
Following an unstable mode into the stableregime using PEST-1J. ManikamSeptember 2, 2004This note desribes the evolution of the ideal MHD spetrum as the equi-librium parameters are hanged, in this instane � . It fouses primarily onfollowing an unstable mode into the stable regime, using the PEST-1 ode.The diÆulties assoiated with suh a study are due to the presene of on-tinuum modes, whih makes it diÆult to distinguish the mode of interest.One solution is to look at all the eigenvetors in the regime of interest andidentify the mode by inspetion. The problem is that, this requires solving avery large matrix equation for eah equilibrium, where the rank may be 5,000to 30,000. However when the mode is stable, and the expeted eigenvalue isa small positive number, it falls within the shear Alfven ontinuum and itis very diÆult to distinguish the spei� eigenfuntion orresponding to the'stable' kink. We use a trunated expansion set, to minimize the matrix rank.We then solve for all the eigenvalues and plot the orresponding eigenvetorslose to zero, to trak the unstable mode. To make this tratable, we restritthe rank to be about 2500 and examine the eigenvetors orresponding to alimited range of eigenvalues. This is done by using a less than optimal set ofexpansion funtions for solving the energy priniple.We generate a sequene of equilibria with a �xed geometry, a dee-shapewith R/a=5, elliptiity=1.8 and triangularity=0.4. The plasma pro�les aregiven by: q-pro�le, q = 1:1+5:3	4:5, and p-pro�le, p = p0(1�	)2; 0 � 	 � 1.To demonstrate this approah, we have generated a sequene of equilibria,k1,k2,...k6 with inreasing �, of whih some are unstable and some stable,see Table 1. The table inludes two sets of growth-rates, the �rst orrespondsto a large expansion set used for solving the energy piniple equations,1



� = 200Xm=1 30Xl=�10 �m;leil��n�with, n = 1. The seond set refers to a redued set with,� = 50Xm=1 0Xl=�1 �m;leil��n�The orresponding matrix ranks are, 24723 and 1836 respetively. Theredued set results in shifting the eigenvalue upwards, this is illustrtaed inFig. 1. With the larger matrix, we an only determine the eigenvalue if it isunstable. With the smaller rank matrix, all the eigenvalues and eigenvetorsan be determined. The positive eigenvalues orresponding to an eigenfun-tion, similar to the unstable vetor, Fig. 2, are used in the table and plot.Note however, that as �N is redued and the eignvalue beomes more pos-itive, mode identi�ation beomes ambiguous due to oupling with Alfvenontinuum modes. This is illustrated in �gures 4 through 10. In eah �guremodes, whih are andidates to evolve into the unstable mode are irled.Figure 3 shows the progression of three sets of eigenvalues whih have similarstruture. Eq. ID �N !2 !s2k1 1.336 stable stablek2 1.948 stable stablek2b 2.096 stable .002220k2bb 2.120 -.000103 .002196k2ba 2.144 -.000267 .002152k2b 2.193 -.000651 .001939k2 2.314 -.001784 .000754k2d 2.434 -.003111 .000223k3 2.553 -.00461 -.000480k4 3.167 -.01444 -.004595k5 3.724 -.02810 -.008767k6 4.257 -.04507 -.012533Table 1. �N vs. PEST-1 eigenvalue, for an external kink using !2,200 radial �nite elements and �10 � l � 30 fourier modes, and !s2using 50 radial elements and �1 � l � 10.2
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Figure 1: Eigenvalues orresponding to the equilibria in Table 1. The urvemarked 'FULL' orresponds to the optimal expansion set, �10 � l � 30, andthe urve marked 'REDUCED' uses �1 � l � 10. The inset box indiatesthe regime studied in greater detail in Fig. 3.3



EXTERNAL KINK EIGENVECTOR CLOSE TO MARGINAL STABILITY-K2CA

Figure 2: Eigenvetor orresponding to an unstable equilibria in Table 1,orresponding to the optimal expansion set, �10 � l � 30.4



Figure 3: Seleted eigenvalues, obtained from the redued set. The pointsmarked by large irles have eigenfuntions similar to the unstable mode inFig. 1. A subset of the eigenvetors for eah equilibrium is shown in thefollowing �gures, with a broken irle identifying the relevant modes.5



Figure 4: Eigenvetors orresponding to the lowest nine eigenvalues for k36



Figure 5: Eigenvetors orresponding to the lowest nine eigenvalues for k2d7



Figure 6: Eigenvetors orresponding to the lowest nine eigenvalues for k28



Figure 7: Eigenvetors orresponding to the lowest nine eigenvalues for k2b9



Figure 8: Eigenvetors orresponding to the lowest nine eigenvalues for k2ba10



Figure 9: Eigenvetors orresponding to the lowest nine eigenvalues for k2bb11



Figure 10: Eigenvetors orresponding to the lowest nine eigenvalues for k2b12


