Fusion Theory Issues for a Burning Plasma Program

Presented on behalf of the

Theory Coordinating Committee

http://web.gat.com/theory/tcc/

By Janardhan Manickam

DOE Budget Planning Meeting

Rockville, MD, March 16-17, 2004

Focus of this talk is on a subset of the theory program

The need for improved theoretical modeling is well recognized

National Research Council report on Fusion

- If the U. S. magnetic fusion program is to take full advantage of ITER, it will need to develop a first-principles understanding of the phenomena which determine ITER's performance.
- This requires improved models of the edge plasma, transport barriers, density limits, core confinement and MHD instabilities.
- Reduced descriptions have been useful, but coupling them in disparate regimes is a formidable challenge, eg. Edge physics
- Going forward, the simulation program will need expansion.

National Academy BPAC Report indicates the areas

of scientific value - 2003

- Nonlinear behavior of confined plasma with self-heating
- Plasma confinement and stability at large scales
- Self-heating effects on equilibrium and confinement
- Alpha particle effects on equilibrium and confinement
- Operating strategies for energy producing plasmas

Key points

- The national fusion theory program is healthy and active, but lean
- The level of success of a Burning Plasma program will depend on advances in the theory of fusion science
- Progress will depend on advances in analytic physics, computational modeling and comparison of theory with experiment
- All topical areas are not at the same level of maturity. A funding boost can help assure timely progress.

Burning plasma physics modeling challenges and needs

- Modeling approaches
 - Analytic theory
 - Improved fluid and kinetic equations
 - Analytic models of phenomena
 - Micro- and macro-stability codes (multi-fluid; kinetic)
- Challenging aspects
 - Multiple space/time scales and collisionalities
 - Complicated geometry
 - Stochasticity plasma & fields
 - Strong nonlinearities
- Integrated modeling
 - Benchmarking Theory-theory and Theory-Experiment comparison
 - Coupling multiple topical areas
 - Disparate space and time scales

Outline and metric of progress in the context of integrated modeling of a burning plasma

- RF heating and CD
- Edge Physics
- Transport and turbulence
- MHD
- Energetic particle wave interactions
- Integration

RF modeling can follow the 3D wave field propagation and mode conversion

Cold Plasma DR slow(a) and fast 10000.00 SW 1000.00 100.00 10.00 m=01.00 FW 0.10 0.01 -20 20 x (cm) (SW(blue) imag is flipped) $|Re(E_{\perp})|$ 8.0e+02 7.1e+02 6.3e+02 5 5.4e+02 4.6e+02 (cm) 0 3.7e+02 N 2.9e+02 2.0e+02-51.2e+02 30. 12 14 16 18 20 22 ²⁴TORIC **CMOD** 10 X (cm)

Process:

- FW coupled at plasma edge, propagates inward, and converts to slow LHW.
- Slow LHW propagates out to edge cut-off, reflects inward, and converts back to FW.
- Process repeats itself until wave power is fully damped.
- LH full-wave field pattern reminiscent of ray tracing results.

There is progress in treating full wave physics, but kinetic and non-Maxwellian issues need more work

The ability to do integrated modeling of RF physics in a Burning Plasma is limited

Edge Simulations are coupling MHD events to edge transport

3-D Edge Simulations are being compared with experiments

Edge pedestal physics modeling requires advances on many fronts

- Pedestal scaling
 - boundary condition for core transport studies strong dependence of core confinement on pedestal height
- Pedestal physics
 - ELMs
 Meso-scale transport blobs
 L-H transition
 Density limits
 Neutrals
 Edge transport theory

 neo-classical, gyro-kinetic
 Plasma geometry 3D issues
 Stochasticity plasma & fields

Edge physics modeling has to mature significantly to meet the challenge of integrated modeling

Plasma wall interaction Neutral hydrogen behavior Impurities - Erosion, transport, & redeposition of wall materials – Tritium retention Dust generation & transport Modeling heat loads Steady Transient – ELMs, disruptions, runaways Technology funded PSI studies are complementary Integrated modeling challenges Edge turbulent transport with ELMs multiple time, space and collisionality scales \Rightarrow non-linear effects in complex 3D geometry Transport – MHD – Particles

Turbulence simulation codes have made significant progress

The differences in c_i may be understood in terms of $\hat{a}df^2\tilde{n}_z$, which is observed to depend on the cross-phase between δp and $\delta \phi$

Understanding of ion transport is more mature than electron transport

- Basic understanding
 - Model for collisional transport
 - Neoclassical
 - paleoclassical, omniclassical (regime dependent)
 - Electron transport: heat and particle
 - Momentum transport
 - ITB formation and ion dynamics
 - Perturbative response
 - Edge dynamics
 - Core profile stiffness
 - Turbulent transport modeling
 - Instability criteria, Estimates for χ
 - Correlation length, Timescales
 - Phenomenology
 - **Zonal flows**, Streamers, avalanches ...

\rightarrow	
ÎÎ	
ÎÎ	
\implies	

Transport simulations are approaching readiness for integrated modeling

3D MHD simulations are starting to address ITER relevant physics

MHD science has made significant progress in modeling a variety of important instabilities

- MHD model advances
 - Realistic parameters,
 - resistivity, neoclassical viscosity, parallel heat conduction
 - Kinetic effects
- Sawtooth model
 - Relaxation physics and self-organization
- Physics, Control and mitigation
 - Neoclassical Tearing Modes
 - Resistive Wall Modes
 - Plasma rotation
 - ELMs
 - Error field amplification
- Disruption modeling

Tools are ready for integration of MHD with transport and kinetic effects

- Extend timescale to transport timescale
- Self-consistent equilibrium evolution
 - Coupling to heating and transport
 - α-particles impact on equilibrium and stability
- Nonlinear evolution of ELMs through multiple cycles
 - Coupling to edge physics
- Role of error fields
 - Resonant field amplification
 - Energetic particle confinement
- Plasma control

Energetic particle driven MHD studies are maturing

Grand cascades predicted theoretically are used as a diagnostic for $q_{min}=m/n$

a hybrid MHD-kinetic code. Advances in hybrid MHD simulations are transferable to other configurations! HYM Need a hybrid model that treats kinetic physics of both thermal and fast particles in a single-fluid framework

- Fast particle physics
 - δF low-n, high-n :- linear, non-linear, L, NL
 - Full kinetic treatment of fast particles: F, L
 - Gyro-kinetic δF model: L, NL
 - Full orbit δF model: L
 - Full orbit Full kinetic F: L, +++>
- Thermal particles
 - thermal ions + δF : L

F – full distribution function, L – linear, NL – nonlinear

Integrated simulation requires reduced models, full simulations and experimental benchmarking

Self-consistent modeling of a nonlinear coupled self-heated system

Fusion Simulation Project could provide the tools for connecting the continuously updated packages for all the topical areas

Budgetary challenges

The theory program has made significant advances in all areas of fusion energy science

- Meeting the theory support needs for a Burning Plasma program will require more effort
- Theory program support is lean in all areas: basic plasma, tokamak, innovative concepts and computing
- Need systematic increases to fund all aspects of the program
- The demographic challenge:
 - Need more entry and mid-level scientists
 - Need to pay attention to analytic modeling