neighboring countries.

2. In spite of the strong dependence, there are some two dimensional “outliers”,

that is, points that are very far from the majority of the data. This phenomenon

is observed on smaller scales, as well: in Figure 4.14 a), we plot the enlarged

central portion of the data. Figure 4.14 b) shows a similar picture for a sample

from a bivariate Gaussian distribution with the same covariance matrix as the

data. This suggests that, with some probability, there are days for which the

change in one of the prices is much greater than for the other price. We also

plot samples generated from different distributions based on Gaussian copula

in Figure 4.14. Comparison of plots 4.14 a) and 4.14 d) shows that the peculiar

behavior of the data can not be explained solely by a non-Gaussian character

in the marginal distributions.

It was noted previously that changes in commodities tend to have heavy tails [Lye,

1991]. Estimates of the tail shape parameter for our data support this observation:
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Figure 4.14: Comparison of the dependence of data (a), a sample from a

bivariate Gaussian distribution with the same a coefficient of correlation

(0.68) and variance as the data. (b), a sample from a bivariate Gaussian

distribution with a coefficient of correlation 0.85 and the same marginal

variances as the data. (c), a sample from a Gaussian copula with the

parameter δ = 0.85 and marginal distributions estimated from data

(d).
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the estimates were about 0.2 for the lower and upper tails, for both X and Y . After

estimating marginal distributions using (4.2), we transformed our data to observations

of uniform (0, 1) random variables (Figure 4.15). Most of the points lie very close to

u = v, but some points seem wildly located, as though they were generated from an

independent copula. Will we be able to model such a dependence?

From the parametric copula families described in section 3.2, only the Tawn family

was not rejected as an acceptable model for our data based on a χ2 test. The maxi-

mum likelihood parameter estimates for the Tawn copula were α = 0.926, β = 0.921,

and r = 5.113. Since α ≈ β, asymmetry in the Tawn copula is not what makes it

describe this data better than the other copulas (all the other copulas described in

section 3.2 are symmetric). It is interesting to determine what exactly about the

Tawn copula allows it to describe dependencies such as this one well.

It is first helpful to note that the independence (or product) copula Cind(u, v) = uv

can be represented as an EV copula with dependence function Aind(t) = 1 for all t ∈

[0, 1]. Also, if (Uj, Vj) have a distribution given by a copula Cj(u, v), j = 1, 2, . . . ,m,

the pairs (Uj, Vj) are independent, and we set Ũ = (max{U1, U2, . . . , Um})m, and

Ṽ = (max{V1, V2, . . . , Vm})m, Ũ and Ṽ are then uniformly distributed on (0, 1) and

have copula C̃(u, v) =
m∏

j=1

Cj(u
1/m, v1/m). If all Cjs, j = 1, 2, . . . ,m, are EV copulas

with dependence functions Aj(t), then C̃ is also an EV copula with dependence

function Ã(t) =
1

m

m∑
j=1

Aj(t).
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Figure 4.15: Coffee data transformed to uniform (0, 1) marginals.

Though most of the points suggest a strong dependence structure

within the data, there are a number of two dimensional “outliers”.
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For α = β =
k

m
, the dependence function for the Tawn copula can be written as

A(t) =
m− k

m
+

k

m
(tr + (1− t)r)1/r =

1

m

m∑
j=1

Aj(t),

where

Aj(t) =


(tr + (1− t)r)1/r if j ≤ k

1 if j > k

.

A pair with a symmetric Tawn copula has the same distribution as paired maxima

drawn from k independent random pairs generated by the Gumbel copula with param-

eter r and m− k random pairs generated from the independence copula. According

to the estimate α = 0.92, we should take m = 25 and k = 23. We generated ran-

dom observations from the estimated Tawn copula using this property, i. e., in order

to obtain an observation (ũ, ṽ), we generate 23 observations {(u1, v1), . . . (u23, v23)},

and 2 observations from an independence copula, (u24, v24) and (u25, v25), and set

ũ = (max{u1, . . . , u25})25 and ṽ = (max{v1, . . . , v25})25); let ju denote the index of

the maximum ui, and jv denote the index of the maximum vi. Five hundred points,

generated in this way, are plotted in Figure 4.16, in which points with both ju and jv

less than or equal to 23 (points, for which both coordinates came from the Gumbel

copula) are represented by empty squares, and the rest of the points are represented

by solid circles. It is evident from Figure 4.16 that the “outliers” arise as maxima

of the independent variables. This is why the symmetric Tawn copula can reproduce

the two-dimensional structure seen in Figure 4.15. Similar dependence structures can
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be achieved by setting (U, V ) equal to a pair (U1, V1) from some copula C1 with prob-

ability p and to a pair (U2, V2) from copula C2 with probability 1− p, where copulas

C1 and C2 have very different dependence structures (e.g. C1 is a Gaussian copula

with parameter 0.9, and C2 is an independent copula).

Similarly to the example about utility indexes, we can employ the Tawn copula

with the estimated parameters and the estimates of the marginal quantile functions

to simulate observations from an estimated joint distribution of X and Y . Figure

4.17 shows 10,000 points simulated in this way, and the observed data points. We see

that the simulated observations reproduce the characteristic “outliers”.
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Figure 4.16: Illustration of how the Tawn copula produces the two

dimensional “outliers”: Five hundred points (ũ, ṽ) generated from a

Tawn copula, as paired maxima of 23 pairs generated from the Gumbel

copula and 2 pairs – from the independence copula. If both ũ and ṽ

came from the observation from a Gumbel copula, this observation is

represented by an empty square.
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Figure 4.17: Observed data points of coffee price daily log-returns (bot-

tom), estimate of their joint density function (middle), and 10,000 sim-

ulated points from that density function (top).



Chapter 5

Applications of Copula Modeling
in Hydrology

Although it is customary to characterize extreme flood events by the magnitude of

the peak discharge, the total impact from a flood may be associated with other

variables, such as the flood volume and duration [Adamson et al., 1999; Yue et al.,

1999; Sturdevant-Rees et al., 2001; Smith et al., 2001]. Hydrologic planning and design

problems would greatly benefit from the stochastic models for modeling the joint

distribution of flood peak and volume [Adamson et al., 1999]. Such models should

allow easy random variable generation, since stochastically generated hydrologic data

are frequently used by water authorities for long-term planning of water resource

development projects, including problems of reservoir design [Vodel and Stedinger,

1988; Simonovic, 2000].

The problem of inferring the bivariate distribution of flood peaks and volumes has

been addressed earlier in the literature [e. g. Sackl and Bergmann, 1987; Adamson

167
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et al., 1999; Yue et al., 1999; Kelly and Krstanovic, 1997]. Some of the proposed

models are based on a Partial Duration Series (PDS) approach (see section 2.3.1) and

the assumption that, for a particular event, flood peaks and volumes have a bivari-

ate Gaussian distribution [Sackl and Bergmann, 1987; Goel et al., 1998]. Krstanovic

and Singh [1987] used the principle of maximum entropy to characterize the bivari-

ate distribution of flood peaks and volumes, under assumptions that the marginals

of this distribution are Gaussian or exponential (see also Joe [1997] section 4.7.2,

for an explanation of the maximum entropy principle). Correia [1987], considered a

joint distribution of flood peaks and flood durations in the PDS framework under

the assumption that both variables have an exponential distribution, but the con-

ditional distribution of flood peaks given the flood duration is Gaussian. Kelly and

Krstanovic [1997] introduced a bivariate meta-Gaussian model for analysis in the An-

nual Maximum Series (AMS) framework. Two recent papers attempted to avoid any

assumption of Gaussian distributions and suggested bivariate models for the annual

maximum peak and corresponding flood volume that can be essentially reduced to a

Gumbel copula with Gumbel [Yue et al., 1999] and lognormal [Yue, 2000a] marginal

distributions. A related paper pursued a similar approach with rainfall peaks and

storm-totals [Yue, 2000b], only logistic marginal distributions were proposed. Adam-

son et al. [1999] proposed yet another model based on a Gibbs sampler.

There have been no attempts to apply the theory of copulas to modeling the joint

distribution of flood peaks and flood volumes in either the AMS or PDS framework,
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and this is one of the primary topics of this chapter. Our definition of the AMS

framework for the bivariate distribution is quite different from the traditional one

[e.g. Adamson et al., 1999; Yue et al., 1999], where the joint distribution of annual

maximum flood peaks and the corresponding volumes to these particular flood peaks

is considered. In order to apply multivariate extreme value theory to this problem,

one should define “flood events” and then consider the annual maximum flood peaks

and the annual maximum flood volumes due to these events. Under this definition,

we can argue that annual maximum flood peaks and flood volumes correspond to a

bivariate extreme event, since each of the variables is a maximum of a collection of

random variables that might be considered independent. In the same way that we

consider the Generalized Extreme Value (GEV) distribution to be a starting point for

modeling univariate distributions of extreme events, bivariate extreme value distri-

butions can be used as a starting point for modeling bivariate extreme events [Tawn,

1990]. Bivariate Generalized Extreme Value (BGEV) distributions are distributions

with GEV marginals and EV copulas [Joe, 1997, p. 172]. It seems reasonable, then,

to assume that annual maximum flood peaks and volumes have a BGEV distribution.

In application, however, one is not that interested in the AMS model as we define

it, but rather in the joint distribution of flood peaks and corresponding volumes. For

this reason, we revisit the PDS approach, and consider the joint distribution of flood

peaks and volumes in the PDS framework. We derive the form of a copula associated

with flood peaks and volumes in the PDS framework, under the assumption that the
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joint distribution of annual maxima of flood peaks and volumes is BGEV. In a later

section, we illustrate this approach with examples.

5.1 AMS and PDS approaches revisited

We would like to revisit the issue of modeling extreme flood events using the Annual

Maximum Series (AMS) and Partial Duration Series (PDS) framework with an addi-

tional random variable in our analysis: the total volume of water associated with the

flood. This volume is usually defined as the total amount of water that passed the

stream gauging station in some time window including the time of the flood peak.

USGS maintains historical records of the mean daily discharge measurements for most

of its stream gauging stations, so the flood volumes can be easily computed from this

data.

In the PDS framework, we assume that “flood events” arrive according to a

(stationary) Poisson process with (annual) rate λ, and that the floods’ magnitudes

Z1, Z2, . . . are i.i.d. random variables independent of the arrival process, each hav-

ing a GP distribution Fη1 with parameter vector η1 = (a1, δ1, κ1) (see section 2.3 and

equation (2.11)). Each flood peak Zi is associated with a flood volume Vi, i = 1, 2, . . ..

The Vis are also assumed to be i.i.d. random variables, independent of the arrival

process, each having a GP distribution Fη2 with parameter vector η2 = (a2, δ2, κ2).

The pairs (Zi, Vi) are assumed to be independent, and the joint distribution of Zi and

Vi is associated with a copula C(PDS) that is the same for all i’s, i = 1, 2, . . ..



CHAPTER 5. APPLICATIONS IN HYDROLOGY 171

In the AMS framework, we consider random variables X and Y representing the

annual maximum flood peak and annual maximum flood volume, respectively. As

discussed above, it is natural to assume that X and Y have a joint BGEV distri-

bution, meaning that X and Y have marginal GEV distributions Gθ1 and Gθ2 with

parameter vectors θ1 = (a1, b1, k1) and θ2 = (a2, b2, k2), respectively, and that the

copula associated with X and Y is an EV copula

C(AMS)(u, v) = exp{log(uv) A(log u/ log(uv))}, (5.1)

for some dependence function A(t).

We know that in the univariate case, the two frameworks imply the same dis-

tribution of annual flood peaks if and only if θ1 and η1 are connected through the

relationships in (2.12) (of course, this is true only for flood peaks above the threshold

δ1, see section 2.3.1). For the bivariate case, it can be assumed that the joint annual

maximum distribution implied by the two models will be also the same for a certain

form of C(PDS). The following proposition summarizes this result:

Proposition. Let X̃ and Ỹ represent annual flood peak and volume under the

PDS framework. The joint distribution of X̃ and Ỹ for x ≥ δ1 and y ≥ δ2

IP
{

X̃ ≤ x, Ỹ ≤ y
}

= H̃(x, y), (5.2)

is equal to the BGEV distribution with marginals Gθ1 , Gθ2 , and copula C(AMS) if

and only if the parameters θ1 and θ2 are connected with η1, and η2, respectively,
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through the relationships in (2.12), and C(PDS) is an Archimax copula with generator

φ(t) = 1− t and the same dependence function A(t) as the C(AMS) copula .

Since the results for the marginals are well known (e. g., Smith [1984]; Madsen

and Rosbjerg [1997]), we need only show that the copula associated with X̃ and Ỹ is

an EV copula with dependence function A(t) if and only if

C(PDS)(u, v) = max

(
1−

[
(2− u− v) A

(
1− u

2− u− v

)]
, 0

)
(5.3)

(recall that, by the convention for Archimedean generators, φ(t) = 1 − t implies

φ−1(z) = 0, for z ≥ 1). To this end, note that, for x ≥ δ1 and y ≥ δ2,

IP
{

X̃ ≤ x, Ỹ ≤ y
}

= exp{−λ
(
1− C(PDS)(Fη1(x), Fη2(y))

)
}, (5.4)

so the copula C̃ associated with X̃ and Ỹ , is

C̃(ũ, ṽ) = exp{−λ
[
1− C(PDS)

(
Fη1(G

−1
θ1

(ũ)), Fη2(G
−1
θ2

(ṽ))
)]
}, (5.5)

where G−1
θ1

and G−1
θ2

are the quantile functions of the GEV distribution (see equation

(2.2)). Assuming that η1 and θ1 are connected through equations (2.12), we have

Fη1(G
−1
θ1

(u)) = 1−
[
1− κ

α

(
b +

a

k

(
1− (− log u)k

)
− δ
)]1/κ

=


1 + log u

λ
if u ≥ e−λ

0 otherwize

A similar expression holds for Fη2(G
−1
θ2

(u)). Substituting these expressions into (5.5)

(note that (5.5) was derived under the condition that x ≥ δ1 and y ≥ δ2, which
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implies ũ ≥ e−λ and ṽ ≥ e−λ), we get

C̃(ũ, ṽ) = exp

{
−λ

[
1− C(PDS)

(
1− − log ũ

λ
, 1− − log ṽ

λ

)]}
. (5.6)

We now set the C̃(ũ, ṽ) in (5.6) equal to C(AMS)(ũ, ṽ) = exp{log(ũṽ) A(log ũ/ log(ũṽ))

to express the copula in EV form. For ũ ≥ e−λ and ṽ ≥ e−λ, i.e., for years with at least

one event, and making the substitutions u = 1− (− log ũ)/λ and v = 1− (− log ṽ)/λ,

we obtain the following equation for C(PDS):

−λ
(
1− C(PDS)(u, v)

)
= −λ(2− u− v)A

(
1− u

2− u− v

)
.

This equation, together with the condition that C(PDS)(u, v) is a valid copula, implies

that C(PDS)(u, v) has the form given in (5.3). The converse of this statement is easy to

see by substituting the expression for C(PDS)(u, v) in (5.3) into (5.6). This concludes

the proof of the proposition.

Copula C(PDS) is an Archimax copula with a dependence function A determined

by the AMS model, and the Archimedean generator of the Frechet lower limit copula

Cl(u, v) = max(u + v − 1, 0) (see, e.g., Nelsen [1999], section 2.2). This observation

is very interesting, since it implies that C(PDS) has the least dependence structure of

all Archimax copulas with generator A under the ordering ≺K . Figure 5.1 shows a

sample generated from this copula. Note that this copula has a singular component,

and there is no points produced in the area labeled A on the plot. This has a clear

interpretation: for any given “event”, at least one of the variables (flood peak or

volume) must be of significant magnitude.
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Figure 5.1: 1000 observations generated from a C(PDS), with Galambos

dependence function, and parameter δ = 2.0. The copula’s singular

component is clearly defined.
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The AMS copula C(AMS) determines the C(PDS) copula we will use for modeling the

joint distribution of flood peaks and flood volumes in the PDS framework. Consider

two particular choices for copula C(AMS): the Gumbel and Galambos copulas (see

section 3.2). Each of these copulas has only one parameter, and a relatively simple

algebraic form. If C(AMS) is a Galambos copula with parameter δ ≥ 0, the copula

C(PDS) reduces to

C(PDS)(u, v) = max
(
u + v +

[
(1− u)−δ + (1− v)−δ

]−1/δ − 1, 0
)

,

and if it is a Gumbel copula with parameter δ ≥ 1, the copula C(PDS) becomes

C(PDS)(u, v) = max
(
1− (uδ + vδ)1/δ, 0

)
.

The latter form is that of an Archimedean copula, and this copula is briefly discussed

in Chapter 4 of Nelsen [1999].

5.2 Parameter Estimation

Before estimating the parameters of this model, one must choose the parametric form

of the dependence function A. We used Gumbel and Galambos dependence functions

(see section 3.2) for this purpose, since they have the simplest form and only one

parameter each. As we saw in section 3.2, there is not much difference between EV

copulas from different families at a fixed Kendall’s tau.

Assuming that a one-parameter copula is used for C(AMS), the AMS model has

seven parameters in all: three parameters for each GEV distribution and one copula
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parameter. As in section 3.6, one can estimate parameters of this model by either

using the full likelihood method, or by separately estimating the margins and then

estimating the copula parameters using the transformed data. Moreover, simulation

experiments suggest that the error produced by either method is approximately the

same. Separate estimation of the marginals is more convenient, since we can use

an AMS, PDS, or even MLE2 approach to estimate the marginals parameters. In

order to estimate the copula parameter, we can extract maximum flood peaks and

maximum flood volumes for each year from available datasets, apply the marginal

transformation to the extracted data, and estimate a copula parameter using the

maximum likelihood method.

In order to simulate data for a PDS approach, we must specify λ – the rate of

peak arrivals in the Poisson process. It is easy to see that the PDS model is set up

such that any value of λ will result in a valid model for maximum flood peaks and

volumes. Different values of λ imply different values of the threshold over which we

will observe flood peaks and volumes. Figure 5.2 illustrates this point with simulated

observations for 40 years of data for two bivariate PDS models with the same AMS

framework parameters and different values of λ. The distribution of points in the

shaded areas is the same for both models. The threshold δ1 over which we observe

flood peaks satisfies Gθ1(δ1) = e−λ (see equation (2.16)), and, similarly, the threshold

δ2 over which we observe flood volumes satisfies Gθ2(δ2) = e−λ. Note that not all
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Figure 5.2: Simulated 40 years of data for two bivariate PDS models

with the same AMS framework parameters and λ = 2.5 (top) and

λ = 2.5 (bottom)
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values of flood peaks and flood volumes above the specified thresholds are admissible,

because of the structure of C(PDS).

In the examples below, we compared simulated observations from the described

model with actual data. We chose λ to correspond to the threshold for which we had

records of measured peaks. Generally, the problem of choosing the “best” lambda is

as complicated as choosing the “best” threshold in the univariate PDS model, and it

is beyond the scope of this discussion.

The C(PDS) copula can be used not only for modeling joint distributions of peaks

and volumes for flood events, but also for modeling flood peaks in adjacent or nested

basins. Recall that the historical PDS records for the USGS stream gauging stations

include only peaks over a predetermined threshold. Therefore, if a particular storm

caused a peak above the threshold in one of the basins but not in another, the

second peak would not be recorded and be unavailable for any parameter estimation

procedure. This fact does not cause a problem for the approach suggested here, since

parameter estimation is performed in the AMS framework for which data is regularly

available.

Obviously, the proposed simultaneous approach in the PDS and AMS frameworks

can be applied to modeling other extreme events, such as sea level heights, winds,

rainfall, etc.
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5.3 Flood Peaks and Flood Volumes

We analyzed the flood peak and flood volume data for the Potomac at Point of Rocks

stream gauging station, a nearly 10,000 mi2 - sized watershed. This is the largest

basin in the sample of basins considered in Chapter 2, and it has the longest period

of record available.

PDS flood peak data from 1931 to 1997, AMS data from 1894 to present, and

mean daily discharge data from 1921 to present is available for this station. We used

the AMS data for the period from 1921 to 1997 to compute estimates for the model’s

parameters, and then used the PDS data for the period from 1931 to 1997 to test the

performance of the model. To compute flood volumes from mean daily discharge data,

we need to define a time window. Based on hydrological analyses for the Appalachian

region, Sturdevant-Rees et al. [2001] suggested a window beginning two days before

the flood peak and ending three days after the flood peak. Using this window, we

extracted a PDS series of flood volumes corresponding to the PDS flood peak data,

and independently computed the maximum flood volumes for each year. Figure 5.3

shows the maximum flood peaks and flood volumes for this station plotted against

one another. It is customary to divide flood volumes by the basin drainage area, and

express the volume (sometimes referred to as runoff) in millimeters.

The parameters of the marginal distributions were estimated using the MLE2-

MIX1 method for flood peaks (the estimates obtained are a1 = 1212, b1 = 2461,

k1 = −0.26) and the MIX1 method for flood volumes (a2 = 10.8, b2 = 24.5, k2 =



CHAPTER 5. APPLICATIONS IN HYDROLOGY 180

2000 4000 6000 8000 10000 12000 14000

Maximum annual peak (cms)

2
0

4
0

6
0

8
0

M
a

xi
m

u
m

 f
lo

o
d

 v
o

lu
m

e
 (

m
m

)

Figure 5.3: Maximum flood peaks and flood volumes for Potomac at

Point of Rocks plotted against one another.
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−0.14). Following the estimation procedure, the observations in Figure 5.3 were

transformed to uniform (0, 1) marginals, and the Galambos copula was fitted to the

observations. The estimated parameter for the Galambos copula was determined to

be 3.85. Figure 5.4 shows the non-parametric estimate of the dependence function A

and the parametrically estimated dependence function. The two estimates are very

close to one another.

In order to compare the agreement of the estimated PDS model with the observed

data, we computed flood volumes associated with the measured peaks-over-threshold

for the Potomac river basins. For peak and volume thresholds x and y, we computed

the expected number of flood peaks exceeding threshold x and the corresponding flood

volume exceeding the threshold y for a given year. We then compared these values

with those of the observed data. Table 5.1 provides this comparison for selected

values of x and y. We see that the model agrees well with the observations. Figure

5.5 shows simulated values of flood peaks and volumes in the PDS framework for a

period of 500 years (black diamonds), and blue circles mark the observations (for 59

years). The simulated observations seem to follow a process close to the observed

one.

5.4 Flood Peaks at Two Nested Basins

As mentioned previously, the model described above can be used to model the joint

distribution of flood peaks in two adjacent or nested basins. To illustrate this ap-
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Figure 5.4: The non-parametric estimate of the dependence function A

(points) and the parametrically estimated dependence function (curve)

of C(AMS) for a distribution of flood peaks and volumes for Potomac at

Point of Rocks.
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Peak threshold (cms) 6000 5000 4000 2500

Volume Threshold (mm) 40 30 40 20

Observed 0.134 0.203 0.220 1.25

Modeled 0.127 0.221 0.252 1.23

Table 5.1: Expected number of flood peaks exceeding certain thresholds

in both peak and volume.
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Figure 5.5: Simulated values for a period of 500 years (top), estimate

of the joint probability density function (middle), and observed values

for 59 years (bottom) of flood peaks and volumes for Potomac at Point

of Rocks in the PDS framework.
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proach, we consider the following two basins: Potomac at Point of Rocks, and South

Fork Shenandoah at Front Royal, a basin with drainage area 1642 mi2 that is up-

stream of Potomac of Point of Rocks [Sturdevant-Rees et al., 2001] and also included

in the sample of basins discussed in Chapter 2.

Following the prescription, we estimate the marginal GEV distributions of annual

flood peaks for the two basins in the AMS framework. The estimated parameters

for the Potomac at Point of Rocks basin are a1 = 1212, b1 = 2461, k1 = −0.26 (as

above), and are a2 = 300, b2 = 470, k2 = −0.33 for the South Fork Shenandoah

at Front Royal. Figure 5.6 shows the values of the observed annual flood peaks for

the two basins plotted against one another. Using the estimates of the marginal

distributions, we transform this data to observations of two uniform (0, 1) random

variables, and estimate their copula. Again, we used the Galambos copula. The

parameter estimated for the Galambos copula was 1.65.

We can now compare our model to the observations of peaks-over-thresholds for

the two basins in the PDS record (the threshold that is used by USGS for Potomac

at Point of Rocks station is 990 cms and is 243 cms for the South Fork Shenandoah

at Front Royal stream gauge). The measured data suggests that an individual storm

causes a peak-over-[corresponding]-threshold in both basins with probability 0.83,

and a peak-over-threshold at South Fork Shenandoah but not at Potomac at Point

of Rocks with probability 0.052. The corresponding values from our PDS model are

0.87 and 0.043, which provides a very good agreement. Figure 5.7 shows the observed
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Figure 5.6: Values of the observed annual flood peaks (cms) for Po-

tomac at Point of Rocks and South Fork Shenandoah at Front Royal.
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Figure 5.7: Simulated values for a period of 500 years (top), estimate

of the joint probability density function (middle), and observed values

for 66 years (bottom) of flood peaks at Potomac at Point of Rocks and

South Fork Shenandoah at Front Royal in the PDS framework.
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flood peaks for the two basins (red) and the simulated ones (empty) using the PDS

approach.

5.5 Summary of Chapter 5

There are two main conclusions from the results reported in this chapter:

• We have derived the general form for a copula in the PDS framework, which

implies the BGEV distribution in the AMS framework for GP marginals.

• This approach is illustrated by examples of modeling the joint distribution of

flood peaks and flood volumes, and of flood peaks in two nested basins.



Chapter 6

Scaling Properties of Flood
Peaks

In Chapter 2, we briefly discussed the scaling properties of flood peaks in the central

Appalachians. The scaling theory of flood peaks is important for creating meth-

ods to assess flood peak distributions for ungauged drainage basins (see Gupta and

Waymire [1998]). Two major theories for the areal dependence of the annual flood

peak distribution have been developed: the simple-scaling (index-flood) theory, and

the multiscaling theory [Gupta and Waymire, 1990, 1998; Smith, 1992].

To illustrate these two theories, let XA be a random variable denoting the mag-

nitude of the annual flood peak in a basin with drainage area A. The theory of

simple scaling suggests that there is a positive function g such that for any two basins

in a particular region with drainage areas A1 and A2, the random variables XA1 and

g(A1/A2)XA2 have the same distribution. Multiscaling theory allows the function g to

be random and statistically independent of XA. Both theories lead to the conclusion

189
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that all moments IE [(XA)m] of XA exhibit log-log linearity with the drainage basin

area A. Under the assumptions of simple-scaling theory, the slopes of these linear

relations change linearly with the order of the moment, m. In addition, the coefficient

of variation (CV), defined as the ratio of the standard deviation of XA to the expected

value of XA, should not change with basin area [Gupta and Waymire, 1990, 1998].

In the multiscaling framework, however, the CV decreases with increasing basin area

[Gupta and Waymire, 1990, 1998].

Both theories were tested in Smith [1992] on annual flood peak data for a sample

of stream gauging stations described in Chapter 2 in the central Appalachians (see

Figure 2.3 for locations of these stream gauging stations). It was shown that the

logarithms of the moments of XA do vary linearly with log A, although the CVs

exhibit a very peculiar dependence on basin area (A): CV increases with increasing

A for basins with drainage areas smaller than some critical area Ac, and decreases

with increasing A for basins larger than Ac. This effect is shown in Figure 6.1. For the

central Appalachians region, the critical area Ac was determined to be approximately

50 km2. Similar results have been obtained subsequently by other investigators for a

diverse collection of study sites in the United States and abroad [Gupta et al., 1994;

Bloschl and Sivapalan, 1997].

In section 2.4, we fit the GEV distribution to flood peak data from each station,

and studied the scaling behavior of the ensuing parameter estimates. We saw that the

estimates of the scaling parameter a and location parameter b of the GEV distribution
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Figure 6.1: CV – Drainage Area relationship for central Appalachian

floods. From Smith [1992].
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do exhibit log-log linear relationships with basin area (Figure 2.6), and that the

estimates of the shape parameter k did not exhibit any systematic behavior with

basin area (page 41). In this chapter, we focus on the scaling behavior of moments

and CVs estimated from the data, without any assumptions about the distribution

of annual flood peaks.

It has been suggested that the spatial variability of rainfall is the predominant

factor in the decrease of CV at large scales while the structure of the drainage network

controls the behavior of CV on smaller scales [Gupta and Dawdy, 1995; Gupta et al.,

1994; Robinson and Sivapalan, 1995]. We will explore the dominant factors influencing

the behavior of CV by studying the interaction between the spatial and temporal

properties of rainfall and the network structure of river basins. The principal tools

used in this study are a statistical model of rainfall, which produces a rainfall field

that varies both in space and time, and a simple, network-based drainage model for

converting rainfall fields to a discharge at the drainage basin outlet. The study region

is a ∼5000 km2 area in the Edwards Plateau, Texas (see Figure 6.2 for location). The

Edwards Plateau is an interesting study site because it has experienced some of the

largest floods in the continental US [Costa, 1987].

Our model assumes that flood peaks are due to storms with exceptionally heavy

rainfall (“extreme rainfall events”), and we are interested in computing the peak

discharge generated by these heavy storms. Randomly sampled river basins are drawn

from the population of river basins in our area of study, and checked to ensure that
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they are not nested inside one another (that is, none of them is a sub-basin of any

other). We can then assume that runoff generated at the outlet of one basin does

not influence the runoff from any other basin. Additionally, comparison of the results

from different random samples of basins will assure us that the results are not an

artifact of the basin choice.

Because the rainfall field is a complicated stochastic process, its interaction with

the river network makes direct theoretical computation of the flood peak distribution

difficult. Instead, numerical simulations are used to infer the properties of the distri-

bution. To simulate the rainfall field, the models of Smith and Karr [1990] and Over

and Gupta [1996] were combined, leading to the model described in section 6.1 (see

Harris et al. [1996]; Onof et al. [1996]; Over and Gupta [1996]; Perica and Foufoula-

Georgiou [1996]; Rodriguez-Iturbe et al. [1987]; Smith and Karr [1990]; Waymire

et al. [1984] for additional discussion of space-time rainfall models). To compute

the discharge at basin outlets, a simplified version of the Network Model was used

which depends only on the structure of the network (i.e., two different basins with

an identical network structure will respond the same to the same rainfall field). See

[Rodriguez-Iturbe and Rinaldo, 1998, chapter 7] for a detailed discussion of network

models. Using this model, the maximum discharge for each basin is determined for

each simulated storm, allowing analysis of flood peak moments and CVs. The com-

plete version of the Network Model, which also includes surface water routing and
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the Green and Ampt with redistribution model for water infiltration, is described in

appendix A.

6.1 Storm Model

Simulating an extreme rainfall event over an area of ∼5000 km2 is a complicated task.

Accordingly, there are a number of spatio-temporal stochastic models for extreme

rainfall that have been developed in the literature (e.g. Northrop [1998]; Cox and

Isham [1998]; Rodriguez-Iturbe et al. [1987]; Waymire et al. [1984]). To determine

which model will work the best for us, we note that the only extended record of

data available in our area of interest (for the purpose of parameter estimation) is

the daily rainfall accumulation measured by 23 rain gauges, which limits the number

of models for which we would be able to estimate parameters. Additionally, there

is no information available on the temporal structure of the rainfall for each event,

because the data includes only daily accumulation totals, so we modeled the spatial

accumulations and the temporal structure independently. For modeling the spatial

structure of the rainfall, we used a model developed by Smith and Karr [1990] with a

relatively small number of parameters to ease parameter estimation. The use of more

complicated models (e.g. Rodriguez-Iturbe et al. [1987]; Northrop [1998]) would be

practical and desirable if additional rain gauge or radar data were available for the

parameter estimation. For modeling the temporal structure, we used a cascade model

[Over and Gupta, 1996].
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To simulate the extreme rainfall totals, the statistical model described in Smith

and Karr [1990] was used, with an additional assumption of spatial homogeneity in

the region. This model can be described as follows:

• The arrival times of extreme rainfall events form a Poisson process N on the

time axis with seasonally-varying mean λ(t). Because only the annual flood

peaks are of interest, only the annual frequency of extreme rainfall events Λ is

utilized in the simulations.

• A rain field is constructed as a collection of distinct storm cells. The centers

of these cells form a Poisson process M (independent of N) on the plane with

spatial rate a.

• For a particular storm, the total rainfall Sc in the center of each cell is in-

dependent of N and M , and has an exponential distribution with parameter

b.

• The storm-total rainfall associated with each cell is assumed to be distributed

symmetrically about the center of the cell with spread function

h(r) = e−2c2r2

,

and a magnitude equal to Sc at r = 0.

Suppose that, for the ith storm, there are M storms cells with coordinates

Y1, Y2, . . . , YM and center accumulations Sc,1, Sc,2, . . . , Sc,M , respectively. Under the
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assumptions above, the storm-total rainfall Si(x) from the storm at a point x on the

plane is

Si(x) =
M∑

j=1

Sc,jh(‖x− Yj‖). (6.1)

Moreover, note that the points {(Y1, Sc,1), (Y2, Sc,2), . . . , (YM , Sc,M)} form a Poisson

process on IR2 × IR+ with intensity measure abe−bs dyds. This property is used to

derive the moment parameter estimators for the model.

Smith and Karr [1990] computed the moments for this field, giving the mean µ

and the variance σ2 for the amount of storm-total rainfall at all locations x (the

“storm totals”) as

µ =
π

2
· a

c2b

σ2 =
π

2
· a

c2b2
,

and the correlation coefficient ρ for the storm totals between two locations separated

by a distance r as

ρ(r) = e−c2r2

.

The mean, variance, and correlation coefficient do not depend on x because of the

assumption of homogeneity in the region.

This model has 4 parameters to be estimated: the rate of storm occurrence λ(t),

the mean number a of storm cells per unit area for a particular event, the mean total

rainfall b−1 at the center of the cell, and the decay length c−1 of the spread function

h(r). To find characteristic parameters for the model from the Edwards Plateau study
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region, daily-total rainfall accumulations from 23 rain gauges were used. This data

spans a period of 48 years (from 1948 to 1996), and, though there were gaps in the

data sequence for most of the gauges, there were on average 9 gauges reporting each

day (see Figure 6.2 for the gauge locations).

An extreme rainfall event (storm) is defined as any period of three days with a

total rain accumulation of more than 130 mm at one or more rain gauges [Smith

and Karr, 1990]. This definition certainly includes the extreme rainfall events we are

studying, since the accumulation measured for flood peaks above the median annual

flood peak value for our basins all satisfy this criterion. We use the same definition

of storms as Smith and Karr [1990] to allow comparison of the model parameter

estimates computed for the central Appalachians region and Edwards Plateau. The

storm definition was tested by comparing the annual flood peak data from the four

stream gauging stations and the rain gauge data in the area of interest. The measured

annual flood peak data for the majority of basins describes peaks that are orders of

magnitude smaller than for the large floods we are interested in, as illustrated in

Figure 6.3 for the stream gauging station at Guadalupe River at Comfort. In our

framework, the small peaks correspond to the fact that there is a strictly positive

probability of no extreme rainfall event occurring during a given year. We computed

the total rainfall accumulation reported by the rain gauges for the three day period

ending the day of the annual flood peak for each year. When we then exclude the
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Figure 6.3: Measured annual flood peaks for the stream gauging station

at Guadalupe River at Comfort. The line represents the median value.
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peaks below the median flood peak values for each of the four basins, the minimum

value of the recorded storm total accumulations is 125 mm.

We denote the total number of gauges in the region as ν, and the total number

of years of observation as n. The storm arrival times are denoted Ti, and the total

number of storms detected during the n years is N . For the ith storm, the total accu-

mulation of rainfall Sij for the jth gauge (j = 1, . . . , ν) is computed. The estimators

derived in Smith and Karr [1990] can then be used to find approximate values for the

parameters in our model.

In our notation, the estimator for the annual frequency Λ is

Λ̂ =
N

n
.

The estimated value for Λ from our data set is 1.53 storms/year. To conveniently

express the seasonally-varying rate λ(t), one can think of a year as a time interval

from 0 to 1, where 0 corresponds to January 1 and 1 to December 31. If the arrival

times Ti are expressed in years, then the mantissa of the arrival time {Ti} indicates

the time of year of the event. Then, for the seasonally-varying rate λ(t), the window

estimator

λ̂(t) =
1

n

1

∆t

N∑
i=1

1(t−∆t/2,t+∆t/2)({Ti}),

is used, where ∆t is the width of the time window. The estimate for λ(t), using a 5

month window [Smith and Karr, 1990] is shown in Figure 6.4. The seasonally-varying

intensity varies from 0.6 storms per year in January to 2.65 in August.
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Figure 6.4: Estimate of the seasonally-varying rate of storm occurrence.

Time index 0 corresponds to January 1, and time index 1 to December

31.
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In order to estimate the spread function parameter c, estimates of pairwise correla-

tion coefficients ρ of the storm totals between gauges are plotted against the distance

between the gauges. Each estimate ρ̂ was computed as a sample correlation coeffi-

cient for exactly 20 observations per pair of gauges. Pairs of rain gauges for which

simultaneous data exists during fewer than 20 storms were excluded from the analyses

to eliminate uncertainties in the parameter estimates. A least squares estimator for

c is used: ĉ is the number that minimizes

∑(
ρ̂(r)− e−c2r2

)2

,

giving an estimate of 30 km for c−1.

The estimators for the parameters a and b of the model are obtained from the

moment equations:

b̂ =
µ̂

σ̂2
,

â =
2

π

µ̂2

σ̂2
ĉ2.

Estimates of µ and σ are readily computed from the data, giving estimates of 50 mm

for b−1 and 0.0015 storm cells km−2 for a. The mean number of storm cells in the

region of interest (area ∼ 5000 km2) during an extreme rainfall event is then 7.5.

It is interesting to compare our model parameter estimates from the Edwards

Plateau with those for the Appalachians as obtained by Smith and Karr [1990]. Both

sets of estimates are listed in Table 6.1. We note that this region of Texas has ap-

proximately three times as many heavy storms per year as the Appalachian region.
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Although each storm has fewer storm cells, on average, than do those in the Ap-

palachians, each cell has higher rain accumulation, on average. Each comparison in

the table agrees with the qualitative understanding of the climatic differences between

the Edwards Plateau and the central Appalachians [Caracena and Fritch, 1983; Smith

et al., 1996].

Although analysis of daily rainfall accumulation is useful for estimation of storm

totals, it does not provide information about the temporal evolution of the storm. To

represent the temporal structure of the rainfall, a cascade model [Over and Gupta,

1996] was used. The cascade model used is outlined as follows: For each storm cell

with total rainfall Sc at its center, we assign a lifetime τ such that the average rain rate

Z̄ at the center of the cell during the period τ is Z̄ = Sc/τ . Next we divide the time

interval (0, τ) into two halves. We assign a rain rate W1,1Z̄ to the interval (0, τ/2], and

W1,2Z̄ to the interval (τ/2, τ), where Wi,j are independent random variables having

the same distribution as a chosen positive random variable W . The expected amount

of rain in every interval should be conserved, necessitating the condition IEW =

1. The next step is to divide each subinterval (each half) into two new intervals,

giving four subintervals with length τ/4. Again, we take independent positive random

variables W2,1, W2,2, W2,3, and W2,4 with the same distribution as W , and assign rain

rates W2,1W1,1Z̄ to the first subinterval, W2,2W1,1Z̄ to the second, W2,3W1,2Z̄ to the

third, and W2,4W1,2Z̄ to the fourth. Continuing in this fashion, we will have 2k
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Parameter Edwards Plateau Central Appalachians

(present study) Smith and Karr [1990]

Λ (storms/year) 1.53 0.45

a (cells per km2) 0.0015 0.0027

b−1 (mm) 50 15 – 40

c−1 (km) 30 34

Table 6.1: Estimated values for the Storm Model parameters.
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0 τ/2 τ

0 τ
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Figure 6.5: A schematic of the cascade model construction.
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intervals at the kth stage, each with a length τ/2k and rain rate Zc(t) = Z̄
∏k

i=1 Wi,j.

An illustration of this construction is pictured in Figure 6.5.

The distribution in time of the storm total for a given storm cell is assumed to be

independent of that for all other cells. Because storm cells represent different storm

systems, it is natural to assume that they will evolve independently in time. In gen-

eral, the temporal evolution of a storm cell might depend on changing meteorological

conditions and interactions with other storm cells, but this is at a finer degree of

detail than present in the spatial model of rainfall described above and the runoff

model described below.

For our analyses the storm cell lifetime, τ , is taken to be characteristic of all the

storms cells in the simulated storms and assumed to be a Gaussian random variable

with mean 72 hours and standard deviation 3.0 hours (since we used 3-day rain gauge

accumulations to obtain estimates of storm-totals, the long storm lifetime is required

for the discharges to have reasonable values). k, the parameter corresponding to

the number of cascades used, was varied from 4 to 10, giving a range of rainfall

patterns averaged over a period of a few hours to patterns averaged every minute.

The random variable W is taken to have a lognormal distribution [Over and Gupta,

1996], i.e., W = eγ+ςU , where U is a standard Gaussian random variable, and γ and ς

are parameters of the distribution. The condition IEW = 1 then corresponds to the

condition γ = −ς2/2. The parameter ς in our simulations was varied from 0.4 to 0.8.



CHAPTER 6. SCALING PROPERTIES OF FLOOD PEAKS 206

To summarize, we simulate the rainfield from a storm as follows: M storm cell

centers Yj are simulated as a realization of a Poisson process on the plane with spatial

rate a, and the storm length τ is taken from the Gaussian distribution. Each cell is

assigned a total rain accumulation Sc,j at its center obtained from an exponential

distribution with parameter b. A cascade model is used for distributing Sc,j over the

interval (0, τ) to form the rain rate function Zc,j(t). A spread function h(r) is used

to describe the proportion of Sc,j that falls at a point a distance r from the center of

cell j. The rainfield Z(x, t) at a point x is then

Z(x, t) =
M∑

j=1

h(‖x− Yj‖)Zc,j(t).

6.2 The Simplified Network Model

In the drainage network runoff model (the Network Model), the discharge at the outlet

of the basin is realized as an extension of the inverse GIUH function (geomorpholog-

ical instantaneous unit hydrograph, defined as the basin’s response to instantaneous

rainfall with a unit magnitude; [Rodriguez-Iturbe and Rinaldo, 1998, p. 477]). For

this study, we used the simplified version of the Network Model described below in

order to isolate the network properties of the river basin. A description of the full

version of the Network Model can be found in Appenndix A.

We represent the river network as a binary tree with n links. We will denote an

individual link by e. Each link has a certain length le, an upper vertex ē, and a lower

vertex e. We know the position and geometry of every link, and the way that links
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Figure 6.6: The network structure of the Guadalupe river. The bold

line shows the path of the water from the marked point in the basin to

the outlet.
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are connected (i.e., we know the structure of a network similar to the one represented

in Figure 6.6).

We make the assumption that water flows to the nearest channel following the

path of steepest descent on the underlying elevation, from every point in the basin.

After reaching the channel, the water follows the river network to the outlet. Under

these assumptions, we can compute the travel distance fe(x) to the outlet e for each

point x in the basin, and, assuming a constant flow velocity v both over the land and

in the channels, the discharge Qe at the outlet is given by:

Qe(t) =

∫
B

R

(
x, t−

fe(x)

v

)
dx, (6.2)

where B denotes that the integral is taken over the basin and R(x, t) denotes the

runoff generated at location x at time t. Note that if R(x, t) is nonzero only for a

certain time period (0, T ), then the net discharge at the outlet will be nonzero at

most during the period (0, T0), with T0 = T + max fe(x)/v.

To approximate the effects of infiltration, the runoff field R(x, t) is computed from

the rainfall field Z(x, t) by

R(x, t) = (Z(x, t)−Ks)
+, (6.3)

where Ks is a parameter similar to the saturated hydraulic conductivity, and

y+ = max(0, y). We assume that Ks is the same throughout the basin. This rep-

resentation of the infiltration process is reasonable for extreme rainfall events [Ogden

and Saghafian, 1997].
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This model provides a useful tool for studying drainage basin response to extreme

rainfall. It has only two parameters: the average surface flow velocity v, and the

value of Ks. We can estimate the values of these parameters from reconstructed

hydrographs for extreme events for which we have both good rainfall measurements

and discharge measurements at one or more nodes. The assumption of constant

velocity in the channels for extreme events has been discussed previously [Gupta

and Waymire, 1998]. Analyses of measured velocity in different channels suggests

that the velocity is effectively the same if the respective resultant discharge levels in

the channels have the same probability of occurrence [Rodriguez-Iturbe and Rinaldo,

1998, p. 14].

We have implemented this model for several extreme events in Texas and other

areas [Smith et al., 2000, 2001], and achieved acceptable reconstruction of discharge

hydrographs. For the purposes of our simulations, we varied the flow velocity from

0.6 to 3.0 m s−1, and Ks from 0 to 20 mm h−1.

6.3 Scaling Analyses

We simulated flood peaks for 100 non-nested sub-basins of the Guadalupe river basin

in the Edwards Plateau for a period of 50 years (see Figure 6.2 for the location of the

Guadalupe river basin). For the the river network structure, we used EPA RF3 river

reach data (Figure 6.6), which corresponds to the blue lines on USGS topographical

maps. Rainfall was simulated according to the Storm Model described in section 6.1,
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and the ensuing runoff for each sub-basin was computed using the Network Runoff

Model described in section 6.2.

For each sub-basin, the annual flood peaks were identified as the maximum com-

puted discharge from the simulated storms in that year. Since extreme rainfall events

form a Poisson process on the time axis, there is a nonzero probability of obtaining

zero events in a given year. For years with zero events, the annual flood peak was

taken to be zero. As was noted earlier, this is justified by the fact that the measured

annual flood peak data for most basins includes peaks that are orders of magnitude

smaller than the large flood peaks of interest (Figure 6.3). The computations were

repeated for different values of the Storm Model time cascade parameters, Ks value,

and channel velocity, and different catchment sampling (choice of sub-basins). The

dependence of the flood peaks behavior on the values of the Network Model parame-

ters was not statistically significant.

The first and second sample moments of the simulated flood peak data set for

one set of sampled sub-basins are plotted against sub-basin area in Figure 6.7 (for

v = 1 m s−1, Ks = 0.5 mm h−1, ς = 0.6, and k = 8). The logarithms of the moments

clearly exhibit a linear relationship with the logarithm of the sub-basin drainage area.

The slope of the linear regression for the sample means is 0.72, which is consistent

with typical slopes for the observed data [Gupta and Waymire, 1998; Robinson and

Sivapalan, 1997; Morrison and Smith, 2001b]. Means of annual flood peaks computed

from measurements at several stream gauging stations in our area of interest are also
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shown in Figure 6.7 (squares). There are no small gauged basins in the area of interest

with a long (> 30 years) record of maximum annual flood peaks.

The dependence of the coefficients of variation on the sub-basin drainage area is

shown in Figure 6.8 (triangles). The overall shape of this dependence is similar to

that obtained from an empirical study of actual flood peak data (Figure 6.1); there

tends to be an increase of CV with increasing drainage basin area for catchments with

areas smaller than Ac = 10 km2, and a decrease of CV with increasing drainage basin

area for larger catchments. Similar results were obtained for all input parameters

used in the simulation models. It is interesting to note that the CVs computed from

annual flood peak data from several stream gauging stations in our area of interest

is of the same order of magnitude (Figure 6.1, squares) as the simulated results. The

inference that the behavior of CVs for annual flood peaks can be largely explained in

terms of the spatial and temporal properties of the rainfall and the structure of the

river networks is supported by the observation that only these three elements were

included in our simulations, which reproduced the expected CV behavior

To gain further understand the factors that influence the behavior of CVs, the

simulation experiments were repeated with a stationary rainfall field, i.e., the time

cascade construction was removed from the Storm Model. This simulation was per-

formed in an attempt to isolate the effects of the spatial properties of the rainfall and

the network on CV. CVs obtained without the cascade structure are also shown in

Figure 6.8 (empty circles). They were computed with the same rainfall field spatial
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Figure 6.7: Log-log plot of first (solid circles) and second (crosses)

sample moments of the simulated flood peaks versus drainage area.

Empty squares represent estimated values of mean annual flood peak

for actual basins in the area of interest. The units of the y axes are

m3s−1 for the first moments and m6s−2 for the second. The parameters

used to obtain this plot were: v = 1 m s−1, Ks = 0.5 mm h−1, ς = 0.6,

and k = 8.
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Figure 6.8: CV – Drainage area relationship for the simulated flood

peaks. Triangles indicate values obtained with the rainfall simulated

with the Storm Model, empty circles indicate values where the rainfall

was simulated without the time cascade structure. Squares represent

estimated values for CV for actual basins in the area of interest. The

parameters of the models are the same as in Figure 6.7.
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structure as the CVs obtained with the cascade structure (triangles) for each simu-

lated event. The areal dependence of the prior analyses is no longer present. Because

similar results were obtained for a wide range of simulation parameters, we infer that

the temporal structure of the simulated rainfall is important for producing the small

area behavior of CVs in our results.

There are multiple explanations for the change in low-area scaling in the context

of our model. Because small basins have much shorter response times than larger

basins, their instantaneous discharges depend on the rainfall during a shorter period

of time than do larger basins’ discharges. For the runoff calculated using the Network

Model, this effect is readily apparent, since the discharge Qe(t), for each link e at

time t, is calculated from the rainfall during the time interval [t−max(fe(x)/v), t].

Moreover, the form of Equation (6.2) is similar to that of a resampling and averaging

of the rainfall. A plot of max(fe(x)/v) as a function of basin drainage area is shown in

Figure 6.9 for the sub-basins of the Guadalupe river (assuming v = 1.0 m/s). We see

that the largest transit time scales are roughly ∼ 1 hour for small basins and 30 hours

for large basins. In the simulation experiments, the rainrates generated by the Storm

Model generally changed every 10 minutes, so small catchments experienced little

averaging of the temporal structure. This plays a role in determining the importance

of the rainfall temporal structure for small basin CVs, and especially for the discharges

calculated using the Network Model.
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Figure 6.9: In the Network Runoff Model, the time scale of a basin

response is max(fe(x)/v). Values of max(fe(x)/v) are plotted as a

function of drainage area for v = 1m s−1.
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The spatial structure of the simulated rainfall might also be suspected as the

explanation for the low-area dependence. The two parameters that determine the

spatial scale of the Storm Model are a and c. According to the estimates from Table

6.1, the average distance between storm cells is a−1/2 = 26 km and the characteristic

scale of a single storm cell is c−1 = 30 km. These scales are somewhat larger than

the resolution observable by the rain gauge network (the average distance between a

particular rain gauge and its nearest neighbor was about 12 km), so the rain gauge

network adequately captures the spatial structure considered. However, the error in

the estimation of the parameters a and c is large (see Bloschl [1999]), and the CV

results are dependent on the estimated characteristic spatial scale of the simulated

rainfall.

To address the issue of the uncertainty in determining the spatial scale of the

rainfall patterns, we simulated rainfall with several different values of a and c. The

results are presented in Figure 6.10, which shows the envelope curves for four different

simulation experiments with unique values of the parameters a and c. The shapes of

these curves are all similar to that of the real CVs (Figure 6.1)). While the particular

estimates of the spatial structure might be imprecise, the scaling behavior of the

simulated CVs does not change significantly.

Many authors have stressed the importance of the network structure of the basin

in determining the behavior of CVs for small catchments [Gupta and Waymire, 1990;

Gupta and Dawdy, 1995; Robinson and Sivapalan, 1995]. In this study, we used
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a network taken from an actual basin, so realistic basin network properties were

employed. In order to further understand the importance of employing actual river

networks, though, we tested the same rainfall model with the Peano network.

The Peano network is an idealized model of a channel network [Marani et al., 1991;

Gupta and Waymire, 1998; Gupta et al., 1996]. An example of a Peano network and

a description of its basic properties can be found in Rodriguez-Iturbe and Rinaldo

[1998, p. 123], and a Peano network of order 5 is illustrated in Figure 6.11. Under

the assumption of constant rainfall and constant water velocity in streams, the peak

discharge in a Peano network exhibits simple scaling [Gupta and Waymire, 1998]. The

scaling of flood peaks in a Peano basin with the spatial cascade model for rainfall

has been studied both analytically and computationally by Gupta et al. [1996], and

it has been concluded that the peaks exhibit multiscaling in this case.

We studied the response of a Peano basin to rainfall generated by the Storm Model

through simulations, and discharges at the end of each link were computed using the

Network Model. The area of the entire Peano basin was taken to be approximately

the same as the area of the Guadalupe River at Comfort basin (2190 km2), and the

order of the Peano basin was taken to be 5 (Figure 6.11) so the drainage density

is approximately the same as for the Guadalupe river basin. Figure 6.12 shows the

flood peak CVs obtained with the same set of model parameters as used for Figures

6.7 and 6.8. It is clearly seen that CVs decrease with increasing drainage area for

all scales. Although it is difficult to study the distribution of flood peaks with our
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Figure 6.10: The envelope curves for the CV-area relationship resulting

from simulated rainfall with different spatial scales. (1) a−1/2 = 60,

c−1 = 60; (2) a−1/2 = 30, c−1 = 15; (3) a−1/2 = 15, c−1 = 15; (4)

a−1/2 = 15, c−1 = 30 (km).
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Figure 6.11: The Peano network of order 5.
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rainfall model even in the Peano basin, this simulation experiment supports the hy-

pothesis of multiscaling. The simulation experiment with a Peano basin shows that

the network structure of the drainage basin is an important factor for determining

the scaling behavior of flood peaks CVs, which agrees with previous findings [Gupta

and Waymire, 1990; Gupta and Dawdy, 1995; Robinson and Sivapalan, 1995].

Finally, we observe that our results provide a starting point from which to further

test additional influences on the behavior of CVs. Much research has been performed

to determine the features in the basins’ morphology, dynamic response, and rain-

fall that produce the greatest effects on the behavior of flood peaks [Robinson and

Sivapalan, 1997; Bloschl and Sivapalan, 1997; Gupta and Dawdy, 1995]. It has been

suggested that the basin response to rainfall on a small scale is largely controlled by

the spatial variability of basin’s morphological properties [Wood et al., 1988], which

are therefore critical for the scaling of annual flood peaks. It has also been hypothe-

sized that the transfer of water from hill slopes to channels may be the key process

defining the characteristic spatial scales of regional hydrology [Robinson et al., 1995].

Another hypothesis that nonlinearities in runoff generation contribute to the increase

in CVs for small scales [Bloschl and Sivapalan, 1997] is supported by the effect of

the temporal structure of the model rainfall on the small scale behavior of CVs that

was observed in this study. This study did not directly model any of the processes

mentioned above. That our results reflect the observed behavior of CVs does not

rule out any of these additional influences, but merely demonstrates that the overall
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response of the real system can be mimicked by the fundamental response of a much

less complex system that we can tractably analyze.

It is further encouraging to note that many of the additional processes not included

in our results are quickly coming within the reach of computational models due to

continuing increases in computing power, while they would have been prohibitively

computationally intensive only two years ago.

6.4 Summary of Chapter 6

There are three primary results from this chapter:

• The simulation of rainfall over an area coupled with the Network Model provides

a useful tool for studying flood peaks. Estimation of most of the parameters

for such simulations can be done based on analysis of daily-accumulation rain

gauge data.

• The areal scaling properties of flood peaks (log-log linearity of moments vs.

basin drainage area and the peculiar behavior of the coefficients of variation)

can be explained by the spatial and temporal structure of the rainfall and the

spatial structure of the stream network.

• There is evidence that the interaction between the temporal structure of the

rainfall and the network structure of the basin might be important to the scaling
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Figure 6.12: CVs of annual flood peak simulated in the sub-basins of

Peano basin. Parameters of the models are as in Figure 6.7.
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behavior of the flood peak coefficients of variation for basins with a sufficiently

small area.



Chapter 7

Conclusions and Future
Research

The Generalized Extreme Value distribution (GEV) has been widely used for model-

ing extreme events, such as flood, winds, and rainfall, and estimation of its parame-

ters is an interesting problem that has been tackled by a number of authors. In this

dissertation, we have developed methods to improve estimates of the GEV’s shape

parameter, since it is the parameter that determines the thickness of the distribution’s

tail. We have introduced MIXed parameter estimation methods based on a combi-

nation of the standard Maximum Likelihood and method of L-moments, and shown,

that the new methods have smaller parameter estimates RMSE for small sample sizes

and certain values of k (≤ −0.2). We have seen that the MIXed methods perform

roughly as well in quantile estimation as the method of L-moments, and showed that

the bias of the L-moments estimates is favorable and necessary for good quantile

estimates from this method.

224
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One of the advantages of the MIXed methods is that they retain the flexibility of

of maximum likelihood methods towards incorporating additional information, such

as a known prior for the distribution parameters, or a positive density at some point.

Such information, can significantly improve the quantile estimates of the distribution.

We argued that MLE can be conditioned by any “good” U -statistics and produce

asymptotically consistent and jointly Gaussian estimates. It would be interesting

to investigate whether conditioning not by L-moments but by other statistics can

produce better estimates than the new MIXed methods. It is possible that different

constraints on the MLE problem will produce the optimal parameter estimates at

different finite samples sizes.

Incorporating additional information into statistical parameter estimation is prob-

ably one of the best ways to improve the estimation procedure. For this reason we

extended the MIXed estimators to incorporate PDS information, for application to

the modeling of flood peaks. We have studied the performance of the MLE2 method

which employs both AMS and PDS records. One of the benefits of this method is

that it uses the longest period of record available for a stream gauging station, and

still includes information additional to the AMS record.

Under the assumption that annual flood peaks for a given basin have a GEV dis-

tribution, the proposed methods were used to estimate the GEV distribution’s param-

eters for a sample of basins in the central Appalachians region, and the relationship

between morphological basin descriptors and parameter estimates was investigated.
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The estimates of the shape parameter k did not exhibit significant dependence on any

of the basin descriptors considered. Moreover, the variability of the shape parameter

k corresponds to the variability of the estimators used. As was expected, the loga-

rithms of the scale and location parameter estimates exhibit a linear dependence with

the logarithm of the basin area. It was argued that basins with higher percentage of

impervious cover should be considered as though they have larger effective contribut-

ing area. This finding is related to the premises of scaling theories that argue that

the scale in hydrology may be defined not just by a basin area, but as some function

of the basin morphological descriptors (see Gupta and Waymire [1998]). How this

function can be determined and what basin descriptors provide the most significant

contribution to that function are subjects for further study. Our analysis suggests

that besides drainage area, the percentage of urbanized cover makes an appreciable

contribution to the basin scale definition. The slope of a basin has also been suggested

to be important for determining the basin scale parameter [Madsen et al., 1997b]. We

did not find any significant dependence of the GEV estimates on the basin slope, but

one could use different definitions for the basin slope. It could be the case that the

slope has to couple with another parameter that we did not investigate (that was

not well represented in our data) for the parameters to exhibit a marked dependence

on the slope. It is also possible that our basin sample was not simply representative

enough in terms of slope, so that we could not detect the influence of the basin slope

on the parameter estimates. More data analyses are needed in this area.
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In Chapters 3 – 5, we explained and illustrated some techniques for modeling bi-

variate distributions with copulas. We briefly discussed how errors in the estimation

of bivariate distribution marginals affect the statistical inference of copulas. From

Monte Carlo simulations, it appeared that the increase in the error of copula pa-

rameter estimates arising from the use of nonideal marginals is relatively small. Our

simulation results with Gumbel copulas and GEV marginals suggests that paramet-

rically estimated marginals work as well as the empirical ones for sample sizes ≤ 250.

Are these results an artifact of the particular copulas and marginals that we have

considered, and is there a theoretical explanation for these observation? These type

of questions are very important for developing robust statistical techniques involving

copula estimation.

An interesting question not considered in this dissertation is how confidence in-

tervals for copulas and bivariate distributions can be constructed. Though this issue

has been raised in the literature (e.g Genest and Rivest [1993]; Capéraà et al. [1997a];

Joe [1997]), the methods considered involved the values of the asymptotic covariance

matrix of the estimators. For the univariate GEV distribution, the asymptotic co-

variance matrix very poorly describes the behavior of parameter estimators for small

samples (see Prescott and Walden [1983]; Lu and Stedinger [1992]), so it is unlikely

that variances of parameter estimates derived from asymptotic analysis techniques

are applicable to bivariate GEV distributions, at the very least. Extensive simulation
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studies in this area are needed in order to understand the behavior of the different

copula estimators. Such simulations can be readily carried out using EVANESCE.

We have illustrated how copula-based models provide good fits to bivariate distri-

butions of variables of interest to financial engineers. We demonstrated how using the

functions available with EVANESCE simplifies estimations of marginal distributions,

parametric and non-parametric copula estimation, comparison of how well different

parametric copulas fit the data, and the use of simulations to replicate the available

data sample. Such routines are quite valuable for risk analysis. However, financial

engineers are very interested in modeling multivariate random variables, with the

typical numbers of dimensions of interest from 50 to 100. Though a number of cop-

ula families can be generalized to n dimensions, such generalizations, apart from the

Gaussian copula, are of little practical use. Even though one can estimate parameters

for n dimensional copulas, there are too few methods developed for simulating ran-

dom observations from these copulas without inverting n− 1 conditional distribution

functions. The copulas for which such algorithms exist (e.g., the Clayton copula,

[Clayton, 1978]), have too few parameters to fully describe the multi-dimensional

structure of the data (see Johnson [1987]. For example, the Clayton copula has only

one parameter, so all its bivariate marginals are the same, and the multi-dimensional

structure is fixed). It is improbable that multi-dimensional copula-based modeling

will be widely used in practice as an alternative to using multivariate Gaussian cop-
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ula, unless either radically new simulation techniques are developed or the increase

in computing power makes the currently available techniques practical.

In Chapter 5, we discussed possible approaches to copula-based modeling in hy-

drology. We argued that for modeling the joint distribution of flood peaks and flood

volumes in a PDS framework, one should use a particular type of copula with an

implied bivariate distribution of annual flood peaks and volumes that is a bivariate

GEV distribution. This BGEV distribution can be considered to be a starting point

for the modeling of bivariate extremes. The new bivariate PDS approach is used

to model the joint distribution of flood peaks and volumes for Potomac at Point of

Rocks, and the joint distribution of flood peaks for Potomac at Point of Rocks and

South Fork Shenandoah River at Front Royal, its subbasin.

Theoretically, the PDS copula introduced in Chapter 5 allows extensions into

higher dimensions (see Joe [1997], Chapter 6, for construction of multivariate EV

copulas). The applications of such extensions would be the modeling of the joint

distribution of flood peaks in several closely situated basins. However, since the PDS

copula has a singular component, the simulation of random observations from this

copula even in three dimensions constitutes an unsolved problem. Special methods

have to be designed for such simulations.

In Chapter 6, we discussed the scaling properties of flood peaks. Using a stochas-

tic model for extreme rainfall events (i.e., those that could potentially cause the

annual flood peak in a basin) to provide input for a rainfall-runoff model, we simu-
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lated discharges in all of river’s streams. We call this approach a coupled stochastic

rainfall-runoff model. The results of this work were rather promising: we were able to

reproduce the peculiar scaling properties of the moments and CVs of the flood peaks.

Moreover, the range of the simulated flood peaks agreed with that of those measured

by USGS, and the slopes of the mean annual flood peaks agreed with those noted in

the literature. The results of this study show that appropriately designed simulations

of space-time rainfall can be very useful tool for studying the distribution of annual

flood peaks, so further development of coupled stochastic rainfall-runoff models is an

interesting avenue of research. After the simulation study described in Chapter 6

was concluded [Morrison and Smith, 2001a], the Network Model underwent a series

of improvements (see Appendix A), and its modeling capabilities were extensively

studied [Smith et al., 2000, 2001; Sturdevant-Rees et al., 2001; Zhang et al., 2001;

Turner-Gillespie, 2001]. In our study, the spatial structure of the rainfall was rather

primitive, and the temporal structure was assumed rather than estimated. Coupling

the Network Model with one of the more sophisticated space-time rainfall models

(e.g. Rodriguez-Iturbe et al. [1987]; Northrop [1998]) might allow reproduction of the

observed distribution of annual flood peaks for gauged basins, and this distribution

for ungauged basins could be inferred from the model.



Appendix A

The Network Model

A.1 Introduction

A.1.1 History

The development of the Network Model began in 1998 with a set of routines for

the computation of a number of river network descriptors, including the width func-

tion and Geomorphological Instantaneous Unit Hydrograph (GIUH) function (see

Rodriguez-Iturbe and Rinaldo [1998], p. 477). Discharge at an outlet was computed

as a convolution of the GIUH inverse function with a rainfall field (see section 6.2).

The Model was significantly revised in 1999 with the addition of DEM (Digital Ele-

vation Model) routing, Green and Ampt infiltration with Redistribution, impervious

land cover, rainfall interpolation in space and time, and the definition of Network-

Model-specific data storage formats. The current version (3.0) is enhanced with a fast

routing option, better display capabilities, simplified input parameters and the abil-

ity to read files in standard GIS formats (ARC-INFO GRID and vector coverages).
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Simulation of retention depth was added to the model by Daniel Turner-Gillespie

[Turner-Gillespie, 2001].

A.1.2 Description

The Network Model is a distributed raster (grid-based) hydrologic model which sim-

ulates the hydrologic response of a watershed to a given rainfall field, under the

assumption that all water velocities are explicitly specified. The user is required to

specify the rainfall field, DEM, river network, and soil maps as inputs. The program

then computes the amount of infiltration and generated runoff, and routes the water

on the DEM surface and through the river network (Figure A.1).

Rainfall can be either explicitly input from radar observations, assumed to be

constant, or simulated using a specified space-time stochastic rainfall model. Rain-

fall infiltration can be modeled with a Green and Ampt with Redistribution (GAR)

infiltration method [Ogden and Saghafian, 1997] or using a simpler equation (6.3).

Information about impervious land cover may be added to make the computed infil-

tration more realistic in an urban environment. Runoff is determined as the difference

between the rainfall and the infiltrated water, and is routed on a surface specified by

the underlying DEM. The flow direction is determined using the enhanced Tarboton’s

D∞ method [Tarboton, 1997] and the specified flow velocity. The transition of the

runoff from the surface into the streams may be modeled using one of the two in-

cluded empirical rules. Stream routing is performed using the specified velocity and

known network geometry. The discharge is computed at each node in the network,
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Figure A.1: The schematic of the Network Model.
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and may be output for further analyses. Optionally, the output can be viewed with

model visualization module (Figure A.1).

The major distinction between the Network Model and other raster-based dis-

tributed hydrologic models is that the water velocities must be specified explicitly

(either constant or a power function of the local slope and/or water discharge), and

not determined as the solution of a partial differential equation (PDE), as done in

CASC2D [Ogden and Julien, 1993], for example. Though the solutions of PDEs pro-

vide better approximations of the physical processes involved in runoff routing than

explicit formulas in theory, the PDEs themselves involve a number of generally un-

known parameters. For example, the open channel flow equation that is often used

to route water in streams requires knowledge of the channel cross-section profile ev-

erywhere in the network [Fred, 1993]. Generally, this information is not available for

any particular watershed. Specifying the channel flow velocity explicitly, thusly, may

provide as good a model of the flow as guessing the channel profile at every point.

For a particular watershed, the computational time for the Network Model is much

less than that of PDE-based models, and allows fast calibration. It is also free of

numerical problems in the water routing, unlike its PDE-based analogues.

The Network Model is written in java. This language was chosen primarily for

its platform-independent features, which are important for the Model visualization

module. The model greatly exploits the object-oriented nature of java, allowing

a user to specify which methods he or she prefers to use in different components
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of the model. For example, a user may choose to substitute radar observations of

rainfall with rainfall generated using a specified space-time stochastic rainfall model

by redefining one object, and, independently, choose between different infiltration

methods by changing another object. The model is distributed with an open source

code, allowing users to substitute their own alternative methods at every step of

computations. The full documentation of the java classes comprising the Network

Model is distributed with the Model.

The Network Model has been successfully implemented in a number of hydrological

studies (see Smith et al. [2000, 2001]; Sturdevant-Rees et al. [2001]; Zhang et al. [2001];

Turner-Gillespie [2001]).

In the following sections, we describe the principles and computations involved in

several of the Model’s components in a greater detail, and provide a User Manual.

A.2 Network Model Principal Components

The Network Model is grid-based, and the main input into the model is the DEM

(Digital Elevation Model) of a watershed. The pixels of the DEM are often referred

to as grid cells, or just cells. It is assumed that all DEM cells are square and have

the same size.

In the Network Model, time is discretized into equal steps, such that points in

time can be represented as t0, t1, t2, . . ., where tj+1− tj = s is the constant time step.

Figure A.2 is a schematic for the computations performed during one time step in the
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model. As seen from this schematic the following procedures are are performed at

each time step: (1) rainfall computation (either spatial/temporal interpolation of the

rainfall determined from radar observations or generation of rainfall using a stochastic

space-time rainfall model), (2) infiltration of the rainfall into the soil, (3) computation

of runoff, (4) routing of the runoff over the DEM, (5) computation of how much water

transfers into the streams, and (6) routing of the water in the streams.

If rainfall from radar observations is used, it is linearly interpolated in time. In

space, it is interpolated either using the nearest neighbor approach (i.e. the rainfall

at a particular cell in the DEM is assumed to be equal to that observed at the nearest

radar bin center), or by linear interpolation in space.

We discuss the particular methods used to compute infiltration and DEM routing

in a greater detail below.

A.2.1 Green and Ampt Infiltration with Redistribution

The optional Green and Ampt infiltration with Redistribution (GAR) routine in the

Network Model is based upon the procedure suggested by Ogden and Saghafian [1997]

for modeling infiltration. The modifications to this procedure in this implementation

mainly address numerical problems stemming from fluctuations in rainfall rates.

In the Network Model, we consider the rainfall r(x, tj) at time tj to be applied

during the period (tj − s/2, tj + s/2), and we are interested in the runoff u(x, tj)

generated from each grid cell x during that period of time. The GAR model is
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Figure A.2: Procedures performed at each time step of the Network

Model.
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used to calculate the infiltration ∆F (x, tj), and the runoff u(x, tj) is computed as

u(x, tj) = r(x, tj)s−∆F (x, tj). The infiltration is computed separately for each cell,

so we fix x and write r(tj) instead of r(x, tj), u(tj) instead of u(x, tj), etc.

Assume the soil has saturated hydraulic conductivity Ks, porosity θe, residual

water content θr, initial soil moisture θi, pore distribution index λ, and GA wetting-

front capillary pressure parameter Hc. Let θ(t) be the instantaneous soil moisture,

and Z(t) be the depth of profile. F (t) = Z(t)(θ(t)− θi) is the total amount of water

in the profile, and we are going to determine ∆F (tj) = F (tj + s/2)− F (tj − s/2).

The rules for computing runoff using the GAR model are as follows:

1. If the rainfall rate r(t) is greater than Ks, the original GA equation for a single

ponding event is used to determine the potential infiltration fp(t):

fp(t) = Ks

(
Hc(θe − θi)

F (t)
+ 1

)
. (A.1)

If r(t) < fp(t), the infiltration rate is equal to the rainfall rate, and ∆F (t) =

r(t)s. If r(t) ≥ fp(t), the infiltration rate is fp(t) (from equation (A.1)).

Equation (A.1) can be solved numerically by noting that fp(t) = d
dt

F (t). In

the Network Model, there is a parameter that controls the precision with which

equation (A.1) is solved.

2. If the rainfall rate r(t) is less than Ks for the rectangular soil moisture profile

approximation, Ogden and Saghafian [1997] provide the following system of
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differential equations for Z(t) and θ(t):

(θ − θi)
dZ

dt
=

KsG(θi, θ)

Z
+ K(θ),

dθ

dt
=

1

Z

[
r −K(θi)−

(
KsG(θi, θ)

Z
+ K(θ)

)]
, (A.2)

where G(θi, θ) is the capillary drive term

G(θi, θ) = Hc

(
Θ3+1/λ −Θ

3+1/λ
i

1−Θ
3+1/λ
i

)
,

K(θ) is the hydraulic conductivity of soil at the corresponding moisture θ

K(θ) = KsΘ
(2+3λ),

and Θ is the relative saturation

Θ =
θ − θr

θe − θr

The system of equations (A.2) is solved to update the values of the soil moisture

θ and the depth of the profile Z. It is assumed that all the rainfall is infiltrated

into the soil, so ∆F (t) = r(t)s.

3. If the rainrate is smaller than Ks for a certain period of time, and the rainfall

eventually increases above the Ks level, Ogden and Saghafian [1997], suggest

creating a second profile. The procedure provided for this purpose is described

below. Note that θ(1) and θ(2) denote the water content of the first and second

profiles, Z(1) and Z(2) denote the depth of the profiles, and F (1) and F (2) denote

the total amount of water in the profiles.
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• Initialization (performed at the first time step where the second profile is

needed): set both θ(1) = θ, and θ(2) = θ. For the initial soil water content,

use θ
(1)
i = θi for the first profile and θ

(2)
i = θ(1) for the second. In this way,

the initial soil water content for the second profile varies with time. Set

Z(1) = Z, Z(2) = 0, F (1) = F , and F (2) = 0.

• Assume that subsequent rainfall fills only the second profile, and use equa-

tion (A.1) to compute the infiltration. Use system of equations (A.2) to

update the values of θ(2) and Z(2), concurrently.

• Merge the profiles when Z(1) = Z(2) into a single profile with θ = θe,

Z = Z(1) = Z(2), and F = F (1) + F (2).

• If the rainrate drops below Ks before Z(1) = Z(2), merge the profiles any-

ways. If the second profile is saturated at this time, set the new depth of

the profile to

Z =
(θ(1) − θi)Z

(1) + (θe − θ(1))Z(2)

(θe − θi)
, (A.3)

total amount of water in the new profile to F = F (1) + F (2), and, corre-

spondingly, θ = θi + F/Z.

The GAR model is very sensitive to the time it takes for the soil to become

saturated, which is called the ponding time. The ponding time can be determined

either by solving system of equations (A.2) until θ ≥ θe, or by computing fp until it

is lower than the rainrate. Ogden and Saghafian [1997] point out that the solution
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of system of equations (A.2) usually overestimates the ponding time, so the latter

approach is preferred. For the purposes of the Network Model, we are not concerned

with the value of soil moisture before the first ponding event, since all of the rain is

infiltrated. So, by definition, our ponding occurs when r(t) > fp(t) ≥ Ks, and the

model then starts using equation (A.1) to compute the infiltration. This assures us

that we will not solve the system (A.2) before ponding occurs, so the total amount

of infiltrated water will be greater than zero by the time the rainrate drops below Ks

and we must solve system (A.2).

Small values of Z might cause numerical instabilities in the solution of the system,

however. To avoid this problem, a parameter Zthresh is introduced, and system (A.2)

is solved only if Z > Zthresh. If Z ≤ Zthresh, the soil moisture is approximated with a

formula suggested by Brooks and Corey [1964]:

θ = θi + (θe − θi)

(
r

fp

)1/(3+2/λ)

. (A.4)

It is assumed that all water is infiltrated, in this case. Zthresh is a user-specified

parameter. Numerical studies with fluctuating rainrates suggest that resultant runoff

is not sensitive to this value, as long as it is reasonably low. We suggest values

between 5 and 20 mm.

The solution of system (A.2) can also encounter numerical problems at small

values of (θ − θi), resulting in very high values for Z. This problem was addressed

by introducing a small threshold ε (ε = 10−3) such that if θ − θi < ε, we set θ = θi.

If two profiles are being updated and θ(1) − θi < ε in the first profile, the first profile
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Ponding
Equation (A.1)

Redistribution
1 profile

System (A.2)

Redistribution
2 profiles

1st profile – (A.2)
2nd profile – (A.1)

Beginning of 
an event

r > Ks and r > fp

r < Ks

θ - θi <ε

r > Ks

r < Ks ; forced merge, (A.3)
OR

Z (1) = Z (2)

OR
θ (1) - θi <ε

Figure A.3: Schematic of the GAR algorithm used in the Network

Model. For an individual cell, a transition between the states of the

code along an arrow occurs when the condition on the arrow is satisfied.
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Soil Effective Residual Pore dist.

texture porosity water cont. index Ks, Hc,

θe θr λ mm h−1 mm

Sand 0.417 0.02 0.694 235.6 96.2

Loamy sand 0.401 0.035 0.553 59.8 119.6

Sandy loam 0.412 0.041 0.378 21.8 215.3

Loam 0.434 0.027 0.252 13.2 175.0

Silty loam 0.486 0.015 0.234 6.8 320.6

Sandy clay loam 0.330 0.068 0.319 3.0 424.3

Clay loam 0.390 0.075 0.242 2.0 408.9

Silty clay loam 0.432 0.040 0.177 2.0 538.3

Sandy clay 0.321 0.109 0.223 1.2 466.5

Silty clay 0.423 0.056 0.150 1.0 577.7

Clay 0.385 0.090 0.165 0.6 622.5

Table A.1: Typical values of GAR parameter for selected soil textures

(from Ogden and Saghafian [1997]).
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is eliminated and the second profile is assumed to propagate into soil with initial

moisture θi.

If the rainfall rate fluctuates around the value of Ks, it is possible that the second

profile will not be saturated before the two profiles are forced to merge. We account for

this situation in our algorithm; if two profiles are being updated and the rainrate falls

below Ks before ponding occurs in the second profile, we estimate the soil moisture in

the second profile during the previous time step (all variables are taken at time ti−1)

using formula (A.4) as

θ(2) = θ(1) + (θe − θ(1))

(
r

fp

)1/(3+2/λ)

.

We then merge the profiles and use this estimate of θ(2) instead of θe in equation (A.3)

to determine Z.A.1

Figure A.3 summarizes the algorithm described above. GAR computation requires

six soil parameters (Ks, θe, θr, θi, λ, and Hc; see Table A.1, Ogden and Saghafian

[1997]; Rawls et al. [1993] and references therein for typical values of these parame-

ters). Since GAR computation involves numerical solution of systems of differential

equations, the user has the ability to control the number of iterations the GAR rou-

tine performs each time step in the Network Model (parameter num_steps_otp, see

Table A.8). It is suggested that this number be increased if the Network Model

time step is increased. Numerical studies indicate that the GAR solution is stable if

s/num_steps_otp is between 30 and 120 seconds.
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A.2.2 Flow Directions

The Network Model supports multiple flow paths from a particular grid cell to the

outlet. This is achieved by allowing water from a grid cell to flow into any of the eight

cells surrounding it (see Figure A.4). What fraction of the water in a grid cell flows

into each of its eight neighbors is determined in the “model preparation” stage using

the algorithm described below. This algorithm is based on Tarboton’s D∞ method

for computing flow directions [Tarboton, 1997]. In the Network Model, we added

rules for determining the flow fractions when dealing with flat areas and ties. For

convenience, we consider a grid pixel O, and label its neighbors as a, b, . . . , h, starting

from the pixel directly to the right from O and moving counter-clockwise (Figure A.4).

Prior to computing the flow fractions, the DEM is corrected to eliminate depressions

using methods suggested by Jenson and Domingue [1988], and it is thusly assured,

that each pixel O has at least one neighbor with equal or lower elevation. Only the

outlet pixel in the basin, does not have this property, and the runoff from that pixel

is directly added to the to the discharge.

Tarboton’s D∞ can be briefly described as follows: for pixel O, determine the

slope vectors s1, s2, . . . , s8 of eight triangular facets formed by O and its eight neigh-

bors (see Figure A.4, facets are numbered starting with the facet formed by pixels

O, a, and b, and moving counter-clockwise; the facet’s slope is defined as the vector

pointing in the direction of the steepest descent of the facet. For facet 1, for example,

the absolute value of the slope vector s1 is |s1| =
√

(ea − eO)2 + (eb − ea)2/d, where
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Figure A.4: Illustration for the Tarboton method for specification of

flow direction. See text for details.
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eO, ea, and eb are the elevations of cells O, a, and b, and d is the DEM cell size. The

angle of this slope vector is φ1 = arctan((ea−eO)/(eb−ea)). If φ1 is not in the interval

[0, π/4], we replace s1 with the projection of s1 onto the closest edge of the facet. If

this projection is negative, i. e. the vector points away from the facet, we say that s1

points upward. Otherwise we say that that s1 points downward. See Tarboton [1997]

for details). Of the downward-pointing facet slope vectors, the slope vector with the

largest magnitude (thick arrow in Figure A.4) is taken to be the flow direction φ of

cell O. φ is assumed to be a continuous quantity in the range [0, 2π). α1 and α2

are calculated as differences between φ and the directions to the centers of the two

neighboring pixels defining the facet (here g and h, respectively). It is assumed, that

α1/(α1 + α2) of the water from cell O flows into cell g and α2/(α1 + α2) flows into

cell h (these numbers are called flow fractions).

Tarboton’s flow fractions are used in the Network Model if the flow direction φ can

be determined. This is possible if at least one of s1, s2, . . . , s8 is pointing downward,

and the maximum of |s1|, |s2|, . . . , |s8| is unique (no ties). Here is how flow fractions

are computed if φ can not be determined:

1. In case of ties: identify all facets with the largest magnitudes of the slope

vectors; for each of these facets, determine flow fractions into the pixels defining

the facet. Then, for each neighboring cell, we add up the flow fractions going

into that cell, and divide it by the number of facets that are tied.
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2. In case of flat areas: If none of the s1, s2, . . . , s8 are pointing downward, but at

least one of the neighboring pixels has the same elevation as O, pixel O and its

neighbor are considered to be a part of a flat area. After all pixels F that are

part of the same flat area are identified, the following algorithm is applied to

assign flow fractions:

• Determine the collection of pixels, G ⊂ F , within the flat area for which

the flow fractions are already assigned.

• For each pixel in F but not in G find neighboring pixels in G, and assign

equal flow fractions in the directions of these neighboring pixels. If for a

particular pixel no neighboring pixels in G are found, the flow fractions for

this pixel can not be determined at this step.

This procedure is repeated until flow fraction for all pixel in F are assigned.

A.2.3 Water Surface Routing and Infiltration

After runoff is generated in a grid cell during a time step, the water is routed on the

surface of the DEM until it reaches a grid cell which is defined to be in a stream.

Suppose the runoff in a cell A is generated at time tj, and the overland velocity of

the water is constant and equal to v. Figure A.5 shows possible flow paths from a

cell A, and the distances v · s that the water will travel on these flow paths during

one time step. The water that has not reached streams (in the paths 1 and 2),

remains in the corresponding cells (cells B and C) until the next time DEM routing
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Figure A.5: Possible flow paths from cell A. The points that water

reaches during one time step are denoted by circles.
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step (this is called runon). Since there is an infiltration step between the two DEM

routing steps (see schematic A.2), the water can be allowed to infiltrate during the

infiltration step in cells B and C or it can be assumed that this water does not

contribute to the infiltration in these cells. The latter assumption can be justified

by the argument that surface water aggregates into small streams that are narrower

than grid cells, and there is no infiltration of water in streams. The Network Model

parameter infiltrate_runon must be set to false to use this option (Table A.8).

A.2.4 Fast Routing Option

In the example using Figure A.5, the water from cell A reaches cells B and C during

one time step. In raster-based hydrologic models, we keep track of the water height

in only in the centers of grid cells. The water from on the flow path 1 in Figure A.5

is divided between cells B and B′, using an inverse distance rule: if l and l′ are the

distances between the point X (the point reached by the water in one time step) and

the centers of cells B and B′ respectively, l′/(l + l′) of water in the flow path 1 is

assumed to stay in cell B and l/(l + l′) is assumed to flow into cell B′.

This rule provides good approximation to the surface water flow provided that

vs/d � 1, where d is the DEM cell size. Figure A.6 shows theoretical and modeled

contribution to discharge hydrograph at node S of the river network from a constant

runoff generated in cell A (assuming d = 30 m, and v = 2.0 m s−1, and s = 1 min).

We see that the approximation is as good as we can hope for, given that we model the

discharge only at discrete time periods. If we instead assume that v = 0.2, we will be
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Figure A.6: Difference between fast and slow routing options. The

two methods perform the same for large overland flow velocities. Slow

routing procedure results is significant attenuation of the flood peak for

small overland flow velocities.
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distributing water between two neighboring cells at each time step, and Figure A.6

also shows the theoretical and modeled discharges in the stream for this case. We

see that the modeled response is attenuated in comparison with the theoretical one,

though its center of mass is in the correct place.

In order to correct this error, a user may increase the time step s for a given

overland flow velocity v, so that vs/d � 1 still holds, but this technique may re-

sult in a poor representation of rainfall (indeed, if the time step is longer than the

period between radar scans, the observed rainfall will be averaged in time rather

than interpolated). An alternative way to correct the error is to use the fast routing

option. With this option, the theoretical water travel time for each flow path from

cell A to a stream node S is computed initially, and is continually used to calculate

the corresponding discharge at node S without computing the water heights in the

DEM cells that the water passes. This option can be used only if the overland and

channel flow velocity do not depend on the surface water height or current value of

the discharge in the stream (e.g. constant velocity, or a power function of the local

slope), and the infiltration of the runon should be turned off (section A.2.3). Since

the surface water heights are not computed with this option, display of the analysis

using Network Model visualization module is not possible. The output hydrographs

for specified arcs, however, may be written into an ASCII file. The fast_routing

parameter in the main parameter file should be set to true if this option is desired

(see Table A.8)



APPENDIX A. THE NETWORK MODEL 253

The computation time with the fast routing option is about five times less than

without it (for an average basin). This is achieved by computing the lengths of all

possible flow paths for all DEM cells in the initialization stage which significantly

reduces the number of operations during the “running” stage (for a particular DEM

cell, flow paths with less than 1% of water flowing on them are disregarded, and total

of the flow fractions on the other flow paths is normalized to one). The most time

consuming procedure with this option is the infiltration procedure, especially when

the redistribution of water in soil moisture profiles for many cells is performed for a

long period of time (the rainfall falls below Ks for many cells in the basin). The total

amount of computer memory occupied for the fast routing option this larger than

for regular operation, since the information about the flow paths has to be kept in

memory for faster computations.

A.2.5 Transition to Streams

For transitions of water to streams DEM grid cells that streams pass through are

specially marked by the Network Model (as in-stream cells), and the point in the

stream that is the closest to the center of each in-stream cell is found. All water from

the in-stream cells that contributes to streams enters the streams at these points.

Two empirical rules are available to determine how much water from a particular

DEM cell enters streams at a particular time step: (1) A fraction f of water from each

cell will enter the stream or (2) all water above a height h will enter the stream. If the

parameter partial_discharge in the main parameter file is set to true, method (1)
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is used, and a parameter fraction_to_stream should be set to the desired value of

f (0 < f ≤ 1). Otherwise, method (2) is used and the parameter critical_height

should be set to the desired critical height h in mm (Table A.8).

A.3 User Manual

The primary purpose of the Network Model is to simulate the discharge at catchment’s

outlet and all nodes of the river network. In order to perform these simulations, the

user must prepare the required input files and the main parameter file, and then

run the NetworkModel.RunModel java class. The Network Model also contains a

visualization module, which is briefly described at the end of this section.

A.3.1 Parameter Files

Most of the Network Model’s executables require specification of input parameters.

All necessary parameters should be stored in a parameter file. The name of the

parameter file is passed as the only command line argument to the executable.

Parameter files are regular text files. Parameter values can be specified thusly

parameter_name : <parameter_value>

Parameters can be either of integer, floating point, date/time, true/false, or string

type. Parameters can appear in a file in any order, but each parameter file has to

end with END at the beginning of a line. All information after the END is ignored. #

is the a commenting character, and will comment out all of the information following

it to the end of a line.
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Some parameters have default values, and they are specified in appropriate tables

below. If the program doesn’t find a parameter’s name in a file, the default value

is used. All parameter names that are not expected by the program are ignored.

If the program can’t find a required parameter, or interpret a parameter value, or

if the parameter file seems to contain mistakes, an error message is printed to the

standard output and a ParameterFileException is thrown into the main body of

the program.

If a parameter specifies a file name, the full path should be included in the name.

If a file name specified for the output file is the same as a file already existing in

the system, the Network Model will overwrite it without prompting the user. If the

Network Model cannot find a particular file, an error message including the name

of a java.io.IOExeption is printed to the standard output. Users are encouraged

to learn more about the meanings of different java.io.IOExeptions if they are not

familiar with this topic (e. g. see Horstmann and Cornell [2000]).

Sample parameter files are included in the distribution of the Network Model.

This user manual will explain the required structure of parameter files in great detail.

In order to run a java class on Unix/Linux, simply type a java command and a

class name after it. For example,

% java NetworkModel.FilePreparation.RewriteDem rewrite_dem.param

runs the NetworkModel.FilePreparation.RewriteDem class with a parameter file

called rewrite_dem.param. If the file rewrite_dem.param is in another directory, the
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full file name has to be provided. On a Windows system, the codes can be run similarly

using the DOS prompt, or using any available java development software. If the name

of the parameter file is not provided, the program will try to find a parameter file with

a .param extension and a name similar to the name of the class (e. g. RewriteDem

looks for a rewrite_dem.param file, RunModel looks for a run_model.param file, etc.).

This option is provided for users of java development products such as Microsoft J++,

that make it inconvenient for users to run java classes with arguments.

A.3.2 Preparing Input Files

The Network Model requires inputs to be stored in its own binary format. This for-

mat simulates the way java stores its objects in memory, and, as a result, is read by

java much faster than ordinary binary or ASCII files. The Network Model has a set

of modules that allow users to rewrite ASCII and standard GIS files into the Network

Model format. These modules are included in the NetworkModel.FilePreparation

package and their usage is described in this section. For exact, byte-for-byte, expla-

nation of these formats, one should refer to the source codes.

The standard inputs to the model include the rainfall radar observations, DEM,

river network geometry, and soils map. Additionally, a map of impervious areas may

be included. All GIS and coordinate data must be in the same projection. The Net-

work Model was tested only for the UTM projection (Universal Transverse Mercator,

see Snyder [1987]), but other projections are allowed. It is required, however, that
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X coordinates increase in the eastward direction and Y coordinates increase in the

northward direction.

DEM and Flow Direction Files

The java class NetworkModel.FilePreparation.RewriteDem can be used to trans-

form DEM files to the Network Model binary format. Table A.2 summarizes the

parameters required for this class. The elevation of grid cells outside the basin should

be set to zero.

The initial DEM can be either in ASCII or Arc-INFO GRID file format. The

ASCII format has 4 header lines (any information in the header is ignored by the

code) followed by a table of pixel X-coordinate, Y-coordinate, and elevation values.

The number of columns and rows in the rectangular DEM grid must be specified in

the parameter file. The number of lines in the ASCII file should be equal to (the

number of rows in the grid) × (the number of columns) + 4. If the DEM to be

converted is in the Arc-INFO GRID format the dimensions of the GRID file need not

be specified in the parameter file. Please note in Table A.2 the different parameter

names for the two initial DEM formats. When referencing the location of the outlet

in the DEM, please keep in mind that the columns and rows are numbered from zero.

It is also important that the name of the output DEM file has a .bin extension.

Flow directions for the DEM can be computed using the

NetworkModel.FilePreparation.ComputeFlowDirection class. The parameters re-

quired for this program are summarized in Table A.3. This class computes the flow
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fractions, as described in section A.2.2, and stores them in the Network-Model-specific

binary format. This program also computes the flow accumulation for each pixel to

check the self-consistency of the assigned flow fractions (the flow accumulation for a

particular cell is defined as the number of cells from which water flows into this cell).

Optionally, the flow accumulation data may be written into an ASCII file that can

be imported by ERDAS Imagine.

River (Network) File

The data describing the river network geometry for the Network Model is stored in a

binary file with a .riv extension. It can be created from an ARC-INFO vector file or

two ASCII data files, and the java class NetworkModel.FilePreparation.Rewrite-

StreamData maybe used for this purpose (see table A.4). It is important that the

input data is indeed a network; i. e. it does not contain any loops, and all arcs are

ultimately connected to the outlet. The network is constructed with the outlet node

as the starting point, so incorrect specification of the outlet node will misrepresent

the network in the Model. For better discharge simulation results, it is recommended

that the outlet node lie in the outlet DEM pixel.

The Network Model defines nodes in the network as points where two or more

streams intersect to form a new stream, and arcs as links between the nodes. These

definitions are different from the definitions of nodes and arcs in ARC-INFO vector

files, where a node can connect just two arcs. The Network Model, therefore, examines

the input network, and removes superfluous nodes as necessary. All remaining arcs
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are then assigned labels, so that it is easy for the user to identify them. Figure A.7

illustrates how the network in the input ARC-INFO vector file and the representation

of this network in the Network Model may be different. Since the network is closely

associated with the DEM, additional breakpoints are added to the arcs to ensure that

the distances between adjacent break points are smaller than the DEM grid cell size.

It is recommended that the user choose the option to create an output ARC-generate

file describing the exact network used in the simulations.

Stream input in ASCII format requires two files: a file describing the geometry of

each arc (an .arcgen file), and a file describing the connectivity between the arcs (an

attribute file). The .arcgen file is in standard ARC-generate format: it has entries

for each arc, each terminated with END, and the file is terminated with another END.

Each arc entry contains a header line (any information there is ignored), followed by

two columns with the X and Y coordinates of the arc breakpoints. The attribute

file contains a row for each arc which lists the number of the arc’s starting node, the

number of the arc’s end node, the length of the arc, and two extra numbers that can

be set to help identify the arc in the .arcgen file. If two arcs are connected, it is

required that they have a node number in common. The fourth column must have

a unique entry for each individual arc. It is also assumed that the order in which

the arcs’ information appears in both files is the same. Figure A.8 demonstrates the

.arcgen and attribute files for a sample network.
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1

2

3

4

5

7
6

8

9

Figure A.7: Potential differences between ARC-INFO vector coverage

data (left) and the Network Model representation (right) of the same

network. The circles denote nodes of the network. In the Network

Model streams are numbered from the outlet, and a typical numbering

is shown here.
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    1
        185.104141       -225.997055
        187.326584       -212.662415
        188.660049       -197.994293
        193.993912       -189.993515
        200.661224       -173.991943
        204.661621       -167.324615
        218.662994       -157.990372
END
       2
        153.514679       -151.587097
        154.105362       -152.426422
        164.773071       -192.430359
        180.774643       -212.432327
        185.104141       -225.997055
END
        3
        185.104141       -225.997055
        192.660446       -248.665939
        204.661621       -278.002167
        208.408325       -286.936615
END
        4
        152.656509       -271.334839
        166.422562       -272.393768
        181.286774       -277.374664
        208.408325       -286.936615
END
       5
        208.408325       -286.936615
        210.220917       -291.258942
        221.996658       -319.339569
        228.663986       -331.340729
        239.331696       -382.012390
END
END

3    2    79.89   1    2
1    3    82.28   2    22
3    5    65.28   3    21
4    5    58.49   4    11
5    6   100.64   5    12

ARC-generate Format

12

1 2

4

5

6

3

3

4

5Attribute File

{Arc entry

header line

X and Y coordinates of the arcs break points. 
Arc segments between the breakpoints 
are assumed to be linear.

Node number

Arc number

The order of the arcs in the attribute 
file corresponds to the order of the
arcs in the ARC-generate file.

Figure A.8: Example of the ARC-generate and attribute files for a river

network.
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Rainfall Map

For each event, radar observations of rainfall are stored in special rainfall binary

files. There are two types of rainfall binary files used in the Network Model: .rbin

and .rcell. .rcell files assume that radar bins form an array of unrestricted size.

Therefore, it can cover an area of any shape, for example, a basin. The coordinates

of the bins are not included in the file, and must be supplied separately. This format

is very convenient for viewing rainfall structures with the Viewer. The .rbin format

assumes that radar bins form a rectangular grid (though not necessarily square). The

information from the radar bins is stored in a matrix, and the spatial structure of

the data is preserved. .rbin files are the ones used in computations, since they allow

easy interpolation of the rainfall in space. The coordinates of the bins are included

in the .rbin file and need not be supplied later.

In order to create .rcell or .rbin files one needs an n ×m bin ASCII rainfall

map. This map is a table where each row contains the observed rainrates during one

time period, and each column contains the observations of a particular radar bin.

Rainrates are assumed to be in units of mm h−1. An ASCII file with the time periods

(the ASCII time file) and a file with the X and Y coordinates of the n×m radar bins

are also needed. It is assumed that the rainrate observed in the bin with coordinates

on the ith line in the coordinate file, is provided in the ith column of the rainfall file. n

and m may be very large (typical values are ∼ 100), and the program will extract the

observations for the area covering the basin from the map. It is important that the
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coordinates of the bins are in the same projection as the basin DEM (the coordinate

calculator in ERDAS Imagine can be used to convert the latitude and longitude of

the bins to the appropriate projection).

Time periods in the ASCII time file correspond to the lengths of the radar scans.

Each time period should be specified on a separate line, in the format Day Hour

Minute Second, delimited by spaces. Day refers to the day of the month. Month

and year of an event are provided separately, among the parameters (see Table A.5).

During the program’s execution, the “Time of the beginning of the event” is printed to

the standard output. This time can be also found in the model’s output hydrographs

files. In the Network Model, the time is measured in hours from the “beginning of

the event”.

The java class NetworkModel.FilePreparation.CreateRectRain creates both

an .rbin file for a rectangular area completely covering the basin and an .rcell file

for just the bins with centers inside the basin boundaries. The parameters for this

class are summarized in Table A.5.

Soil and Impervious Cover Maps

The soil map is one of the optional inputs into the Network Model. To use this option,

users must create an integer raster map of soil types, with the grid close to a grid of

the input DEM. Each soil type should be assigned a unique number between 1 and the

total number of soil types (num_soils), and the value at each pixel in the soil map as-

signed to reflect the type of soil there. The soil map can then be converted to the Net-
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work Model format using the java class NetworkModel.FilePreparation.Rewrite-

Soils (see Table A.6 for parameters). The soil map input file can be either in

ARC-INFO GRID format or ASCII format, similar to that of the DEM.

Users also must prepare a soil.table file. This file should contain at least

num_soils lines; only the first num_soils lines are read by the Model, and users

may add comments at the bottom of the file. Each line in the soil.table file cor-

responds to one type of soil in the soil map and contains eight fields in the following

order:

1. Soil Number;

2. Textural Classification: a string with no spaces;

3. Porosity, θe;

4. Residual water content, θr;

5. Pore distribution index, λ;

6. Hydraulic conductivity at saturation, Ks (mm h−1);

7. GA wetting-front capillary pressure parameter, Hc (mm);

8. Initial soil moisture, θi.

For each soil, the expression θr < θi < θe should hold. Table A.1 provides typical

parameter values for different soil textures, as suggested in Ogden and Saghafian
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[1997]. It is customary to use the wilting point as a guess for the initial soil moisture

if no other information is available.

Instead of using a soil map, one may make an assumption that soils are uniform

in the watershed. In this case, parameter uniform_soil : true should be added to

the parameter file. All other parameters will be ignored by the program, except the

soil_bin_file. Soil table with only one line corresponding to the basin soil texture

should still be created.

In an urban environment, accounting for impervious cover such as roads, buildings,

and parking lots is important for accurate simulation of discharges. The Network

Model allows users to specify what fraction of each grid cell has impervious cover.

This is accomplish with a raster file with the same grid as the DEM and pixel values

corresponding to these fractions (all values should be between zero and one). The

java class NetworkModel.FilePreparation.RewriteImperviousAreas can then be

used to transform this data into the Network-Model-specific format (see Table A.7).

The impervious cover input files can be either in ARC-INFO GRID or ASCII format,

similar to the DEM initial file.

A.3.3 Model Operation

To run the model, one must create a computation parameter file that contains the

locations of the input files described above, values of the Model parameters to use

in the simulations, as well as specification of the type and destination of the output.

Acceptable parameters values in this computation parameter file are summarized in
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Table A.8. To perform computation, the user must run a NetworkModel.RunModel

java class with this parameter file as a command-line argument, or save this pa-

rameter file as run_model.param in the main Network Model directory, and run the

NetworkModel.RunModel class without any arguments.

Instead of specifying rainfall from radar observations, one can apply a constant

rainfall to the basin. This feature is useful for determining the GIUH of a particular

basin. To do this, one should use the following three parameters, instead of the

rainfall_file parameter:

rainfall_from_file : false

constant_rainfall : true

rainrate_value : 10

number_time_steps : 5

where rainrate_value specifies the rainrate of the constant rainfall that should

be applied to the basin in units of mm h−1 (10 mm h−1 in this example), and

number_time_periods is the number of time steps over which the rainfall should

be applied. (For example, if a time step is 180 seconds, and number_time_periods

is 5, the constant rainfall will be applied for 900 seconds, or 15 minutes.)

The rainfall can be also generated using a stochastic rainfall model. Currently

the storm model described in section 6.1 is implemented. We refer users to a sample

parameter file included in the Network Model distribution for a particular set of

parameters.

Currently, two different options for specifying velocities are implemented in the

Network Model: (1) Constant velocity and (2) Power function of local slope, and
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water height (or current discharge). Constant velocity can be specified by typing a

keyword CONSTANT followed by the value in m s−1. For example

velocity_in_channel: CONSTANT 1.2 sets constant channel velocity of

1.2 m s−1 in all streams, and a similar expression can be used for the overland flow

velocity. The power law for the overland velocity assumes that v = aSbhc, where S

is the local slope (in m/m) and h is the current water height (in mm). The power

function option for the overland flow velocity is specified using the keyword POWER_LAW

followed by values of a, b, and c. For example,

velocity_over_land: POWER_LAW 0.3 2.1 0.1 The formula for the

channel velocity is similar: v = aSbQc, where Q is the current discharge (in m3 s−1).

The Model has been thoroughly tested only for constant velocities.

A.3.4 Output

The output of the Network Model can be viewed in two different ways: (1) the model

can write output hydrographs for a set of specified arcs in the network and/or (2)

the model can write a series of binary files that can be viewed using the visualization

module.

The output hydrographs are ASCII files. The header of these files contains infor-

mation on selected input parameters. The body of the file contains k + 2 columns,

where k is the number of arcs for which the hydrograph should be saved. The first

column of the file contains the absolute time, the next contains the time measured
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in hours from the beginning of the event, and the following k columns contain the

values of modeled discharge for each specified arc.

The visualization module can be started by running the java class NetworkModel.-

Viewer (no parameter file is required). The user then can use menus and buttons to

view the Network Model inputs (rainfall, DEM, soil map, network) and outputs (water

surface height, hydrographs for each arc). The user interface is straightforward, and

a help menu is available.

A.4 Conclusions

The Network Model provides a set of tools for modeling the discharge at basin outlets

due to rainfall. In this Appendix, we have described the basic principles of the

Network Model, its options, and how to set up computations using the Network

Model.
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