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Outline

• EDG Device

• Measurements of Plasma Expansion

• On-axis Electron Temperature Measurements

• m = 1 Diocotron Mode Evolution Measurements



Studying Non-neutral Plasmas

Non-neutral plasma physics is important for describing

• Intense charged particle beams in accelerators,

• Generation of coherent radiation (e.g., in Free
Electron Lasers),

• Intense currents in high-voltage diodes.

Non-neutral plasmas similar to EDG’s have been used in

• Atomic clocks,

• Positron and antiproton recombination,

• Modeling inviscid 2-D fluids,

• Studies of the basic processes of transport across
magnetic fields.



Malmberg-Penning Trap Geometry

1

-V

6

-V

2   5

B

• Malmberg-Penning traps are cylindrically symmetric.

• A uniform, axial magnetic field confines particles
radially.

• Non-adjacent cylindrical electrodes are biased to
confine particles axially.

• Malmberg-Penning traps confine particles with the
same charge sign (e.g., 24Mg+ and 24Mg2+).



EDG facility



Schematic of the EDG device
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EDG has diagnostics to destructively measure:

1. Total number of electrons in the trap;

2. Axially-integrated density profile;

3. Parallel temperature on axis;

and non-destructively measure:

4. Amplitude waveform of the m = 1 diocotron mode.



Malmberg-Penning Trap Confinement

For an ideal trap with a perfectly uniform magnetic field and
perfectly symmetric electric fields,
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⇒ In the absence of external influences, the plasma is
extremely well-confined.

Imperfections in the trap fields or collisions with background
gas can effectively torque the plasma, allowing it to expand:
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Theoretical Prediction

Fluid Theory predicts expanding Quasi-Equilibrium Profiles.
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For isothermal electrons [Davidson and Moore 1996],
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Radially-Scanning Faraday Cup Density
Diagnostic Electrodes

(a) Total collector. (b) Capacitive shield.

(c) Local collector.

• The local collector collects electrons from magnetic
field lines that pass through the 1/8”-diameter holes
in the total collector and capacitive shield.



Preliminary results from EDG
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(a) Change in
d〈r2〉
dt

with background gas
pressure.
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(b) Amplitude evolution of the m = 1 diocotron mode.



Schematic of m = 1 Diocotron Mode
Diagnostic
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• The m = 1 diocotron mode has kz ≈ 0, and is
analogous to a radial displacement of the plasma.

• An azimuthally-discontinuous electrode segment
draws current when the charged plasma passes by, and
this current is measured to record the mode evolution.



Expansion Rate Scaling with Pressure
(large filament, 610 G)
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• The plasma’s expansion rate should scale linearly with
pressure for plasmas expanding in quasi-equilibrium.

• An approximately linear dependence is seen at higher
pressures than those tested previously.

• The measured expansion rate at lower pressures is
dominated by a different process, which we expect is
the relaxation of the plasma to global thermal
quasi-equilibrium.



Phosphor-Screen Density Diagnostic

• A biased, aluminum-coated, P43 phosphor screen
produces an image of the entire, axially integrated
plasma when the plasma strikes it.

• A copper grid is clamped to the last, grounded trap
electrode to give a more radially uniform accelerating
electric field.

• A PULNiX TM-1010 CCD camera with an ITT
NE6010 intensifier records the glowing image for later
analysis.



Density Profile Evolution in EDG
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(a) 1/3 s.
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Evolution of density profiles at P ∼ 6× 10−9 Torr.

• The radial density profile is estimated by averaging
the data values azimuthally around the centroid of the
image.



Plasma Expansion After 1 second
(P= 6× 10−9 Torr)
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• Data taken with the new density diagnostic suggests
that the plasma expansion measured previously
occurred during relaxation of the plasma to global
thermal quasi-equilibrium.

• The initial expansion (t < 3 s.) is the same at several
pressures below P = 2× 10−7 Torr, and the rate
agrees with that measured previously.



Late-time Expansion Rates
(small filament, 600 G)
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• The circles denote the new expansion rates computed
by excluding the initial plasma relaxation (where
possible).

• The expansion rates still level off at the lowest
pressures, indicating that asymmetry-induced
expansion is affecting the measurements.



T‖ Diagnostic Setup
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• The change in the confining voltage on electrode 6 during the

plasma’s release is slowed to resolve the electron energy

distribution at r ≈ 0.

• An amplifier is coupled to the phosphor screen to measure the

number of electrons that have escaped as a function of time.



On-Axis Temperature Diagnostic Data
(small filament, P= 6× 10−9 Torr)
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• The measured parallel temperature does not increase
while the plasma is expanding under the influence of
trap asymmetries (t > 3 sec.), but clearly increases
while the plasma is relaxing to thermal equilibrium (t
< 3 sec.).

• The parallel temperature evolution for t < 1 sec. is
different from with the perpendicular temperatures
inferred previously.



Schematic of m = 1 Diocotron Mode
Diagnostic
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• The m = 1 diocotron mode has kz ≈ 0, and is
analogous to a radial displacement of the plasma.

• An azimuthally-discontinuous electrode segment
draws current when the charged plasma passes by, and
this current is measured to record the mode evolution.



Diocotron Mode Sensitivity to
Filament Heating Voltage
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• The growth rate of the m = 1 diocotron mode
increases with filament heating voltage (Vb =
-16.6V). This behavior is observed at several different
bias voltages.

• The vessel pressure increased during this scan,
suggesting an explanation for the difference between
the data taken first (the green squares, P∼ 1× 10−10

Torr) and the rest of the data (P∼ 8× 10−10 Torr).



Diocotron Mode Sensitivity to Pressure
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• Changing background pressure at filament conditions
where the mode is clearly growing produces a different
pressure dependence than before.

• Differences in mode growth are evident for changes in
pressure as small as ∆P ≈ 2× 10−10 Torr.

• The growth rate is relatively constant from
P ∼ 1× 10−10 Torr to P ∼ 1× 10−8 Torr for the
data we’ve taken.



Summary

• The plasmas’ expansion rate dependence on
background gas pressure is consistent with theoretical
predictions for plasmas formed with both large and
small filaments at pressures above ∼ 3× 10−7 Torr.

• The measured, on-axis parallel temperature evolution
and mean-square radius evolution suggest that the
EDG plasma takes a few seconds to reach
quasi-thermal-equilibrium.

• The diocotron mode growth rate is sensitive to
filament conditions as well as background pressure (to
differences as small as ∆P ≈ 2× 10−10 Torr).
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