
INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 48 (2006) 1749–1763 doi:10.1088/0741-3335/48/12/005

Detection of short-scale turbulence in the next
generation of tokamak burning plasma experiments

E Mazzucato

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

E-mail: mazzucato@pppl.gov

Received 20 April 2006, in final form 17 October 2006
Published 6 November 2006
Online at stacks.iop.org/PPCF/48/1749

Abstract
In this paper, we discuss the use of coherent scattering of CO2 lasers for
high resolution measurements of short-scale turbulent fluctuations in the next
generation of tokamak burning plasma experiments. The unique feature of the
proposed scheme is the oblique propagation of the probing beam with respect
to the magnetic field, with the toroidal curvature of field lines playing a major
role in improving the spatial resolution of measured signals. In addition, small
scattering angles and negligible wave refraction effects minimize the size of
needed ports—a matter of vital importance for a plasma diagnostic that must
operate in the hostile environment of a burning plasma.

1. Introduction

The direct impact of plasma confinement on the feasibility of an economical fusion reactor
makes the investigation of plasma transport one of the most important tasks for the next
generation of DT burning plasma experiments—such as IGNITOR and ITER [1, 2]—where
for the first time the kinetic energy of charged fusion products will be the dominant source
of plasma heating. Consequently, since both theory and experiments suggest that plasma
transport in tokamaks exceeds neoclassical values because of the existence of a short-scale
turbulence [3,4], the study of the latter will be of paramount importance for these experiments.

The main difficulty in choosing a method for the measurement of turbulent fluctuations is
the scarcity and limitations of available diagnostics. For example, the method of coherent
wave scattering, that was so prominent in early fluctuation studies [5–9], has a poor
spatial resolution—very often larger than the plasma minor radius. The method of beam
emission spectroscopy [10] is sensitive only to relatively large-scale fluctuations, and the
negative ion beams required for accessing the main core of a burning plasma are still under
development. Likewise, microwave reflectometry can detect only large-scale fluctuations, and
the interpretation of signals from the outer plasma region—where turbulent fluctuations are
very large—is extremely difficult [11, 12].
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Meeting the requirements of plasma diagnostics will be extremely difficult in the next
generation of burning plasma experiments, where plasma accessibility will require penetration
of not only toroidal magnets and vacuum vessels, as in present experiments, but also of thick
insulating layers and radiation shields. Inevitably, only the most simple and reliable diagnostics
will survive in such a hostile environment.

Ideally, what is needed is a method capable of detecting all types of short-scale turbulent
fluctuations without the need for large ports. This is a daunting task given the variety of
fluctuations in tokamak plasmas—from the ion temperature gradient mode (ITG) and the
trapped electron mode (TEM), both with the scale of the ion Larmor radius, to the electron
temperature gradient (ETG) mode with the scale of the electron Larmor radius [3, 4]. As an
example, in ITER [2] with an average plasma temperature of 10 keV and a magnetic field of
5.3 T, the wave number of possible fluctuations varies from 1–2 cm−1 for the ITG/TEM modes
to 50–100 cm−1 for the ETG mode. In IGNITOR [1], because of its high magnetic field (13 T),
we expect shorter fluctuations by a factor of ∼2.5.

In this paper, we discuss the possibility of employing coherent scattering of CO2 lasers
for localized measurements of turbulent fluctuations in a tokamak burning plasma experiment.
This is motivated by some important advantages of this technique, such as the availability
of high power single-mode lasers, negligible wave refraction effects and relatively modest
requirements for the size of needed ports.

2. Coherent scattering of electromagnetic waves

Coherent scattering of electromagnetic waves is a powerful technique, capable of providing the
spectral power of turbulent density fluctuations. It was employed extensively in early studies
of plasma turbulence, including the first detection of short-scale turbulence in tokamaks [5,6].

The process of coherent scattering of electromagnetic waves by turbulent density
fluctuations can be characterized by the differential cross section

σ = (e2/mc2)2S(k,ω), (1)

where S(k,ω) is the spectral density of plasma density fluctuations [13]. The frequency (ω)
and wave vector (k) of fluctuations must satisfy the energy and momentum conservation, i.e.
ω = ωs −ω0 and k = ks −k0, where superscripts s and 0 refer to scattered and incident waves,
respectively. Since for the topic of this paper ωs ≈ ω0 and ks ≈ k0, the scattering angle θ must
satisfy the Bragg condition

k = 2k0 sin(θ/2). (2)

The instrumental resolution of scattering measurements is limited by the size of probing and
scattered beams, that in this paper we will assume having a Gaussian amplitude profile
A(r⊥) = exp(−r2

⊥/w2), with r⊥ a radial coordinate perpendicular to the direction of
propagation and w the beam radius. The wave number resolution of measured fluctuations,
then, depends on the beam spectrum G(κ⊥) = exp(−κ2

⊥/%2), where % = 2/w and κ⊥ is the
wave number component perpendicular to the direction of propagation. For example, we get
% ≈ 0.7 cm−1 for w = 3 cm, which is satisfactory when compared with the wave number of
expected fluctuations. However, if we take the size of the common region between the probing
and the scattered beam as a measure of spatial resolution (δl), we get δl ≈ 2k0w/k, from
which one might conclude that it is difficult to perform localized measurements of plasma
turbulence with coherent scattering of electromagnetic waves. Fortunately, this estimate is
valid only for an isotropic turbulence, which is not the case in tokamak plasmas where short-
scale fluctuations satisfy the relation k·B/B ≈ 1/qR [3, 4] (with q the magnetic safety factor
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Figure 1. Magnetic field (B1 and B2 and fluctuation wave vector (k1 and k2) at two points of
a probing beam (k0) propagating perpendicularly to the magnetic surfaces. Scattering angles are
equal (i.e. k1 = k2) and small (i.e. k1 and k2 are nearly perpendicular to k0).

and R the plasma major radius). For all practical purposes, this can be written as

k·B = 0. (3)

In this paper, we will impose this constraint on the range of possible fluctuations, i.e. we will
assume the wave vector of plasma fluctuations to be perpendicular to the magnetic field. In
this case, then, the spatial variation of the magnetic field direction can modify the instrumental
selectivity function by detuning the scattering receiver [9, 14]. This can be easily understood
when the probing wave propagates perpendicularly to the magnetic surfaces and scattering
angles are small (figure 1). From the beam spectrum G(κ⊥), we can readily obtain the
instrumental selectivity function [9]

F(r) = exp[−(2k sin(ξ(r)/2)/%)2], (4)

where ξ(r) is the change in pitch angles of magnetic field lines starting from the point where
scattered waves are detected with maximum efficiency, i.e. from the aiming point of the
receiving antenna.

From equation (4), we obtain the spatial resolution δl ≈ 2%/k〈dξ/dr〉, where 〈dξ/dr〉 is
the average derivative of the magnetic pitch angle inside the scattering region. Compared with
the above estimate, equation (4) does not depend on the wave number of the probing wave.
This is very advantageous for scattering of far infrared waves, since equation (4) gives a spatial
resolution that is substantially smaller than the dimension of the common region between the
probing and scattered beams. Unfortunately, very often this is not satisfactory because of the
small value of dξ/dr in tokamaks, as in the case of the magnetic configuration of figure 2
with the magnetic pitch angle distribution of figure 3. In this case, we get the instrumental
selectivity function of figure 4 for fluctuations with a wave number of 2 cm−1 and a probing
beam (w = 3) propagating on the tokamak mid-plane perpendicularly to the magnetic field.
In spite of the fact that such a scattering geometry—indeed very impractical and difficult to
implement—maximizes the benefits of magnetic shear, the instrumental selectivity function
in figure 4 is very broad and would therefore result in poorly localized measurements.

In this paper, we will consider the general case of a probing beam propagating at an
arbitrary angle with the magnetic field [14]. This is motivated by the fact that the conditions
for coherent scattering become strongly dependent on the toroidal curvature of magnetic field
lines when the probing beam forms a small angle with the magnetic field. This is schematically
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Figure 2. Poloidal cross section of an ITER-like tokamak used throughout the paper for deriving
the properties of the proposed scattering scheme.

Figure 3. Pitch angle of magnetic field lines on the equatorial plane of the tokamak configuration
of figure 2.

illustrated in figure 5, showing a case where the probing beam is on the tokamak mid-plane.
For a given fluctuation wave number, the wave vector of the scattered wave (ks) is parallel to the
mid-plane only if the wave is scattered at one of the two points P1 and P2 (toroidally separated
by an angle equal to the scattering angle), where the fluctuation wave vector (k) is in the plasma
radial direction. At all the other probing locations, then, equations (2) and (3) impose on the
scattered wave to propagate at an oblique angle with the mid-plane. It is this phenomenon that
we will exploit for localizing the scattering region. As we shall see in the following, its size
depends on the spatial distribution of magnetic pitch angles and may become very small in
standard tokamak plasmas [14]. Furthermore, we will find that this scattering scheme has the
additional advantage of minimizing the radial resolution of fluctuation measurements, i.e. the
footprint of the scattering region in the radial plasma direction.
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Figure 4. Instrumental selectivity functions for detection of fluctuations with k = 2 cm−1 at several
radial locations. The probing beam has a radius of 3 cm and propagates on the equatorial plane
perpendicularly to the magnetic field.

Figure 5. Scattering geometry with the probing beam (k0) on the tokamak mid-plane. For a
given fluctuation wave number (k), equations (2) and (3) are satisfied only at P1 and P2 (toroidally
separated by the scattering angle θ .

3. Instrumental selectivity function

Throughout this paper, we will assess the localization properties of scattering measurements
with an instrumental selectivity function—as defined by the collection efficiency of the
receiving antenna—which was derived in [14]. For the sake of clarity and reader’s convenience,
here we summarize its derivation.

In the system of orthogonal coordinates (u, v, t) with the t-axis parallel to k0, we define
the polar angle ϕ with

ksu = k0 sin θ cos ϕ, ksv = k0 sin θ sin ϕ, kst = k0 cos θ . (5)

Let us now consider scattered waves originating from two points of the probing beam with
identical scattering angles but different wave vectors k1

s and k2
s , respectively (figure 6). From

equation (5), we get

k1
s · k2

s

k0 · k0
≡ cos α = cos 2θ + sin2 θ cos δϕ, (6)



1754 E Mazzucato

Figure 6. Orthogonal coordinates (u, v, t) with the t-axis along the wave vector of the probing
beam (k0).

where δϕ = ϕ2 − ϕ1, giving

cos α = 1 − sin2 θ(1 − cos δϕ) = 1 − 2 sin2(δϕ/2) sin2 θ . (7)

For θ2 ( 1 (always satisfied in this paper), this becomes

α2 ≈ 4θ2 sin2(δϕ/2). (8)

Suppose, then, that the launching and receiving antennae have similar electromagnetic
properties, i.e. identical radiation patterns, with the latter positioned for collection with
maximum efficiency of scattered waves from the first point. By replacing κ⊥ with k0α in
the spectrum G(κ⊥), we obtain the collection efficiency of scattered waves from the second
region

F = exp
(
−α2/α2

0

)
, (9)

where α0 = %/k0. This, together with equation (8) and the Bragg condition, gives the
instrumental selectivity function

F = exp[−(2k sin(δϕ/2)/%)2], (10)

where k ≈ k0θ is the wave number of detected fluctuations. In the case of a probing beam
propagating perpendicularly to the magnetic surfaces, ϕ coincides with the magnetic pitch
angle (apart from an additive constant) and equation (10) is equal to equation (4).

Finally, the polar angle ϕ can be obtained from equation (3), rewritten as

(ks − k0) ·B = 0, (11)

from which we get

Bt(cos θ − 1) + Bu sin θ cos ϕ + Bv sin θ sin ϕ = 0, (12)

giving

cos ϕ =
BuBt (1 − cos θ) ±

[
B2

uB
2
t (1 − cos θ)2 − B2

⊥
(
B2

t (1 − cos θ)2 − B2
v sin2 θ

)]1/2

B2
⊥ sin θ

(13)
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Figure 7. Poloidal (a) and toroidal (b) trajectories of a CO2 Gaussian beam (w = 3 cm) propagating
on the equatorial plane of the tokamak of figure 2 with a peak plasma density of 1 × 1020 m−3.

and

sin ϕ = Bt(1 − cos θ) − Bu sin θ cos ϕ

Bv sin θ
, (14)

where B2
⊥ = B2

u + B2
v and with the ± sign corresponding to the two scattering branches of

figure 5.
In the next section, these equations will be used for assessing the degree of localization of

CO2 laser scattering measurements in the next generation of burning plasma experiments.
As a test-bed we will use the tokamak configuration of figure 2 with the official ITER
parameters [2]: plasma major radius = 6.2 m, plasma minor radius = 2 m, toroidal magnetic
field on axis = 5.3 T and plasma current = 15 MA.

4. CO2 laser scattering

We begin with the scattering geometry of figure 7, where a probing beam with a frequency
of 3 × 1013 Hz and a waist (w) of 3 cm propagates on the tokamak equatorial plane along the
x-axis, and the scattering receiver is set for the measurement of fluctuations with wave vectors
parallel to the equatorial plane. Here and in the following we will use the system of orthogonal
coordinates (x, y, z) of figure 7, and we will refer to the plane containing the magnetic axis as
the equatorial plane and to the (r–z) plane (with r =

√
x2 + y2) as the poloidal plane.

The beam ray trajectories, which in figure 7 are displayed on both equatorial and poloidal
planes, are from a ray tracing code [15] including both wave refraction and first order diffraction
effects. However, because of the large beam frequency, refractive effects are negligible.
Furthermore, since 2x/k0w

2 ( 1, diffraction effects are negligible as well, and consequently
the beam radius remains nearly constant and equal to w.
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Figure 8. Instrumental selectivity function for the scattering geometry of figure 7 with ε = 0.5,
β = 14◦ and (a) k = 2 cm−1, (b) k = 5 cm−1, (c) k = 8 cm−1.

Since θ ( 1, the two scattering branches of figure 5 have similar selectivity functions
with maxima near the point (x = 0, y = y0), where y0 is the initial y-coordinate of the probing
beam. For simplicity, we will consider only the scattering branch corresponding to the + sign
in equation (13). We will also refer to the quantity ε = (y0 − rma)/(yb − rma) (with yb the
maximum y-coordinate of the plasma boundary and rma the radius of the magnetic axis) as
the normalized radius of the scattering region, and we will consider only cases with positive
values of ε, i.e. with the scattering region on the low-field side of the torus.

Figure 8 shows the instrumental selectivity function along the central ray of the probing
beam for ε = 0.5(y0 = 7.4 m) and three values of k. As expected from equation (10), the width
of F (defined as the distance δx of the two points where F = 1/e) is a strongly decreasing
function of k.

The corresponding components of k are displayed in figure 9, from which it appears that
their relative amplitudes do not depend on the value of k. Indeed, this cannot be exactly true
since kx = k2/2k0 (equation (2)). However, since kx ≈ 0 because of the large k0, the relative
values of ky and kz are indeed insensitive to k. Finally, equations (2) and (3) make kz (equal
to zero at the peak of F , near x = 0) to grow towards the plasma boundary where, however,
F is very small.

As shown in [14], the scattering region is located near the point where the angle between
the probing wave vector and the magnetic field has its minimum value (β), with the width δx

of F an increasing function of β. This can be easily understood by noting that in figure 5, β
reaches its minimum value of θ/2 near the magnetic axis, where the poloidal magnetic field
is zero. Here, the width of the instrumental selectivity function is δx ≈ 2rmaα0 = 4rma/k0w,
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Figure 9. (x, y, z)-components of the wave vector k of detected fluctuations for the three cases in
figure 8 (dashed lines are the instrumental selectivity functions).

which is much smaller than the values shown in figure 8 for β = 14◦ + θ . On the other
hand, we have already seen that the selectivity function becomes very broad when β = π/2
(figure 4).

The strong dependence of F on β is illustrated in figure 10, showing that the width of
F is a growing function of ε. Because of the magnetic pitch angle profile of figure 3, β is
also a growing function of ε (going from 4.3◦ for ε = 0.15 to 18◦ for ε = 0.7). Hence, the
conclusion that δx is an increasing function of β.

Another way of changing β is using a probing beam that propagates at an oblique angle
with the equatorial plane, as in figure 11 where the beam is launched perpendicularly to the
y-axis, as before, but now making an angle γ = ±4.5◦ with the x-axis (with ± indicating
up-launching and down-launching, respectively). To emphasize the role of β, the launching
points have been chosen to make the beam trajectory symmetric with respect to the equatorial
plane. For ε = 0.5, this results in β varying from 9.5◦ for γ = −4.5◦ to 18.5◦ for γ = +4.5◦.
The corresponding instrumental functions for k = 2 cm−1 are in figure 12, showing a value of
δx for γ = +4.5◦ that is more than twice that for γ = −4.5◦, again proving that the width of
F is an increasing function of β. On the contrary, the F -weighted averages of the components
of k (figure 13) are not very different and are similar to those for γ = 0 (figure 9(a)).

So far, we have considered the profile of the instrumental sensitivity function along
the trajectory of the probing beam. Our results are summarized in figure 14, showing δx

as a function of k for three radial positions. However, a crucial parameter of fluctuations
measurements is their radial localization, which can be inferred from the distribution of F

over the poloidal projection of the probing beam. More precisely, an estimate of the radial
resolution can be obtained from the radial footprint (δr) of the set of points with F > 1/e,

i.e. from δr =
√

(δx/2)2 + y2
0 − y0. This is displayed in figure 15, showing that δr becomes
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Figure 10. Instrumental function for the scattering geometry of figure 7 with k = 2 cm−1 and (a)
ε = 0.15 (β = 4.3◦), (b) ε = 0.5 (β = 14◦), (c) ε = 0.7 (β = 18◦).

Figure 11. As in figure 7(a) with the probing beam making an angle of ±4.5◦ with the x-axis.
Initial points are chosen to make the beam trajectory symmetric with respect to the equatorial plane.

quickly much smaller than the beam diameter (2w) when k > 2 cm−1. As noted above,
because of a negligible wave refraction and diffraction, the beam radius is nearly constant
and remains much smaller than any of the plasma scale lengths. Consequently, the results of
figure 15 apply to all rays of the probing beam. Hence, the conclusion that the radial resolution
of scattering measurements is essentially determined by the diameter of the probing beam.

5. Wave number resolution

The instrumental selectivity function used so far was defined in section 3 as the collection
efficiency of waves scattered by fluctuations with the same value of k. In this section, we
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Figure 12. Instrumental function for k = 2 cm−1, ε = 0.5 and (a) γ = −4.5◦ (β = 9.5◦), (b)
γ = 0◦ (β = 14◦), (c) γ = +4.5◦ (β = 18.5◦).

Figure 13. Same as in figure 9 for cases (a) [γ = −4.5◦, β = 9.5◦] and (c) [γ = +4.5◦, β = 18.5◦]
of figure 12.

generalize the definition of selectivity function to include fluctuations with all possible wave
numbers. To be more precise, let us consider again scattered waves originating from two points
of the probing beam with wave vectors k1

s and k2
s , respectively. From equation (5), we get

k1
s · k2

s

k0 · k0
≡ cos α = cos θ1 cos θ2 + sin θ1 sin θ2 (cos ϕ1 cos ϕ2 + sin ϕ1 sin ϕ2) , (15)
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Figure 14. Width δx as a function of k along the central ray of a probing beam with γ = 0◦ and
(a) ε = 0.15, (b) ε = 0.50, (c) ε = 0.70.

Figure 15. Radial footprint δr of the portion of central ray with F > 1/e for the cases of figure 14.
Dashed line represents the beam diameter (2w).

where θ1 and θ2 are the corresponding scattering angles. From this, we obtain

cosα = cos (θ2 − θ1) − 2 sin θ1 sin θ2 sin2(δϕ/2), (16)

where δϕ = ϕ2 − ϕ1. Since both θ1 and θ2 are very small, this becomes

α2 ≈ (θ2 − θ1)
2 + 4θ2θ1 sin2(δϕ/2). (17)

The mismatch angle between k1
s and k2

s is made of two terms. The first, as expected, is due
to the difference in scattering angles. The second, as before, is due to the spatial variation of
magnetic pitch angles.

Following the same procedure that led to equation (10), we obtain a new expression for
the instrumental selectivity function

G = exp
[
−

(
(k′ − k)2 + 4k′k sin2(δϕ/2)

)
/%2] , (18)
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Figure 16. Contour plots (nine levels equally spaced from 0.1 to 0.9) of G(k′, x) for the three
cases of figure 8.

Figure 17. Contour plots (nine levels equally spaced from 0.1 to 0.9) of G(k′, x) for the scattering
geometry of figure 7 with ε = 0.5, w = 6 cm and k = 1 − 9 cm−1 (from bottom to top).

where k ≈ k0θ1 is the tuning wave number of the receiver and k′ ≈ k0θ2 is the wave number
of detected fluctuations. For k′ = k, we recover equation (10).

Contour plots of G(k′, x) are displayed in figure 16 for the same cases in figure 8. A
comparison with the latter shows that the maximum width of G along the beam trajectory is
similar to that of F . It also shows, as expected, that the wave number resolution remains ≈±%.

Finally, the use of Gaussian beams—a crucial assumption in the scattering scheme of this
paper—implies the availability of circular ports with substantially larger radii (rw) than w.
Assuming the conservative criterion of rw ≈ 2w, the value of w used so far (3 cm) would
require ports that are much smaller than the size of ITER. Hence, we could envision using
larger beams to obtain a substantial improvement in wave number resolution, as in figure 17
where the contour plots of G(k′, x) are displayed for w = 6 cm.
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Figure 18. Width δx as a function of k for γ = 0◦ and ε = 0.5; (a) ITER, (b) IGNITOR.

6. Discussion

Throughout this paper, we have used an ITER-like plasma for deriving the properties of the
proposed scattering scheme. However, since the instrumental sensitivity function depends only
on the wave number of fluctuations, the radius and launching direction of the probing beam
and the pitch angle of magnetic field lines, this scattering scheme will be capable of providing
the same degree of spatial resolution in similar tokamaks. In other words, the ratio of δx

to any of the plasma linear dimensions will be the same in tokamaks having identical aspect
ratio, elongation, triangularity and magnetic safety factor. Indeed, since these quantities can
vary only over a very narrow range of parameters, we may conclude that the advantages
of the proposed scheme apply, mutatis mutandis, to any tokamak. This is demonstrated
in figure 18, where the instrumental function for an IGNITOR-like plasma (major/minor
radii = 1.32/0.47 m, toroidal magnetic field = 13 T, plasma current = 12 MA [1]) is
compared with that for ITER, showing an ITER/IGNITOR ratio of 4.4 for δx, vis-à-vis one of
4.25 for the minor radii and 4.7 for the major radii (small discrepancy due to different aspect
ratios, 3.1 versus 2.8).

As stated in the introduction, the benefits of CO2 lasers stem from their high frequency and
high power single-mode operation. However, since the instrumental selectivity function for a
given value of k (equations (10) and (18)) does not depend on the frequency of the probing
beam, the use of lower frequencies would preserve the localization properties of scattering
measurements. As a matter of fact, a scattering apparatus based on the scheme described in
this paper and employing a backward wave oscillator with a frequency of 2.8 × 1011 Hz is
currently in use on NSTX for localized measurements of turbulent fluctuations driven by the
ETG mode [16]. Obviously, the use of such a low probing frequency in a burning plasma
experiment would defeat the spirit of this paper since both refractive and diffractive effects
would become important. However, one could consider using other types of lasers, as for
example those operating in the range of 3 × 1012 Hz (CH3OH lasers).

Finally, it is worth noting that for the case of an ITER-like plasma the length of the
scattering region along the probing beam (δx) will be much longer than in past CO2 scattering
measurements [4, 7]. Consequently, since the power of scattered waves varies like δx2, we
conclude that the use of the proposed scheme in an ITER-like plasma will allow the detection
of smaller fluctuation levels than in previous CO2 scattering measurements.
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7. Conclusion

In summary, the results presented in this paper illustrate how the short-scale turbulence that
plasma theory indicates as a potential cause of anomalous transport in the next generation of
burning plasma experiments could be detected with good spatial and wave number resolution
using coherent scattering of CO2 lasers.

The unique feature of the proposed scheme is the oblique propagation of the probing wave
with respect to the magnetic field, with the toroidal curvature of field lines playing a major
role in improving the spatial resolution of measured signals. Furthermore, this scattering
geometry has the additional advantage of reducing the footprint of the scattering region in the
plasma radial direction. Finally, small scattering angles and negligible wave refraction effects
minimize the size of needed ports—a matter of vital importance for a plasma diagnostic that
must operate in the hostile environment of a burning plasma.
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