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This note describes the evolution of the ideal MHD spectrum as the equi-
librium parameters are changed, in this instance g . It focuses primarily on
following an unstable mode into the stable regime, using the PEST-1 code.
The difficulties associated with such a study are due to the presence of con-
tinuum modes, which makes it difficult to distinguish the mode of interest.
One solution is to look at all the eigenvectors in the regime of interest and
identify the mode by inspection. The problem is that, this requires solving a
very large matrix equation for each equilibrium, where the rank may be 5,000
to 30,000. However when the mode is stable, and the expected eigenvalue is
a small positive number, it falls within the shear Alfven continuum and it
is very difficult to distinguish the specific eigenfunction corresponding to the
‘stable’ kink. We use a truncated expansion set, to minimize the matrix rank.
We then solve for all the eigenvalues and plot the corresponding eigenvectors
close to zero, to track the unstable mode. To make this tractable, we restrict
the rank to be about 2500 and examine the eigenvectors corresponding to a
limited range of eigenvalues. This is done by using a less than optimal set of
expansion functions for solving the energy principle.

We generate a sequence of equilibria with a fixed geometry, a dee-shape
with R/a=5, ellipticity=1.8 and triangularity=0.4. The plasma profiles are
given by: g-profile, ¢ = 1.145.30*% and p-profile, p = po(1-V¥)* 0 < ¥ < 1.
To demonstrate this approach, we have generated a sequence of equilibria,
k1.k2,...k6 with increasing /3, of which some are unstable and some stable,
see Table 1. The table includes two sets of growth-rates, the first corresponds
to a large expansion set used for solving the energy pinciple equations,
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The corresponding matrix ranks are, 24723 and 1836 respectively. The
reduced set results in shifting the eigenvalue upwards, this is illustrtaed in
Fig. 1. With the larger matrix, we can only determine the eigenvalue if it is
unstable. With the smaller rank matrix, all the eigenvalues and eigenvectors
can be determined. The positive eigenvalues corresponding to an eigenfunc-
tion, similar to the unstable vector, Fig. 2, are used in the table and plot.
Note however, that as Sy is reduced and the eignvalue becomes more pos-
itive, mode identification becomes ambiguous due to coupling with Alfven
continuum modes. This is illustrated in figures 4 through 10. In each figure
modes, which are candidates to evolve into the unstable mode are circled.
Figure 3 shows the progression of three sets of eigenvalues which have similar
structure.

Eq. ID | By w? W2
k1 1.336 | stable stable
k2 1.948 | stable stable

k2bc | 2.096 | stable .002220
k2bb | 2.120 | -.000103 | .002196
k2ba | 2.144 | -.000267 | .002152
k2b 2.193 | -.000651 | .001939
k2c 2.314 | -.001784 | .000754
k2d 2.434 | -.003111 | .000223
k3 2.553 | -.00461 | -.000480
k4 3.167 | -.01444 | -.004595
k5 3.724 | -.02810 | -.008767
k6 4.257 | -.04507 | -.012533

Table 1. By vs. PEST-1 eigenvalue, for an external kink using w?,
200 radial finite elements and —10 < [ < 30 fourier modes, and w,>
using 50 radial elements and —1 <[ < 10.



Comparison of eigenvalues with a full
and reduced set of expansion functions
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Figure 1: Figenvalues corresponding to the equilibria in Table 1. The curve
marked "FULL’ corresponds to the optimal expansion set, —10 < { < 30, and
the curve marked '/REDUCED’ uses —1 <[ < 10. The inset box indicates
the regime studied in greater detail in Fig. 3.



EXTERNAL KINK EIGENVECTOR CLOSE TO MARGINAL STABILITY-K2CA

g T T T T T T T T T
’ ) ) = S S
= = S N )
N ™ < Lo O
|- " 1" 1" 1" 1"
6T i
w
O
O br 7
|
—
w
a L i
— .5
>
A i
3r 1
2r T
0r
.0
S o ™ < o Ne) ~ ® o S
R/A

Figure 2: Eigenvector corresponding to an unstable equilibria in Table 1,
corresponding to the optimal expansion set, —10 < [ < 30.
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Selected eigervalues for an external kink study

0.0025 —=o
ae £
==
ey ﬁ f3]
Q88
0.002 il i 3
e IE 3 >
-
0.0015 S
T ——— |
000 '—I-.CLQ
0.0005 \C\“\C\
¢ N,
-0.0005 \D\
-0.001
2.1 2.2 2.3 7.4 15
BETA M

20

Figure 3: Selected eigenvalues, obtained from the reduced set. The points
marked by large circles have eigenfunctions similar to the unstable mode in
Fig. 1. A subset of the eigenvectors for each equilibrium is shown in the
following figures, with a broken circle identifying the relevant modes.
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Figure 4: Eigenvectors corresponding to the lowest nine eigenvalues for £3
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Figure 5: Figenvectors corresponding to the lowest nine eigenvalues for k2d
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Figure 6: Figenvectors corresponding to the lowest nine eigenvalues for £2¢
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Figure 7: Eigenvectors corresponding to the lowest nine eigenvalues for £2b
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Figure 8: Eigenvectors corresponding to the lowest nine eigenvalues for k2ba
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Figure 9: Eigenvectors corresponding to the lowest nine eigenvalues for k2bb
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Figure 10: Eigenvectors corresponding to the lowest nine eigenvalues for k2be
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