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Abstract

D IVERTING ENERGY FROM ENERGETICα-particles to waves (α-channelling)

would be extremely beneficial for a magnetically confined deuterium tri-

tium fusion reactor. If these waves were to damp on fuel ions, a hot ion

mode would result, doubling the fusion power of the reactor at the same

confined pressure. Alternatively, if these waves damp preferentially on electrons travel-

ing in one direction, current would be driven. In both cases, the pressure profile could be

modified and ash could be removed to advantage.

These potentially significant benefits motivate a detailed study of the implementation

of α-channelling. This thesis identifies and explores issues in realizingα-channelling,

making the following advances:

1. Calculating, through 0-dimensional reactor simulations, the substantial benefit inα-

channelling which motivates the subsequent work.

2. Framing theα-channelling problem as a diffusion problem, with absorbing and re-

flecting boundaries. To develop insight,α-channelling is considered in a 2-dimensional

phase space associated with a simple slab geometry. To solve realistic problems we

poseα-channelling in the 3-dimensional constants of the motion space associated with

particle orbits in tokamaks.

3. Developing a rapid Monte Carlo simulation in constants of motion space to keep

track of wave-induced and collisional effects on the energetic particle distribution. This

approach is equivalent to the full energetic particle dynamics in the limit of small changes

during a single bounce time and diffusive wave-particle interactions.

4. Identifying the wave characteristics necessary to produce the channelling effect, which

we discover are available in a combination of the mode converted ion-Bernstein wave
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(MCIBW) and the toroidal Alfv´en eigenmode (TAE).

5. Demonstrating how two waves can be combined in a reverse shear tokamak reactor to

absorb 2/3 of the energy from the 93% of theα-particles ejected!

6. Showing how the basic building blocks of theα-channelling effect can be deduced

from existing experimental data, including:

a. Reproducing, qualitatively, the results of TFTR experiments which show strong

interaction of MCIBW with fast ions.

b. Demonstrating the existence of thek‖-flip of the MCIBW.

c. Using the simulation to infer from experimental data a MCIBW diffusion coef-

ficient, which significantly exceeds that which is predicted by geometrical-optics

estimates.

Taken together, the advances in this thesis show how experiments to date give us a mea-

sure of confidence in both the simulations themselves, the underlying physical assump-

tions, and ultimately the reasonableness of the application of these ideas toα-channelling

in a tokamak reactor.
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Chapter 1

Introduction

I F THE POWER from energeticα-particles could be diverted to ions via waves

(hereafter known asα-channelling), deuterium tritium magnetic confinement fu-

sion reactors could be made far more attractive. For instance, the ions could be

made significantly hotter than the electrons, doubling the output power of the re-

actor at the same confined pressure. At the same time, the wave power might be put to

other beneficial uses, such as current drive. In some schemes to channel theα-particle

power, ash would be coincidentally removed. Opportunities for pressure or current pro-

file control also exist.

The main goal of this thesis is to advanceα-channelling from an abstract idea

in a simplified geometry towards a concrete implementation in a tokamak reactor. We

lay a theoretical, numerical, and experimental foundation for the implementation. We

quantify the advantages ofα-channelling. We develop a theoretical framework for con-

sidering the problem in tokamak geometry, including the full energetic particle dynam-

ics, simulate numericallyα-particles interacting with the waves which might accomplish

theα-channelling, find a scenario using two waves which accomplishes significantα-

channelling in a reverse-shear tokamak reactor, and model TFTR experiments.

In the process of working towards the larger goal of advancingα-channelling,

we developed a numerical simulation which is significantly faster than guiding center

codes for a large class of problems. Using this numerical tool we managed to deduce

1
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interesting and fundamental wave physics from TFTR experiments.

1.1 Background

World energy demand is growing rapidly, spurred on by the economic growth of devel-

oping countries. It is expected that, by the year 2030, the world consumption of energy

will double from present levels [HOLDREN 1997]. At the same time, there is a limited

supply of fossil fuels (although coal and natural gas reserves are probably sufficient into

the twenty-second century). More serious, though, is a growing body of evidence which

suggests that burning these fuels could change our environment by significantly increas-

ing the levels of carbon dioxide in the atmosphere. Currently, there is uncertainty about

the precise effects of increased carbon dioxide in the atmosphere and its consequences

for humanity [MAHLMAN 1997]. Without regard to the nature of these consequences,

there is no doubt that rising carbon dioxide levels represent a global risk. It is prudent to

begin planning now on how society can mitigate this risk. In addressing both the limited

supply of fossil fuels and global warming, fusion energy could play an important role.

1.1.1 Fusion as an energy source

Fusion offers the possibility of a high energy density power supply (as opposed to solar

and wind energy, for instance) which can be used anywhere in the world to handle the

baseline power load. Fusion is a carbon-free source of energy, and therefore it does not

have an impact on the global climate (unlike fossil fuels). If a fusion reactor could be

built out of low activation materials, the radioactive waste associated with thirty years

of operation of a fusion power plant would qualify for shallow burial and be up to a

million times less radioactive (after one year) than the corresponding waste from a fission

plant [CONN et al. 1990]. Furthermore, while the dangers associated with fission power

plants are frequently overstated, worst case scenarios for fusion involve doses at the

site boundary (1 km) 100-500 times less than a fission plant [CONN et al. 1990] and

would not require evacuations. Additionally the fuels used in fusion, unlike fission, do

not pose a proliferation threat. Finally both the deuterium and lithium needed to make
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the deuterium tritium cycle go are abundant, and found all over the world, providing a

virtually limitless, apolitical supply of energy (unlike fossil fuels).

On the other hand, there are aspects of fusion which are not attractive; it is very

complicated, it has not yet been demonstrated, and current projections suggest it will be

an expensive energy source. Many of fusion’s advantages over other energy sources are

apparent but not readily quantifiable. For instance, when comparing to fission energy,

how many cents per kilowatt hour is it worth to have a safer energy source which has less

radioactive waste, and significantly reduced proliferation concerns?

1.1.2 The need for concept innovation

Much of the work of the last 47 years of fusion energy research focused on demonstrat-

ing fusion energy. Tremendous progress was made, not only in plasma performance, but

also in the understanding of hot magnetically confined plasmas. Recently, experiments

in the U. S. [MCGUIRE et al. 1995] and Europe [GIBSON and the JET Team 1997]

achieved values of Q (fusion power out/power deposited in the plasma) approaching one

(breakeven). A detailed engineering design was developed for the International Ther-

monuclear Experimental Reactor (ITER), a machine whose mission includes studying

operation of a tokamak at high Q.

However, there has been a growing realization that “our present, conventional ap-

proach to deuterium tritium (DT) thermonuclear fusion may not lead to a truly attractive

reactor product able to compete in the energy marketplace of the twenty-first century”

[PERKINS et al. 1995]. Galambos et al. (1995) show that, even under optimistic as-

sumptions, power from a magnetic confinement fusion device will be significantly more

expensive than the cost of power projected from better-experience fission power plants.

While some cost differential is justified in light of fission’s many external costs (safety,

waste, proliferation), there is a widespread belief that, in order for fusion to compete, it

will be necessary for the cost of electricity to be close to that of other energy sources.

Furthermore, the projected expense of a tokamak reactor is proving to be a barrier

to development. While ITER is just an experiment, not a reactor or a reactor prototype,
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the 8 billion dollar price tag (or even the 5 billion dollar price tag of ARIES-RS) has led

many to reconsider the path towards fusion energy. Even if ITER were an experimental

success (about which there is considerable uncertainty), it is not clear that such a success

would point to an economically viable energy source.

Thus, the search for fusion energy finds itself today at a crossroads. Much of the

effort leading up to the present focused on overcoming the obstacles in making fusion

energy. However, while we may be able to create a fusion reactor, it is not yet known

how to make a fusion reactor which can be economically competitive with other power

sources. In light of these concerns, there is now a renewed focus on “alternate concepts”,

concepts that differ significantly from the conventional tokamak. At the same time, the

tokamak is being reexamined in this light to see how much it might be improved itself.

This thesis is an investigation ofα-channelling, a mechanism by which fusion

reactors might be significantly improved. While the comprehensive control of theα-

particle distribution necessary to accomplishα-channelling is a daunting task, the poten-

tially large reward, along with the need for improvement in current concepts, makes this

investigation worthwhile. The focus here is onα-channelling in tokamaks, although, in

principle,α-channelling might also be useful in alternate concepts.

1.2 Basic Elements ofα-Channelling

The main reactions by which fusion energy might be achieved in the foreseeable future

are:

D + T → 4He (3.52 MeV) + n (14.1 MeV) (1.1)

D + D →
50%

3He (0.82 MeV) + n (2.45 MeV) (1.2)

→
50%

T (1.01 MeV) + p (3.02 MeV) (1.3)

D + He → 4He (3.67 MeV) + p (14.7 MeV) (1.4)
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In particular, the DT reaction is the most promising, as it has the highest reactivity per

unit pressure. After the D and T fuse, typically 80% of the energy is carried off by

a 14 MeV neutron which will deposit its energy somewhere in the wall of the reactor.

The other 20% is carried off by the 3.5 MeVα-particle, which is confined by the strong

magnetic field of the reactor, and slows down predominantly on the thermal electrons. It

is this power from theα-particles which allows the fusion reaction to be self-sustaining,

and it is this power that we seek to tap withα-channelling.

In contrast to the experiments of today, a DT magnetically confined fusion reactor

will be dominated by energeticα-particles. For instance, in a reactor with a Q of 20,

theα-particle power will be four times larger than the auxiliary heating power. Thus,

the auxiliary heating flexibility of today’s experiments will be in large part lost upon

the transition to reactor sized machines. In view of this, any means of controlling the

charged fusion products (CFP’s) becomes quite valuable, as it may allow us to regain

some control and substantially alter the operating characteristics of the reactor.

For example, while many experiments today achieve their best fusion power in

the hot ion mode (Ti >Te), in a reactor, theα-particles deposit their power on electrons,

forcing Te ≥ Ti. Hot ion mode operation is advantageous since it allows more fusing

ions to be present for the same total confined pressure. Clarke (1980) suggested that

the hot ion mode could be attained in a reactor if, in some unspecified way, the power

from theα-particles could be diverted to the ions. Fisch and Rax (1992a) suggested a

mechanism using injected waves to accomplish Clarke’s transfer ofα-particle power to

the ions, where waves diffuseα-particles both in space and in energy, thereby allowing

the free energy of theα-particles to be tapped. In principle, all of theα-particle power

could be diverted to waves in this way. The process is shown schematically in Fig 1.1.

1.2.1 Reactor implications ofα-channelling

Through this diversion ofα-particle power to ions, a reactor operating at Ti = Te = 20 keV

might instead be operated at Ti = 20 keV, Te = 12 keV, if 75% of theα-particle power

could be diverted to the ions via waves [FISCH and HERRMANN 1994; SNYDER, HER-

RMANN, and FISCH 1994]. This change would almost double the fusion power of a
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Tail ions
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➤

Figure 1.1: The goal ofα-channelling is to redirect theα-particle power, which normally
flows to electrons, to the ions thereby increasing the reactivity of the plasma.

reactor operating at the same magnetic field and pressure. Other benefits might include

ash removal, a reduction in the fast particle pressure (reducing the drive for undesirable

instabilities), and, in principle, the waves used to divert the power may damp in such a

way as to drive a current [FISCH 1987]. Another effect is thatα-channelling is typically

optimized when the electron confinement time is very short (but above some minimum

value), and the ion confinement is long. Such configurations [HERRMANN, FISCH, and

SNYDER 1994] might be attained naturally, for example, in enhanced reverse shear plas-

mas, where the ion confinement is much better than the electron confinement [LEVINTON

et al. 1995], or purposefully, for example, by injecting very high-Z impurities into the

plasma to increase the radiated power, at the same time decreasing the heat load to the

divertor. Experimental observations [SCOTT et al. 1994] and theoretical considerations

[DORLAND et al. 1994] suggest yet another possible benefit, namely, that increasing the

ratio of Ti/Te significantly improves heat confinement. While most of the work in this

thesis focuses on DT fuel, many of the benefits ofα-channelling are also available for

other fusion fuels.
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1.2.2 Requirements forα-channelling

Thus, ifα-channelling could be accomplished, it would have significant impact on the

attractiveness of a magnetic fusion reactor. Since the benefits are clear, the challenge

is to determine a way to implementα-channelling. The implementation will involve a

search for the appropriate waves.

There are three effects that must occur so that significant diversion of power by

waves is accomplished:

1. The waves must create a diffusion path in phase space, such thatα-particles at high

energy in the center diffuse to low energy near the edge of the tokamak.

2. The waves must interact strongly enough with theα-particles that theα-particle en-

ergy is diverted before theα-particle collisionally transfers its energy to the electrons.

The wave is then convectively amplified.

3. The convectively amplified wave must then damp on ions.

1.3 Key Accomplishments

The key accomplishments of this thesis are:

1. We pose theα-channelling problem in a tokamak as a diffusion problem with

absorbing and reflecting boundaries in the 3-dimensional constants of motion (COM)

space. Theα-particles in a tokamak exist, of course, in a 6 dimensional phase space,

although making the guiding center approximation reduces this space to 5 dimensions.

However, forα-channelling, we need not be concerned with the full 5 dimensional space,

but rather just three dimensions. The constants-of-motion space [ROME and PENG 1979],

using the particle’s energy,ε, magnetic moment,µ, and canonical angular momentum,

Pφ, [HSU and SIGMAR 1992] for the constants is a natural space in which to formulate

the transport of theα-particles in the tokamak due to waves and collisions. Remarkably,

the diffusion paths due to resonant wave-particle interactions in this space lay along a
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straight line, giving us insight into the wave characteristics which are required to achieve

α-channelling in a tokamak. This space is also ideally suited for a rapid Monte Carlo

simulation ofα-channelling as described below.

2. We find that waves which satisfy the requirement that their diffusion path

bringα-particles to edge while cooling them would be very difficult to excite in a reactor

sized tokamak. However, we discovered that, by using waves with two very different

frequencies, we are able to cool almost completely a singleα-particle while bringing it

to the edge [FISCH and HERRMANN 1995].

The two waves used to extract almost all the energy from a singleα-particle are:

one withω � Ωα (such as the toroidal Alfv´en eigenmodes (TAE) [CHENG, CHEN,

and CHANCE 1985; CHENG and CHANCE 1986]), and one withω ∼ Ωα (such as the

mode converted ion Bernstein wave (MCIBW) [PARK, LEE, PEEBLES, and LUHMANN

1985]). The high frequency wave extracts perpendicular energy, while the low frequency

wave diffuses theα-particles to the tokamak periphery and extracts parallel energy. How-

ever, unlike the case of one wave only [FISCH and RAX 1992a], with two waves, there

are no constraints on the particle motion, so that some ejectedα-particles may be heated

while others are cooled. This leaves open the question of how to find waves that success-

fully cool the full birth distribution ofα-particles.

3. To expedite this search, we develop a rapid Monte Carlo simulation in constants-

of-motion space to keep track of wave-induced and collisional effects on the energetic

particle distribution. The simulation solves the orbit-averaged Fokker-Planck equation

for the evolution of the energetic particle distribution function. The full energetic par-

ticle guiding center dynamics in general tokamak geometry are included. Additionally

we include the effects of collisions, through the Landau collision operator, and effects

of wave-particle interactions, assuming quasilinear diffusion is valid. This approach is

equivalent to the full energetic particle dynamics in the limit of small changes of the con-

stants of motion during a single bounce time and wave-particle interactions which satisfy

the random phase criterion.

While in principle a guiding center code could be modified to simulate these in-

teractions (indeed, the guiding center code ORBIT [WHITE and CHANCE 1984] already

has a collision operator and TAEs, and incorporates the effect of ripple, but would need
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to be modified to include resonant interactions ofα-particles with waves which break the

µ invariant), these codes are currently too slow to simulate the problems encountered in

this thesis. In some of the examples used in this thesis COM simulations were able to

simulate in 50 minutes of CPU time on DEC Alpha workstation what would take approx-

imately 15 hours of CPU time on the CRAY C-90 computer at NERSC using ORBIT.

Of course the development of the COM simulation requires significantly more overhead

than guiding center codes such as ORBIT since each additional physics effect must be

explicitly added. Additionally, the COM simulation is only applicable in the case where

the changes in the constants of motion during a single poloidal orbit are small, and the

random phase approximation is valid.

4. Using the Monte Carlo simulation, we find combinations of two waves which

are able to extract a significant fraction of the energy from a birth distribution ofα-

particles. Accomplishingα-channelling in a reactor is like shaking particles out of a

bottle through certain holes. The 3-dimensional volume here is theε, µ, andPφ space

of theα-particles; the boundary of the bottle corresponds to values of these constants of

the motion for orbits intersecting the physical boundary of the tokamak. Waves diffuse

particles in this constants-of-motion space (ε, µ, andPφ space). The trick is to devise

plasma waves that shake most of theα-particles into “holes” in the bottle at low energy.

In devising such a bottle, the simultaneous satisfaction of criteria for different

particles can be very frustrating, much as in the case of the analogous child’s toy shown

in Fig. 1.2. Here, while waves might be devised to extract energy from a singleα-

particle [FISCH and HERRMANN 1995], getting all of the particles to go into the lowest

energy holes in response to the same set of waves is not simple. On the other hand, the

parameter space of possible waves and magnetic bottle configurations is immense.

In the best case, based on an advanced tokamak reactor, we find that over 60% of

theα-particle power can be diverted to a set of idealized waves [HERRMANN and FISCH

1997]. In this case, 93% of theα-particles were ejected from the plasma, after losing 2/3

of their initial energy (on average).

5. By comparing with experiments on TFTR, where a strong interaction of fast

particles with the MCIBW was observed, we were able to validate, qualitatively, the sim-

ulation and uncover two results of critical importance toα-channelling. Experiments on
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Figure 1.2: A child’s game. By carefully shaking the game one tries to maximize the
number of balls (α-particles) going in to the small hole (low energy) while minimizing
the number of balls going in to the larger hole (high energy).

TFTR during 1994-1996 observed large losses of beam deuterons heated from 100 keV

to 1-2 MeV by MCIBW in D3He plasmas. At first blush, one may wonder what heated

beam deuterons have to do with cooledα-particles andα-channelling. The straightfor-

ward answer is that these experiments give an incredibly rich database for validating at

least the part of the COM simulation, which models the interaction of fast particles with

MCIBW. We find that the COM simulation qualitatively agrees with the results of the

experiments, namely, that countergoing passing beam particles are significantly heated

and eventually cross the passing-trapped boundary and hit the wall. Note that the heating

of beam particles is to be expected for the experimental setup on TFTR. The same simu-

lation that predicts heating of beam deuterons, predicts cooling for the correctly phased

combination of two waves in an advanced tokamak reactor.

We were able to go beyond the straightforward use of this data for validation

of the code to infer two key pieces of MCIBW physics which are directly relevant for

α-channelling:
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The first is the reversal of the phase velocity of the MCIBW from the phase

velocity of the launched fast wave at the antenna, i.e. thek‖ flip. This effect was predicted

by Valeo and Fisch (1994). It is very important to the implementation ofα-channelling

with the MCIBW, because it affects whichα-particles can resonate with the MCIBW. It

also affects the damping of the MCIBW on the background ions. This reversal can be

inferred from the TFTR data by the observation of lost beam ions, which could only have

resonated with a wave whose phase velocity had changed sign.

The second key inference using the simulation is the diffusion coefficient for

the beam deuterons interacting with the MCIBW. This can be estimated by comparing

the magnitude of the losses with the results from the simulations. We found that this

diffusion coefficient significantly exceeds that which is predicted by geometrical-optics

estimates. If we assume that we have the correct functional form for the diffusion coeffi-

cient, but that we are just underpredicting the electric field associated with the MCIBW,

then the electric field in the experiment would need to be 5 to 9 times higher than what

we are currently predicting. If this enhancement in fact occurs, it would also be benefi-

cial toα-channelling in a reactor, since a larger electric field for the same power makes

achieving the collisionless limit easier.

1.4 Outline of the Thesis

The outline of this thesis is as follows. In Chapter 2 we investigate the reactor implica-

tions ofα-channelling, focusing on the attainment of the hot ion mode when significant

fractions of theα-particle power can be channelled to the ions. In Chapter 3 we identify

the basic elements ofα-channelling in a simplified slab geometry. In Chapter 4 we for-

mulate the theoretical problem of an energetic particle both colliding and interacting with

various waves. We write the appropriate Langevin equations and explain the constants of

motion simulation. Chapter 5 outlines two wave scenarios for coolingα-particles in an

advanced tokamak reactor, including the 60% cooling scenario mentioned above. Chap-

ter 6 gives an overview of the experiments in which fast ions were observed to interact

with MCIBW on TFTR. We also give a theoretical picture of the losses as well as some

simulation results. Chapter 7 shows how two key inferences can be made from the exper-
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imental data. Chapter 8 summarizes the work presented here and suggests avenues for

new research. Appendix A discusses the derivation of particle orbits in tokamaks from

the constants of the motion, and describes the structure of the constants of motion space.



Chapter 2

Reactor Implications of α-Channelling

U NDERSTANDING THE IMPLICATIONS OF DIVERTINGα-particle power

to waves in a tokamak fusion reactor is important for appreciating the util-

ity of α-channelling. Not only does such a study provide motivation for the

investigation ofα-channelling (if the potential benefits are not large then

there is no need to go further), it also provides a context for evaluating implementation

ideas. For example, important questions can be posed: should the implementation focus

on current drive or the hot ion mode? What are the requirements for the fraction of wave

power to be diverted in each case? In this chapter we attempt to answer these and other

questions about implications ofα-channelling on a future reactor.

2.1 Current Drive

A change in the current drive efficiency can strongly affect the economics of a tokamak

power plant since, for fixed noninductive current, changing the efficiency changes the

amount of radio-frequency power which must be launched into the tokamak. Thus, a

change in efficiency changes both the recirculating power fraction (Paux/Pf ≡ 1/Q) as

well as the capital costs by reducing the number of antennae and generators required.

It is an interesting historical footnote that the original motivation for the investigation

13
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by Fisch and Rax (1992a) of the interaction ofα-particles with lower hybrid waves was

to address the concern [WONG and ONO 1984] that, in a reactor,α-particles might sig-

nificantly damp the lower hybrid waves, thereby lowering the current drive efficiency.

As it turned out, Fisch and Rax (1992a) found it was possible, in fact, to use the

spatial free energy in theα-particle distribution to amplify rather than damp the lower

hybrid waves, and they suggested that the effective current drive efficiency could be

enhanced by a factor 1.7 to 5, assuming 10 - 20% of theα-particle power could be

diverted to waves and a Q of 20 in the absence of channelling.

Such a large increase in the current drive efficiency would be a notable achieve-

ment. However, as will be discussed later, in general it will be necessary to inject a

significant amount of power in order to extract free energy from theα-particles before

they slow down. This puts an upper limit on the increase in the effective current drive

efficiency. Furthermore, external heating power will be required to start up the reactor.

Thus, neither the capital costs of the RF system nor the recirculating power fraction can

be taken to zero by the use ofα-channelling. While there may indeed be a role forα-

channelling to play in allowing a reactor to be designed with large current drive needs,

usingα-channelling to drive current is not likely, in itself, to make as large a change in

an eventual fusion power plant as usingα-channelling to obtain a hot ion mode.

2.2 Hot Ion Mode

It is important to note that present day experiments routinely operate and achieve their

best discharges in hot ion modes, i.e. when Ti > Te (typical high power TFTR supershots

had Te = 10-12 keV, Ti = 30-40 keV). In fact, TFTR [MCGUIRE et al. 1995] and more

recently JET [GIBSON and the JET Team 1997] have both achieved their highest fusion

powers in the hot ion mode. There are three advantages of operating in the hot ion mode.

First and foremost, since it is the ions that are fusing, it is desirable that they comprise

as much of the plasma pressure as possible. Quantitatively, at a fixed confined pressure,

u0 = ni(Ti + Te) (ignoring the hotα-particle pressure and impurities), the fusion power
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can be written as

Pf = 5εαfDfTni
2〈σv〉(Ti) =

5εαu0
2〈σv〉(Ti)

4T2
i (1 + Te/Ti)2

, (2.1)

whereεα is theα-particle birth energy,fD and fT are the fraction of ions which are

deuterium and tritium respectively, and〈σv〉 is the reactivity of the DT reaction. If Te
could be made zero, the fusion power density would be four times higher than that in a Te

= Ti discharge at the same ion temperature and total pressure. Of course, it is impossible

to maintain Te at zero, since collisions will cause the ion and electron temperatures to

equilibrate; however, current experiments, by preferentially heating ions with neutral

beam heating, are able to maintain very disparate temperatures. Second, it has been

observed both theoretically [DORLAND et al. 1994] and experimentally [SCOTT et al.

1994] that having Ti > Te can significantly reduce the turbulent heat transport, and better

confinement leads to better discharges. Third, hot ion modes are achieved by neutral

beam heating, which not only heats ions and increases reactivity, but also adds density to

the center of the device, thereby peaking the fusion power (which goes like the density

squared).

While hot ion modes are a very attractive operating point in present day exper-

iments, deploying these modes in a future reactor is thought to be quite unlikely. In

contrast to present day experiments which are dominated by injected power, a future

tokamak power plant will have to get the majority of its heating from the 3.5 MeVα-

particles, e.g. a reactor with Q of 25, will haveα-particle power 5 times greater than the

injected power. Below electron temperatures of 35 keV, when no impurities are present,

the majority of theα-particle power goes directly to electrons; at 13.5 keV (i.e. the peak

of 〈σv〉/T2
i ) only about a quarter of theα-particle power will flow into ions, leading to

operation with Te > Ti.

Clarke (1980) recognized that the hot ion mode might occur in a magnetically

confined reactor, if theα-particle power could be diverted from the electrons into the

ions and, at the same time, the ion energy confinement time exceeded the electron en-

ergy confinement time. The possibility that velocity space instabilities could provide the

anomalous transfer of energy from theα-particles to the ions that Clarke (1980) was

counting on has been examined [SUTTON et al. 1985; SIGMAR 1979; CHEN 1994],
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but there is not enough free energy just in velocity space to achieve the hot ion mode.

The advance ofα-channelling is that, making use of diffusion in both velocity and space

[FISCH and RAX 1992a], in principle 100% of theα-particle power could be diverted to

waves. If those waves were to damp on ions, the hot ion mode might be retained in a

reactor.

2.2.1 0-D power balance model

For the moment, let us assume that by means ofα-channelling theα-particle power

could be diverted to ions via waves and calculate the operating points which might be

achievable in a future reactor both with and withoutα-channelling. For a more complete

investigation the reader is referred to Fisch and Herrmann (1994) and Snyder, Herrmann,

and Fisch (1994).

To calculate the operating point of a fusion plasma, a 0-D model of the power

balance is used,

due
dt

= ν(ζui − ue) + (1− η)Pα + (1− ηHi)PH − ue/τEe − Pbr − Psync

(2.2)

dui
dt

= ν(ue − ζui) + ηPα + ηHiPH − ui/τEi, (2.3)

whereue = 3neTe/2 is the electron energy density,ui the ion energy density,ν ∝
ne/Te

3/2 is the energy equilibration rate,τEe andτEi are the electron and ion transport

energy confinement times, Pα is the charged fusion product (CFP) power,η is the fraction

of α-particle power deposited on ions which depends on Te, PH is the injected heating

power,ηHi is the fraction of PH deposited on the ions,Pbr is the power radiated away

by bremsstrahlung, andPsync is the power radiated away by synchrotron radiation [MC-

NALLY 1982], Pα is equal Pf /5 and Pf is given in Eq. (2.1), finallyζ ≡∑j njZj/
∑

j nj ,

the ratio of electron to ion densities, withZj defined as the ion charge state for the jth

species. Note that by adding the two equations in steady state, we find the relation:

Pα + PH − Pbr − Psync = ue/τEe + ui/τEi ≡ (ue + ui)/τ. (2.4)
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The total confined pressure is taken to be a constant,

u0 = ui + ue + uα, (2.5)

where uα includes the pressure taken up by the hot charged fusion products. The amount

of helium ash,nα, is self-consistently calculated by taking theα-particle production rate

(Pα/Eα) timesτHe, whereτHe is assumed to be 10τ , andτ is the transport confinement

time defined in Eq. (2.4).

We now have a complete set of equations which we can solve to determine a

self-consistent operating point, including the effects of ash and impurities, hotα-particle

pressure, and different confinement times for electron and ion heat. To solve these equa-

tions, we specify a Ti and Te, and then solve self-consistently for the fusion power in

steady state, the density, and the confinement times. A solution is obtained using an ini-

tial guess for the helium ash, the amount of helium is then altered so as to be consistent

with theα-particle power andτHe, and an operating point is again solved for. By iterating

in this way, a solution with self-consistent levels of helium ash is found.

Note that no scaling law is assumed for the confinement times, nor is any assump-

tion made about the ratio ofτEi to τEe; rather, specifying Ti, Te, and the total pressure

allows us to solve Eq. (2.3) in steady state for the values ofτEi andτEe. Also, note that

steady state at fixed heating power will not be attainable at arbitrary values of Ti and Te,

even with no constraints on the confinement times. Finally, neglecting radiation losses

for the moment, if for total pressureu0 a solution of Eq. (2.3) with parameters Ti, Te, ni,

ne, Pf , τEi, τEe exists then for pressureλu0 there exists a solution with parameters Ti,

Te, λni, λne, λ2Pf , τEi/λ, τEe/λ, whereλ is an arbitrary constant.

2.2.2 Operating point with no diversion

In this section we introduce a variety of plots and examples loosely based on ARIES-RS

[NAJMABADI et al. 1997], a reverse shear tokamak reactor designed as a 1000 MW (elec-

tric) power plant. In Table 2.1 we list the nominal operating parameters of ARIES-RS

[The ARIES Team 1996].
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R0(m) 5.52
a (m) 1.38
A 4.00
κ (95%) 1.70
B (T) 7.98
I (MA) 11.3
β (%) 4.87
ni (1014/cm3) 1.72
ne (1014/cm3) 2.11
nD/T /ne 0.33
nα/ne 0.15
nimp/ne 0.0045
Ti (keV) 18.0
Te (keV) 18.7
frad 0.18
τ (sec) 1.39
Pf (W/cm3) 6.22
Paux/Pα 0.19
fbs 0.88

Table 2.1: Parameters for the ARIES-RS tokamak.

Using the stored pressure, impurity concentrations, and operating temperature

from Table 2.1 as input parameters, the output of the 0-D power balance model is cal-

culated, the result is shown in Table 2.2. Our 0-D power balance model reproduces the

ARIES-RS operating point within about 10% of all major parameters.

An alternative operating point is shown in Table 2.2(b). This operating point is at

significantly lower temperature than the nominal ARIES-RS operating point and at the

same Q, but has significantly higher fusion power (almost 50% higher). It is illustrative

to examine the differences between these two scenarios, since when we consider the af-

fect ofα-channelling many similar issues will arise. Of course, the ARIES-RS operating

point, Table 2.1, was chosen by considering many constraints and effects, such as min-

imization of recirculating power (by maximizing current drive efficiency), neutron wall

loading, and many others which have not been included in our simplified analysis, so the

following is just a didactic exercise, rather than an argument for designing ARIES-RS to

operate at a lower temperature.
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u0 (1014keV/cm3) 124.6
ui/u0 0.40
ue/u0 0.52
uαH /u0 0.08
Ti(keV) 18.0
Te(keV) 18.7
η 0.30
ηHi 0.10
ν(sec−1) 2.14
τi(sec) 1.57
τe(sec) 1.47
τ (sec) 1.52
ni(1014/cm3) 1.86
ne(1014/cm3) 2.28
nD/T /ne 0.33
nα/ne 0.14
nimp/ne 0.0045
Pf (W/cm3) 6.05
Paux/Pα 0.2
frad 0.17

(a) Operating Point Based on
ARIES-RS

u0(1014keV/cm3) 124.6
ui/u0 0.44
ue/u0 0.52
uαH /u0 0.04
Ti(keV) 11.4
Te(keV) 11.6
η 0.21
ηHi 0.10
ν(sec−1) 7.02
τi(sec) 1.55
τe(sec) 0.94
τ (sec) 1.15
ni(1014/cm3) 3.20
ne(1014/cm3) 3.70
nD/T /ne 0.38
nα/ne 0.096
nimp/ne 0.0045
Pf (W/cm3) 8.84
Paux/Pα 0.2
frad 0.20

(b) ARIES-RS at Lower Tempera-
ture

Table 2.2: Operating point based on the ARIES-RS design. Operating point based on the
ARIES-RS design, except for Ti,Te ≈ 11.5 keV.

Note that, Table 2.2(b) has fusion power 46% higher than Table 2.2(a) at the same

confined pressure. This can be attributed to three main reasons. First, the reactivity per

unit pressure (Eq. (2.1)) is about 5% higher at 11.4 keV than at 18.0 keV (assuming

Maxwellian distributions withTD = TT = Ti then〈σv〉(Ti)/T
2
i peaks at about 13.5

keV and remains above half of its peak value between 5 and 35 keV). Second, operation

at the lower Te means that theα-particles will slow down more quickly (the slowing

down time is proportional to T3/2e ), and, therefore, take up less pressure. Hotα-particles

take up one half as much pressure in (b) as in (a). This results in a 10% increase in the

fusion power. Third, as mentioned above, theα-particle ash is proportional to 10 Pα τ .

We also know that Pα τ ≈ u0, from Eq. (2.4), implying the amount ofα-particle ash is

about the same without regard to operating point. However, what matters for the dilution
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of the fuel is the ratio of nα to ni. Since we are at lower temperatures, ni and ne are

higher and therefore the dilutive effect of theα-particle ash is significantly reduced at

lower temperatures. By this argument the ratio ofα-particle ash divided by ion density

between the two scenario’s should be about the inverse of their temperatures and this

is verified in Table 2.2. This effect gives the final 25% increase in the fusion power.

Of course, this final effect depends on an assumption, thatτHe is a fixed multiple ofτ

independent of other variables like density and temperature, which is unlikely to be valid

in a reactor. These three effects are multiplicative, yielding a 46% gain in Pf overall.

While lowering the electron temperature leads to an increase in the fusion power

density, the lower temperature makes it more difficult to obtain a hot ion mode. For

instance, it is now much harder to maintain a difference between the ion and electron

temperatures, sinceν has more than tripled from case (a) to case (b). Since the fusion

products slow down more quickly on electrons, less power is going to the ions andη

has gone from 0.3 to 0.21. Also, a very serious concern for steady state reactors is the

maintenance of the current. Operating point (b) would have the same bootstrap current

as the design point, within the context of a 0-D simulation, since the electron pressure is

the same in both cases. However, at lower electron temperature and higher density the

amount of power necessary for the RF driven currents goes up substantially. Assuming

the waves were operated at the same phase velocity relative to the thermal velocity, the

RF power requirements go up by a factor of 2.6. This would reduce the nominal Q of the

reactor to about 14. If, on the other hand, the wave frequency were consider fixed, the

ratio of phase velocity to thermal velocity would increase, increasing the efficiency (but

possibly lowering the per pass absorption of the RF power) and moving Q back towards

its original value of 25.

In Table 2.2 we compared two different solutions of Eq. (2.3) for an ARIES-RS-

like reactor. Actually there exists a whole space of operating points for the reactor at a

given total pressure. Figure 2.1 shows one representation of this space, with contour plots

of three quantities,τEe, τEi, and Pf versus Ti and Te in the range of 8 keV to 25 keV. The

shaded regions indicate where steady state operation is impossible, i.e. it is impossible

to sustain the temperature differences, or radiation losses are greater than the amount of

energy going into the electron channel from theα-particles and the auxiliary power. The

operating points in Table 2.2 are marked with an “X”. The dark line represents the values
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Figure 2.1: Contours of electron transport confinement time (a), ion confinement time(b),
and fusion power density(c) for Aries-RS like reactor with no diversion ofα-particle
power versus Te and Ti. The grey area represents values of the Te and Ti where a steady
state solution to Eq. (2.3) does not exist for the given value of Paux/Pα. The solid curve
is whereτEi = τEe. The operating points in Table 2.2 are each marked by an “X”.
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of Ti and Te whereτEi = τEe.

Note that everything in the upper diagonal has Ti > Te, and conversely for the

lower diagonal. As expected, as Te increases, the range of Ti increases, since the equi-

libration rate depends strongly on Te. Also note that the highest fusion power density is

achieved in the hot ion mode, although large differences between Ti and Te cannot be

maintained if the ratio ofτEi to τEe is close to one. Although the “conventional wisdom”

that the more confinement the better is valid for current experiments, when operating

at a fixed pressure in steady state we see that while the direction of increasing fusion

power coincides with the direction of increased ion confinement, it also coincides with

decreasing electron confinement. One can see that, in some cases, it might be desirable

to purposefully spoil the electron confinement to achieve higher fusion power, if it could

be done without spoiling the ion heat confinement. One way this might be accomplished

is discussed below.

As a final note in this section on operating points without diversion ofα-particle

power, it is worth mentioning that occasionally operation of a reactor in a hot ion mode is

proposed. This would be achieved by means of large electron temperatures, and an elec-

tron heat confinement time (including both transport and radiation losses) significantly

shorter than the ion heat confinement time. From Fig. 2.1 we see that such regimes do

exist. Unfortunately, these operating points do not share the high fusion power density

per unit pressure which is a hallmark of the hot ion mode and one of its most attractive

features. In order to achieve these high Te, hot ion modes one must typically be far from

the fusion power maximum in Te, Ti space due to the ion temperature being far from the

peak reactivity per unit pressure and the large pressure taken up by the slowing down dis-

tribution of the fast particles. As we will see in the next section, whenα-particle power

is diverted to the ions, one can operate in the hot ion mode near the maximum of the

fusion power density.

2.2.3 Operating point with diversion

In the presence ofα-channelling a few modifications to the standard picture are intro-

duced. The wave diverts a fraction,ηw, of theα-particle power directly to the thermal
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ions which, for the purposes of this discussion, is taken as a free parameter. Although

there is some gain if this energy goes to suprathermal ions [FISCH and RAX 1992b;

FISCH and HERRMANN 1994; SNYDER, HERRMANN, and FISCH 1994], it is not a

large effect and so, for the purposes of this discussion, we neglect it. Since the wave

must damp theα-particles’ energy in a time short compared with their slowing down in

order to achieveα-channelling, the portion of plasma pressure taken up by the fastα-

particles is decreased by the fraction1−ηw. Once theα-particles get to1−ηwave of their

birth energy, we can make two different assumptions, the first, modelingin situ cooling,

is that theα-particles are then assumed to slow down naturally. On the other hand, the

most promising methods forα-channelling suggest that the way to tap the free energy

is by extracting theα-particles from the tokamak while cooling them. If theα-particles

leave while still significantly above the thermal energy, we can entertain the possibility

that theseα-particles might be made to implant themselves somewhere and remain out-

side the plasma. Under this scenario, noα-particles would be left for ash. (Of course we

would have to deal with the new problem of energeticα-particles impinging on the first

wall.) The case with noα-channelling corresponds toηwave=0.

In Table 2.3 we give two nominal operating points of ARIES-RS with 75% of

theα-particle power diverted to waves which then heat ions. In both cases the cooled

α-particles are assumed to slow down naturally. In these cases almost 90% ofα-particle

power eventually goes to ions, since, as theα-particles slow down, the fraction of their

energy going to ions increases. By the time theα-particles have an energy of≈ 40 Te,

the amount ofα-particle power going to ions is equal to that going to electrons. Note

that the fusion power density of Table 2.3(a) is more than twice that of Table 2.2(a), and

the thermal ion pressure has gone up by 30%. While the ion confinement times are about

the same between the case with no diversion and the case with diversion, the electron

confinement time is significantly shorter (τEe < 1/3 τEi) when there is diversion. With

such a large equilibration rate, a short electron confinement time is necessary in order to

maintain Ti more than 30% larger than Te.

Table 2.3(b) shows an operating point with 75% diversion but with Ti = 1.5 Te.

This operating point is at a higher electron temperature with about the same ion and elec-

tron confinement time as Table 2.3(a). Note that the fusion power density is about 10%

lower than (a), but still almost 90% higher than the case with no diversion. While case
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u0 (1014keV/cm3) 124.6
ui/u0 0.52
ue/u0 0.47
uαH /u0 0.01
Ti(keV) 14.4
Te(keV) 11.0
η 0.88
ηHi 0.80
ηwave 0.75
ν(sec−1) 7.22
τi(sec) 1.58
τe(sec) 0.46
τ (sec) 0.74
ni(1014/cm3) 3.05
ne(1014/cm3) 3.53
nD/T /ne 0.38
nα/ne 0.10
nimp/ne 0.0045
Pf (W/cm3) 12.7
Paux/Pα 0.20
frad 0.12

(a) Operating Point of ARIES-RS
with 75% Diversion

u0(1014keV/cm3) 124.6
ui/u0 0.55
ue/u0 0.44
uαH /u0 0.01
Ti(keV) 20.3
Te(keV) 13.5
η 0.89
ηHi 0.80
ηwave 0.75
ν(sec−1) 4.09
τi(sec) 1.70
τe(sec) 0.48
τ (sec) 0.80
ni(1014/cm3) 2.26
ne(1014/cm3) 2.69
nD/T /ne 0.36
nα/ne 0.12
nimp/ne 0.0045
Pf (W/cm3) 11.4
Paux/Pα 0.20
frad 0.10

(b) ARIES-RS at with 75% diver-
sion at higher temperature

Table 2.3: Operating point based on the ARIES-RS design but diverting 75 % of the
α-particle power to the fuel ions (a). Operating point like(a), but with a larger difference
between Ti and Te (b).

(b) has more pressure in the ions than case (a), the ion temperature is now significantly

off of the fusion power maximum. The transport confinement times in both cases are

significantly lower than the case with no diversion. This is a necessary consequence of

higher fusion power and Eq. (2.4).

In Fig. 2.2 the operating space with 75% diversion is shown. With this large a

fraction of theα-particle power going to the ions, steady state can only be reached in the

hot ion mode. The fusion power maximum has now moved up to higher temperatures, in

part due to the ease with which significant ion and electron temperature differences can
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be maintained there.

Finally, while it may be impossible to achieve, it is at least interesting to consider

the maximal extension ofα-channelling. That is, what would the reactor consequences

be if we could divert all of theα-particle power to the ions, and in doing so remove all

of theα-particles from the plasma in such a way that they would not return. In Fig. 2.3

and Table 2.4 we show the operating regime for this “maximal” extension. The fusion

power density at Ti ≈ 20 keV, Te ≈ 10 keV is almost 4 times the ARIES-RS base case

and more than 2.5 times the maximum fusion power for ARIES-RS without diversion.

Note that the cases investigated here have focused on diverting large fractions (75

- 100%) of theα-particle power to waves. Snyder, Herrmann, and Fisch (1994) found

that the increase in fusion power density at the optimal electron confinement time (with

fixed ion confinement time) is approximately linear in the amount of power diverted.

2.2.4 Confinement times

From the curves in Figures 2.2 and 2.3 the fusion power density is typically maximized

when the electron confinement time is as small as possible, consistent with steady state.

Surprisingly, whenτEe is too large, operation could be significantly enhanced by lower-

ing τEe while keepingτEi fixed. This may seem problematic as, historically, not much

has been known about altering the relative ratio of ion and electron confinement times.

However recent experiments [LEVINTON et al. 1995] have discovered regimes, called

enhanced reverse shear (ERS), where the ion thermal diffusivity is significantly lower

than the electron thermal diffusivity within the confinement barrier. The ion heat con-

finement time is much longer than the electron heat confinement time inside this barrier.

Actually, the ERS regime, if attained in a reactor, would be quite compatible withα-

channelling. Since it satisfiesτEi � τEe, operation near the fusion power maximum

should be possible. Also, since in ERS operation the thermal ash will be very well but

inconveniently confined,α-channelling could provide a natural way for theseα-particles

to be pulled out past the confinement barrier and discharged, avoiding the poisoning

which might eventually choke off the plasma.
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Figure 2.2: Contours of fusion power density(a), electron transport confinement time(b),
and ion confinement time(c) for Aries-RS like reactor with diversion of 75 % of theα-
particle power to the fuel ions plotted versus Te and Ti. The operating points of Table 2.3
are marked by “X”.
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Figure 2.3: Contours of fusion power density(a), electron transport confinement time(b),
and ion confinement time(c) for Aries-RS like reactor with diversion of 100 % of the
α-particle power to the fuel ions and zero helium ash plotted versus Te and Ti.
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u0 (1014keV/cm3) 124.6
ui/u0 0.66
ue/u0 0.34
uαH/u0 0.00
Ti(keV) 20.0
Te(keV) 10.0
η 1.00
ηHi 1.00
ηwave 1.00
ν(sec−1) 6.48
τi(sec) 1.44
τe(sec) 0.16
τ (sec) 0.39
ni(1014/cm3) 2.73
ne(1014/cm3) 2.85
nD/T /ne 0.48
nα/ne 0.0
nimp/ne 0.0045
Pf (W/cm3) 22.3
Paux/Pα 0.20
frad 0.04
Zeff 1.41

(a) Operating Point of ARIES-RS
with 100% Diversion

u0(1014keV/cm3) 124.6
ui/u0 0.65
ue/u0 0.35
uαH /u0 0.0
Ti(keV) 20.0
Te(keV) 10.0
η 1.00
ηHi 1.00
ηwave 1.00
ν(sec−1) 6.51
τi(sec) 1.60
τe(sec) 1.55
τ (sec) 1.58
ni(1014/cm3) 2.72
ne(1014/cm3) 2.87
nD/T /ne 0.47
nα/ne 0.0
nimp/ne 0.0045
nBi/ne 2.6× 10−4

Pf (W/cm3) 22.14
Paux/Pα 0.20
frad 0.76
Zeff 2.19

(b) ARIES-RS at with 100% diversion
and line radiation

Table 2.4: Operating point based on the ARIES-RS design but diverting 100% of the
α-particle power to the fuel ions and allα-particle ash removed. (a). Operating point
like(a), butτEi = τEe because of the injection of bismuth (Z=83) impurities.

In the event that an ERS-like regime is not attained in a reactor, the requisite

lowering ofτEe might be achieved without loweringτEi, e.g., by the injection of high-Z

impurities whose presence will not disturb the plasma too much, but whose line radiation

will significantly cool the electrons. For example, consider Table 2.4 which shows two

operating points for the case of 100%α-channelling with ash removal. Case 1 hasτEi�
τEe, while Case 2 hasτEi ≈ τEe, but has added line radiation losses (which are calculated

using the tables of Post et al. (1977)). Here, bismuth (any high-Z material could have
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been substituted for the purposes of this analysis) is injected into the plasma at the level

of nBi/ne = 2.6 × 10−4. Note the ratio of ion to electron density has hardly changed

between the two plasmas, but frad has gone from 10% to 76%.

2.2.5 Advanced fuels

Operation in the hot ion mode is also advantageous for fuels other than DT [SCHULTZ,

BROMBERG, and COHN 1980]. Theα-channelling mechanism might also be applied to

attain hot ion modes using fuels other than DT. The advantage of these fuels over DT is

their significantly smaller neutron output, however, they also have lower power density

and higher operating temperatures.

In considering an ARIES-III-like tokamak, a reactor design [BATHKE et al. 1992]

that burns deuterium helium-3 (D3He), Fisch and Herrmann (1994) and Snyder, Her-

rmann, and Fisch (1994) showed that the gain in Pf is again about a factor of two over

the case with no diversion. This might be somewhat unexpected since there is more

power to divert here (almost 100% comes out in charged fusion products), and a high

electron temperature favors substantial temperature differences. However the high den-

sities required for sufficient fusion power density and the necessity of two electrons for

every3He limit the maximum temperature difference and the amount of pressure that can

be taken up by ions.

2.3 Other Consequences ofα-Channelling

The previous section discussed howα-channelling facilitates operation in a hot ion mode

thereby increasing the fusion power density of a reactor. Other benefits do accrue from

diverting the energy of theα-particles to waves.

If the free energy of theα-particles is used to amplify waves which damp pref-

erentially on electrons traveling in one direction or the other, then we could drive larger

currents with the same power thereby increasing the current drive efficiency. We already
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addressed the benefits which arise from having the ions heated by theα-particle power

via waves and thereby attaining the hot ion mode. Note that it may also be possible to

drive currents in the case where ions are heated, if they are are also heated preferen-

tially with respect to their direction, using a minority ion species current drive technique

[FISCH 1987]. These schemes do suffer from lower efficiency then electron current drive

techniques, so the diversion of considerable power is important.

The mechanism, elucidated in Chapter 1, for tapping the free energy of theα-

particles depends on ejecting theα-particles from the plasma after significantly cooling

them. Note that schemes which just eject fastα-particles from the plasma do not sig-

nificantly reduce the ash levels, because most cold He ions recycle back into the plasma

as thermal particles about 10 times [SYNAKOWSKI et al. 1995] before being removed

from the system. Thus, at most, these schemes would reduce the residence time of the

He ions by 10%. If, however, theα-particles are ejected while they are still energetic,

and then implant into a structure or are otherwise prevented from returning, they will not

contribute to the ash at all, thereby reducing the dilution of the fuel and allowing more

pressure for the reacting ions.

If the short electron times, which are desirable to achieve the maximum difference

in electron and ion temperatures, discussed above were achieved through introduction of

impurities, the fraction of power radiated might be significantly increased. For exam-

ple, in Table 2.4 the radiated power fraction goes from 10% to 76%. This effectively

reduces the heat load to the divertor by about a factor of four. Note that recent experi-

ments suggest that large radiated power fractions can be compatible with good plasma

performance [HILL et al. 1998]. Of course, the table above is a case with maximal

α-channelling, which is unlikely to be achieved. Also, profile effects, which have been

entirely neglected so far, would be particularly important when it comes to the introduc-

tion of impurities.

If a significant fraction of theα-particle power is diverted to waves, then there will

be a large amount of RF power present in the device. For instance, if 75% of the power is

diverted, and Q is 25, then 19% of Pf is present as wave power in the plasma. This wave

power might be put to many uses, for example the formation of transport barriers [ONO

et al. 1994] might be contemplated, affecting both the density and temperature profiles.
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We have not addressed at all the issue of where the wave heat is deposited, and

how that will differ from where theα-particles are born. We also have not addressed the

shape of the density or temperature profiles. While these will in large part be determined

by transport processes, it is possible to think of ways in which the profiles are affected

by α-channelling. For instance,α-channelling extracts energy from theα-particles by

bringing them out and cooling them, at the same time, the waves will be damping on

ions, heating them and bringing them to the center of the device. It may be possible to

use such fluxes advantageously in a reactor.

Now we enumerate some of the costs. The 0-D operating points which maximize

the impact ofα-channelling have low electron temperatures. Thus these plasmas have

low current drive efficiency. They also have large ion pressures, and therefore corre-

spondingly smaller electron pressure. This leads to a reduction in the bootstrap current.

Both of these effects tend to reduce the driven current. Of course, there is a large amount

of RF power present which might mitigate this current shortfall, but it is not clear that

a self-consistent equilibrium can be maintained without going to lower toroidal current,

which would give lowerβ and thus lower fusion power. Thus, it is important to demon-

strate that self-consistent equilibria, i.e. those where the channelledα-particle power is

sufficient to drive the required current, can be maintained at the lower electron temper-

atures which are favorable for maximizing the power increase due to the channelling

effect.

Other costs will be associated withα-channelling. For instance it will be neces-

sary to inject power into the plasma, possibly lowering the Q. It may be necessary to use

several different wave systems, or have a large amount of RF power for the startup of the

channelling effect, both of which will affect the capital cost. Further,α-channelling may

induce significant, localized losses of energeticα-particles to the first wall of the reactor.

In all likelihood the damage caused by such losses would far outweigh any benefits of

α-channelling, unless a clever way of dealing with this problem can be found.
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2.4 Summary

If α-channelling were to work (and the problems mentioned above could be avoided or

ameliorated), it might be possible to double the fusion power output of a reactor at the

same pressure. However, just because the fusion power output could be doubled does

not mean that doing so would be the most economical way to take advantage of this

innovation. In particular, both the first wall heat load and neutron wall load constraints

may prevent one from taking advantage of this doubling of the fusion power density.

Instead, one may contemplate just lowering the current or the field in the device. Emmert

et al. (1994) have done a systems analysis of a reactor using a highly idealized model

of α-channelling. They found that by lowering the toroidal field, a reduction in the cost

of electricity on the order of 15% could be achieved. Alternatively, one could consider a

smaller device. Note that both of these operating points would have significantly higher

current drive requirements than the ARIES-RS base case, however, these plasmas have

several hundred megawatts of wave power coursing through them. With so much RF

power it is also possible to contemplate other beneficial uses, for instance, the formation

of transport barriers, or profile control.

To achieve a hot ion mode withα-channelling requires comprehensive control

of theα-particles in the plasma, i.e. the goal is to take all the energy out of all of the

α-particles to achieve a step change in the eventual reactor. This may not be possible.

However, it may be possible to control a suitable portion of theα-particle phase space

in order to accomplish some more limited objective like pressure profile control, seed

current generation, ash removal, and the like, all of which would be valuable additions

to an advanced tokamak. While these have not been specifically addressed in this thesis,

many of the tools developed here would be equally applicable to these problems.

Finally, while much of this has been written with the tokamak specifically in

mind, most of the issues raised here are generic. Thus, the benefits ofα-channelling are

likely to transfer to other magnetically confined fusion plasmas, such as stellarators and

reverse field pinches, provided, of course, a method can be found for diverting the free

energy of theα-particles to waves. In that respect, the insights developed here for how

combinations of waves can be applied in concert to produce the channelling effect should
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be valuable in developing similar schemes on related toroidal confinement devices.





Chapter 3

Building Blocks of the Channelling

Effect

E XTRACTING THE FREE ENERGY of theα-particles with waves in a toka-

mak is in principle possible but in practice challenging. Significant insight

may be had by examiningα-channelling in a simpler phase space. This

chapter lays out the issues involved in extracting theα-particles energy (see

Fisch, Fruchtman, Karney, Herrmann, and Valeo (1995), Fisch and Herrmann (1995),

and Fisch (1997)).

3.1 Free Energy

In Fig. 3.1, the distribution function of theα-particles in a device which is hot in the

center and cold at the edge is plotted versus energy and space. Although theα-particles

are born at 3.5 MeV, eventually they slow down on the background plasma and develop

a distribution function which is monotonically decreasing in energy. If the waves which

were used only diffused particles in velocity space, no free energy could be extracted

from this distribution function. However, waves which diffuse particles in energy and

space can tap the population inversions which exist along their diffusion paths, diverting
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Figure 3.1: Schematic of a diffusion path in velocity and real space which would, on
average extract energy from theα-particle distribution even though it is monotonically
decreasing in energy at any fixed radius.

energy from the particles to the waves. Normally particles diffuse until the distribution

function is flattened along this path (neglecting background damping which would tend

to leave the distribution with a small but finite slope). If, however the diffusion path is

in contact with a sink of particles, e.g., the wall, then the steady state solution will be

that the distribution function is zero along the path, i.e., all of the particles will hit the

wall, and in doing so each irrevocably gives up its energy to the wave. In principle, it is

possible to extract all of the energy of theα-particle distribution. Our goal is to construct

the diffusion path, or paths, which maximize the amount of energy extracted from the

energeticα-particles.

3.2 Wave-Particle Interactions

To begin, it is necessary to understand how the diffusion path in energy and space is

constructed. Typically we think of a particle resonating with a wave and either gaining
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or losing energy, but particles also undergo a spatial displacement upon interacting with

the wave. Consider the equations of motion for a particle in a uniform magnetic field

interacting with an electrostatic wave which has potentialΦ = Φ(k · x− ωt) ,

m
dv

dt
= −q∇Φ + q

v

c
×B (3.1)

We are interested in the change of the guiding center position,rg.c.⊥, where

rg.c.⊥ =
B× r×B

B2
− B× v

ΩB
(3.2)

In the absence of the wave the time derivative ofrg.c.⊥ is zero. The equations of motion

can be rewritten as

d

dt
(mv− qr×B

c
) = −qkΦ′ (3.3)

where we have taken advantage of the form ofΦ. TakingcB/(qB2) crossed with this we

find

drg.c.⊥
dt

= −ck×B

qB2
qΦ′ (3.4)

Using the relationdε/dt = qv · E write

d(ε+ qΦ)

dt
= −qv ·∇Φ +

dqΦ

dt
= q

∂Φ

∂t
= −qωΦ′ (3.5)

Substituting forΦ′ from above we find

drg.c.⊥
dt

=
ck×B

qωB2

d(ε+ qΦ)

dt
(3.6)

Integrating this equation through the interaction, and evaluating whereΦ is zero we see

that

∆rg.c.⊥
∆ε

=
k×B

mωΩB
(3.7)

Thus, when the particle receives a kick in energy, it will receive a correlated kick in

position, creating a diffusion path in phase space. Note that the kick is proportional to
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the magnitude of k, and inversely proportionally to the frequency of the wave.

Consider a slab geometry, withB in the z direction, the wave vectork in the y

direction and a wall at x = a. The phase space of this configuration is shown in Fig 3.2.

Theα-particles are born near the center (x = 0) with 3.5 MeV of energy, as depicted by

the contour curves. In the absence of waves, eventually theα-particles will develop a

slowing down distribution due to collisions, and this distribution will be monotonically

decreasing in energy as shown in the figure. Also shown in the figure is the diffusion

path of particles interacting with a wave. From Eq. (3.7) we know that the slope of this

line depends on the parameters of the wave, which in this case have been chosen so that

dx/dε ≈ a/ε0, with ε0 the birth energy of theα-particles. If anα-particle exchanges

energy with this wave it must move along the diffusion path shown. In the absence of

3.5 MeV

E

a

0

x

Diffusion Path

   α Birth 
Distribution 

Slowed Down 
  Distribution 

Figure 3.2: The optimal diffusion path for extractingα-particle energy. The horizontal
axis is energy and the vertical axis is radius, x.

collisions, assuming a reflecting wall at x = 0,(corresponding to the center of the device),

and an absorbing wall at x = a, (corresponding to the first wall of the device), eventually

the particle must diffuse out near x = a and be absorbed. In doing so the particle will

have lost almost 3.5 MeV of energy which in turn amplifies the wave. For this to work
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in the presence of collisions, theα-particles must exit in a time short compared to the

slowing down time.

Unfortunately, it appears to be difficult to excite waves in a reactor size tokamak

which have this optimal slope. More typical are waves with slopes illustrated in Fig. 3.3.

The wave with the large slope (∆x/∆ε� 1) is analogous to a low frequency wave such

as the toroidal Alfvén eigenmode (TAE) in a tokamak. (Note that throughout this thesis

we use TAE as a generic term for any low frequency eigenmode). While these waves

do extract some energy from theα-particle distribution, they eject the particles with

most of their energy remaining, causing damage to the first wall and a loss of heating

to the plasma. The wave with the small slope (∆x/∆ε � 1) is analogous to the mode

converted ion Bernstein wave (MCIBW) in the tokamak. It can extract energy from

a birth distribution ofα-particles by diffusing them to lower energies. However, as a

slowing down distribution develops, the gradient of the distribution function along the

diffusion path changes from∂f/∂l > 0 to ∂f/∂l < 0 and the wave will tend to be

damped rather than amplified.

3.5 MeV

E

a

0

x

Figure 3.3: Diffusion paths which are typical of waves in tokamaks.

A qualitatively different picture emerges when theα-particles interact with two

waves. To begin with, the diffusion is no longer constrained to one dimension, but now is

fully two dimensional. Consider Fig. 3.4 which shows the phase space described above
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with two waves present. One wave diffuses particles only in energy, and might arise from

a Landau resonance, i.e., from Eq. (3.7) above, whenk ‖ B. The other “wave” diffuses

particles spatially without any energy exchange. This could occur due to the presence of

stochastic magnetic fields or via stochastic ripple diffusion which arises from the ripple

of the toroidal field. Immediately we see that the constraints that occur with only one

3.5 MeV

E

a

0

x

Figure 3.4: The diffusion paths of two waves, one which diffuses only in energy, one
which diffuses only in space.

wave are removed. For instance, the concept of a fixed∆x/∆ε which is true for one

wave is not true for two. A particle could move from the center to the edge and be

cooled, without any requirement on the slopes of the waves. However, this relaxation

of constraints also allows at least someα-particles to be heated and ejected from the

plasma.

Unlike the case with one wave, where cooling was assured, we now may have

both heating and cooling. Fortunately, more control can be exercised over the system.

By selectively choosing where the diffusion paths exist in phase space (by means of reso-

nance conditions and spatial localization of the waves), configurations of two waves can

be created that predominantly involve cooling. One such example is shown in Fig. 3.5.

Since the only way for particles to leave this system is by going to low energy and being

radially transported out, we are assured that this system of waves will lead to significant

cooling. Of course the actual system we are dealing with,α-particles in a tokamak, is
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Figure 3.5: The diffusion path for a combination of two waves which could extract almost
all of the α-particle energy. By choosing carefully where these waves exist in phase
space (by means of resonance conditions and location of the waves) one can guarantee
significant energy extraction.

more complicated than this simple two dimensional system. While waves with diffusion

paths are still relevant, as we shall see, this system is three dimensional (it can be charac-

terized in terms of the constants of the particles’ motion,ε, µ, andPφ) with complicated

boundaries. Nevertheless, the insight gained in the simple two dimensional system is

applicable toα-channelling in tokamaks.

3.3 Generic Requirements forα-Channelling

While creating a diffusion path which connects 3.5 MeVα-particles at the center with

cooledα-particles at the edge is one of the fundamental requirements forα-channelling,

there exist several other requirements which must be satisfied in order forα-channelling

to be realized.
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3.3.1 Tapping velocity space

Magnetically confined fusion plasmas typically have a strong magnetic field which cre-

ates significant anisotropies in the velocity space of the particles. A distribution ofα-

particles in a tokamak will have about1/3 of its energy parallel to the magnetic field and

2/3 perpendicular to the field. In order to channel almost all of the energy, it is necessary

to tap into both types of energy. However, because of the strong magnetic field, different

waves are required for tapping perpendicular energy and parallel energy. For example,

waves withω � Ω, whereΩ is the cyclotron frequency of the particles, will be unable

to break theµ invariant, and thus will be more efficient at tapping parallel energy. (Note,

though, that by moving particles from regions of high field to regions of lower field, e.g.

from the center to the edge, a particle will lose perpendicular energy, even thoughµ is

conserved because of changes in the magnetic field). On the other hand, waves with

ω ≈ Ω will be able to break theµ invariant and extract perpendicular energy from the

particles. These waves may also extract or give parallel energy to the particles as they in-

teract, as discussed extensively in Chapter 6. Note also that the form of Eq. (3.7) suggests

that the low frequency waves will push particles much further than waves withω ≈ Ω,

given similar values for k.

3.3.2 Resonance conditions

In order for theα-particles to interact with the waves, they must satisfy a resonance

condition. In particular, since we are interested in moving particles out and cooling them,

it is necessary that theα-particle be resonant over a wide range of positions and velocities

as they are slowed down by the waves and moved out. Furthermore, as discussed in the

two wave scenario above, it would be useful to use those waves over which we might

exert some control, both of the resonance conditions and the spatial localization.
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3.3.3 Time scales

The α-particle must move out in a time short compared to a slowing down time,τsd.

For a diffusive process, the time it takes for the particles to get out can be estimated as

τ ≈ (∆ε)2/Dε. Since the diffusion coefficient is typically proportional to the power in

the wave, the requirementτ < τsd, can be converted to a requirement on the electric

field amplitude, which in turn is a constraint on the minimum intensity of the waves.

To maximize the diffusion coefficient, it would be desirable to minimize the area over

which the power is spread, while maximizing the power in the waves. However, the wave

which is launched may also be amplified by theα-channelling effect. The wave may

be convectively damped, so long as the power from theα-particles goes into the wave

before the wave is significantly damped. This effect may reduce the required power, but

the issue of startup will still remain, i.e. before theα-channelling power is flowing into

the waves, enough power must be going to the waves in order to channel theα-particles.

Thus, while the recirculating power requirements may not be large, it may be necessary

to have a significant power capability to start up theα-channelling. This requirement

might be alleviated if there were a way to bootstrap theα-channelling effect with small

amounts of power.

3.3.4 Deposition of channelled power

Once the power gets into the waves from theα-particle, it must, in some way, be made

to damp on the ions, preferably at the center. Thus it is necessary to choose waves which

are likely to do this.

3.3.5 Power lost/wall loading

While much of the power may be diverted to waves, inevitably some energy will be left

in the channelledα-particles when they leave the plasma. If this flux is localized, it might

cause damage to the first wall. Furthermore, power lost in this way is not available for

heating the plasma, thereby limiting the amount power available for sustaining a hot ion
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mode. On the other hand,α-particles lost in this way (i.e. while still energetic), may

be embedded in the walls and then would not be available as helium ash to choke the

plasma. Note that it may be possible to take advantage of a localized loss by some clever

means, that, for example, extracted further energy.
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Constants of Motion Simulation

A LPHA PARTICLES IN TOKAMAKS EXIST IN A phase space that is

considerably more complicated than that discussed in the previous chapter.

The guiding center approximation, which is usually quite well satisfied,

allows us to neglect the gyromotion and reduces the phase space of the

α-particles to a 5-dimensional one. Typically, one would simulate the evolution of theα-

particle distribution using a guiding center code such as ORBIT [WHITE and CHANCE

1984]. However, there are two drawbacks with this approach for the problem we are

considering here. The first is that the ORBIT code can simulate 1000 particles for 100

toroidal transits, where a toroidal transit is2πqR/vα ∼ O(1 µsecond) in TFTR, in about

30 CPU seconds on the A machine (CRAY C-90) at the National Energy Research Sci-

entific Computing Center (NERSC). For the problems we are interested in, with 1000

particles for something on the order of the slowing down time of about a quarter of a

second this would translate to approximately 20 hours of CPU time.

Furthermore, much of the motion that takes place in the guiding center code is

uninteresting to us. For instance, for the study ofα-channelling, one is interested in

whether or not a particle can diffuse to the edge of the plasma, not in the details of the

ion motion within each orbit.

The approach we have taken is to study the transport of the energetic particles

in constants-of-motion (COM) space, in particular, theε, µ, andPφ space introduced by

45
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Hsu and Sigmar (1992). This representation retains all the physics of the unperturbed

guiding center motion (except for the inconsequential phase of the particle’s motion on

its orbit and an equally irrelevant initial toroidal angle). In this 3-d space, it is possible to

draw boundaries which indicate when a particle is on an orbit which intersects the wall

and what the orbit topology is. It is even possible to draw boundaries for resonant inter-

actions with the waves in this space (i.e. if a particle has a certainε, µ, and Pφ, it can be

determined whether or not it will resonate with a particular wave). There is also a precise

direction in which particles move in COM space upon resonant interaction with a wave

of given parameters. Thus, particles interacting with many waves in a tokamak (under

the assumption of a random phase interaction) can be simulated without computing their

real space orbits.

This simulation is equivalent to a Monte Carlo solution of the orbit averaged

Fokker-Planck (FP) equation in the three dimensional COM space. This approach to

simulating energetic particles in tokamaks is not, in itself, new; for instance, Rome and

Peng (1979) suggested that the COM approach they took to finding energeticα-particles

orbits in tokamaks would have applications to an orbit averaged FP code. The theoreti-

cal framework was provided even earlier; an elegant description of quasilinear diffusion

in an axisymmetric torus formulated in terms of action angle variables, was given by

Kaufman (1972). More recently, Eriksson and Helander (1994) calculate Monte Carlo

operators for solving the orbit-averaged Fokker-Planck equation for arbitrary constants

of motion (i.e. not just the action angle variables, which are inconvenient since the sec-

ond adiabatic invariant,J2, depends on an integral over the orbit). Eriksson and Helander

(1994) also briefly review previous work along these lines. This approach was used to

model ion cyclotron resonant heating (ICRH) in tokamaks, keeping the effects of full

orbit width and spatially varying collision frequencies [CARLSSON, HELLSTEN, and

ERIKSSON 1996; CARLSSON, ERIKSSON, and HELLSTEN 1994; CARLSSON, ERIKS-

SON, and HELLSTEN 1997]. Many of the calculations which follow are similar to the

work of Eriksson and Helander (1994) and Carlsson, Hellsten, and Eriksson (1996).

When is this approach most useful? The COM approach is valid when the

changes in the constants due to waves, collisions, or ripple in one bounce are small,

i.e., when the orbit changes so little in one bounce that using the old orbit to determine

the kicks is a good approximation. For instance, the COM approach would not be good at
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following particles trapped in a ripple well, although the particles most likely to become

ripple trapped can be identified by their COM. Also, the COM approach is most useful

when any phase information can be thrown out, i.e. we are not interested in the phase of

the particle on its orbit, or its phase relative to a wave. In this sense, the COM approach

is not useful for determining the correct nonlinear saturation of a single TAE mode, or

the details of the approach to stochasticity for stochastic ripple diffusion. Rather, it is

ideally suited to studying energetic particles in the presence of many perturbations, such

as waves, collisions, and toroidal field ripple, when it can be assumed that each interac-

tion is diffusive or is diffusive with a drift term, i.e., when the system can be modeled

with a Fokker-Planck equation.

Apart from a more rapid simulation, an additional benefit is the understanding

that goes along with reducing the problem to three dimensions. It is very easy to visu-

alize 2-d slices of this space (with the relevant boundaries). A particle’s location in this

phase space tells all there is to know about this particle. (Does it hit the wall? Will it

interact with the wave?) In anα-channelling scenario, one can determine which groups

of particles have done well, which have done poorly, and one can see how that changes

as wave or plasma characteristics are varied. An example of this is given in Chapter 5.

This chapter is organized as follows: Sec. 4.1 describes the general outline of

the simulation. The Monte Carlo increments for a particle interacting with collisions

(Sec. 4.2), stochastic ripple diffusion ( Sec. 4.3), MCIBW (Sec. 4.4), and toroidal Alfv´en

eigenmode (Sec. 4.4.8) are then discussed. The code is benchmarked, where possible,

against analytical calculations and the existing guiding center code, ORBIT. In Sec. 4.5

the code is applied to the case of a neutral beam distribution colliding with the back-

ground plasma, to illustrate some of the simulation’s capabilities. Finally, the ways in

which the code performance could be improved are discussed.

4.1 Orbits and Outline of the Simulation

As shown in Appendix A, given theε, µ, andPφ (and the sign ofv‖) of a particle the

details of its guiding center orbit can be calculated in a rapid and numerically efficient
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way. The normalizations used throughout this thesis are discussed in Appendix A. A

three dimensional space,ε, µ, andPφ space (which is two-sheeted in some places due to

the sign ofv‖) can be constructed. Once the basics of this space are understood we can

start to formulate a Monte Carlo code in this space.

An overview of the simulation is given in Fig. 4.1. Given the details of the orbit,

we compute the mean and the standard deviation of the changes in the COM which

occur over one poloidal orbit of the particle. For instance, we compute the changes in

ε, µ, andPφ, which would occur due to collisions by averaging the effect of the Landau

collision operator onε, µ, andPφ over the orbit (as detailed in the next section), or we

determine if the particle passes through the IBW region, if it resonates with the wave

in that region, and then calculate the size of the kick it receives. Next, we apply these

changes for the number of poloidal orbits necessary to achieve the desired time step.

Note that the changes due to drift terms are linear in the timestep and are deterministic,

whereas the diffusive changes go like the square root of the time step and are multiplied

by an appropriately chosen random number. We then apply the kick, and determine the

characteristics of the new orbit.

We also determine whether the kick was so large that it moved the particle out of

the physical portion ofε, µ, andPφ space, or it caused the particle to change its topology

in an unphysical way. Of course, this only occurs because of the orbit-averaged way in

which the changes are calculated; in reality the particle’s COM cannot be kicked into

unphysical regions ofε, µ, andPφ space. If an unphysical kick has been given, the time

step is halved, the kick is applied again, and the orbit characteristics are determined.

This process is repeated until a physical orbit is realized. A check is also made to see

if a particle has hit the wall or if the energy has dropped below a threshold value which

is on the order of the ion thermal temperature for the plasma. We are not interested

in simulating the dynamics of thermal particles, and so particles below this energy are

removed from the simulation. If the desired timestep was not achieved due to a kick

resulting in an unphysical position, the particle is iterated upon until the desired timestep

is achieved. In this way, each particle in a multi-particle simulation is recorded at the

same value of time so that the distribution function at a given time step can be determined

for diagnostic purposes.
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Figure 4.1: Flow chart of constants-of-motion Monte Carlo simulation.
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While this seems straightforward there are subtleties which arise. For instance

what if a particle crosses from trapped to passing? Does it become cogoing or counter-

going? If it crosses the passing trapped boundary due to an interaction with a wave in the

ion cyclotron range of frequencies this question is relatively easy to answer. Since the

particle had to be resonant with the wave in order for it to get the push across the pass-

ing trapped boundary, it must be that the particle continues going in the direction it was

going when it resonated with the wave. For a wave like the toroidal Alfv´en eigenmode

or collisions this question is more difficult to answer. The answer can be thought of in

terms of the continuity of phase space density across the boundary. If this did not hold

the fluxes would be infinite. Furthermore there also has to be reciprocity, i.e. the particles

must be just as likely to cross from A to B as to cross from B to A. Together these two

constraints allow the determination of the flux.

Further subtleties arise in ensuring that the wave particle interactions are micro-

scopically reversible, i.e. that a particle which receives a kick from the wave remains

resonant with the wave after the kick. This is discussed in greater detail in Sec. 4.4.6.

4.2 Collisions

As a first approximation, the 3.5 MeVα-particles in a reactor can be treated as collision-

less (as is done in the investigation ofα-channelling in a reactor in Chapter 5). However,

the addition of collisions to simulations ofα-channelling is important, as the channelling

effect must take place on a time scale short compared with the slowing down time. Thus

adding collisions will allow us to determine the wave amplitudes and powers necessary

to accomplishα-channelling, although the power levels have been estimated in previous

work [HERRMANN and FISCH 1997]. Collisions are even more important for the mod-

eling of experiments conducted on TFTR [DARROW et al. 1996] which saw a strong

interaction of beam ions with MCIBW (see Chapters 6 and 7). In some experiments, it

was possible to determine that this interaction continued for several beam particle slow-

ing down times, eliminating the possibility of a collisionless interaction. Thus collisional

effects are necessary to model these experiments.
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Consider the Landau collision operator for a weak beam of speciesα interacting

with a Maxwellian background plasma speciesβ. Then

dfα

dt
= ∇v ·

(
mα

mα +mβ
νs
α/β v fα +

1

2
ν‖
α/β vv ·∇vf

α +
1

4
ν⊥α/β

(
v2

I− v v
) ·∇vf

α

)
(4.1)

with the following definitions,

ν0
α/β =

4πeα
2eβ

2λαβnβ
mα

2vα3
(4.2)

νs
α/β =

(
1 +

mα

mβ

)
ψ
(
xα/β

)
ν
α/β
0 (4.3)

ν‖
α/β =

ψ
(
xα/β

)
xα/β

ν
α/β
0 (4.4)

ν⊥α/β = 2

((
1− 1

2xα/β

)
ψ
(
xα/β

)
+ ψ′

(
xα/β

))
ν
α/β
0 (4.5)

xα/β =
mβvα

2

2Tβ
=
mβ

mα

εα
Tβ

(4.6)

ψ(x) =
2√
π

∫ x

0

dt
√
te−t (4.7)

If we transform this expression to spherical coordinates, assume that the distribution

function is gyrophase independent, and sum over all the thermal species, we can rewrite

this as:

∂fα

∂t
=

1

v2
∂v
(
α(v)v2fα

)
+

1

2v2
∂2
v

(
β(v)v2fα

)
+
γ(v)

4v2
∂λ(1− λ2)∂λf

α

(4.8)

α(v) =
∑
β

1

v2

((
1

2xα/β
− mα

mβ

)
ψ
(
xα/β

)
+ ψ′

(
xα/β

))
ν
α/β
0 (4.9)

β(v) =
∑
β

ψ
(
xα/β

)
vxα/β

ν
α/β
0 (4.10)

γ(v) =
∑
β

2

v

((
1− 1

2xα/β

)
ψ
(
xα/β

)
+ ψ′

(
xα/β

))
ν
α/β
0 . (4.11)

Now we would like to determine an equation for the evolution ofε, µ, andPφ
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which corresponds to this Fokker-Planck equation. It will have a general form [RISKEN

1989a]:

Xi(t+ ∆t)−Xi(t) = ∆Xi = hi∆t+ gijζj
√

∆t, (4.12)

wherei andj run from 1 to 3 and theζj ’s are random variables satisfying〈ζj〉 = 0 and

〈ζiζj〉 = δij, and summation over repeated indices is assumed. Taking the average of

this equation, we findhi = 〈∆Xi/∆t〉 ≡ 〈dXi/dt〉. Multiplying this by the equation for

∆Xk and taking the average, we find

〈∆Xi∆Xk〉 = hihk∆t
2 + gijgkl〈ζjζl〉∆t (4.13)

〈∆Xi∆Xk〉
∆t

= gijgkj + hihk∆t, (4.14)

where we have used the definition ofζi. A little algebra expanding the∆X ’s shows that

lim
∆t→0

〈∆Xi∆Xk〉
∆t

=
d〈XiXk〉

dt
− 〈Xi〉d〈Xk〉

dt
− 〈Xk〉d〈Xi〉

dt
≡ dσik

dt
,

(4.15)

whereσik = 〈XiXk〉 − 〈Xi〉〈Xk〉. Taking the limit of∆t goes to zero in Eq. (4.14) we

see that

dσik
dt

= gijgkj = g gT ik (4.16)

To calculate these quantities we follow Carlsson, Hellsten, and Eriksson (1996). Con-

sider the quantity X, then the average value of X over the distribution function is given

by

〈X〉 = 4π

∫ 1

−1

∫ ∞

0

∫
drX(v, λ, r)f(v, λ, r)v2dvdλ, (4.17)

Takef(v, λ, r) = δ(v − v0)δ(λ− λ0)δ(r− r0)/(4πv0
2) and take the time derivative of

Eq. (4.17), substituting in for the collision operator from Eq. (4.8), and integrating by
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parts where appropriate, one can find

d〈X〉
dt

= α(v) ∂vX +
β(v)

2
∂2
vX +

γ(v)

4 v2

(−2λ∂λX +
(
1− λ2

)
∂2
λX
)
.

(4.18)

Eq. (4.18) will be used to derive the changes inε, µ, andPφ which are consistent with the

collisional evolution of the particle distribution. Consider the quantitiesε = v2/2, Λ ≡
µ/ε = (1 − λ2)/B, andPφ = Fvλ/B − ψ. NoteΛ has been substituted forµ here,

because it will have no correlation withε, thereby simplifying the resulting equations.

Then, calculating the drift term, we get

dε

dt
=

(2 v α(v) + β(v))

2
(4.19)

dΛ

dt
=

(−1 + 3λ2) γ(v)

2B v2
(4.20)

dPφ
dt

=
F λ (2 v α(v)− γ(v))

2B v
. (4.21)

The calculation of thedσ/dt is made somewhat easier by two simplifications: one, it is

easy to see from Eq. (4.15) thatdσik/dt = dσki/dt, and, two, our choice ofΛ. Thus




σ̇εε

σ̇εPφ

σ̇ΛΛ

σ̇ΛPφ

σ̇PφPφ




=




v2β
F v λ β
B

−2 λ2 (−1+λ2) γ
B2 v2

F λ(−1+λ2) γ
B2 v

F 2 (λ2 (2β−γ)+γ)
2B2



. (4.22)

Note that these expressions are dependent on the position along the particle’s orbit, since

buried inα, β, andγ are dependencies on the temperature and density of the plasma

which depend onψ. Thus, these expressions need to be orbit averaged to determine the

average rates of change. As discussed in Appendix A the orbit average of an expression

is

〈f〉 =
1

τb

∫ τb

0

f(ψ)dψ

ψ̇
. (4.23)
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Thushi = 〈Ẋi〉. Recall that the matrixdσ/dt is a positive definite, symmetric matrix.

As such, it has a Cholesky decomposition,g, which will satisfydσ/dt = ggT . This is the

sameg that we need to complete the Langevin description from Eq. (4.16). It is given by

g =



√〈σ̇εε〉 0 0

0
√〈σ̇ΛΛ〉 0

〈σ̇εPφ〉√
〈σ̇εε〉

〈σ̇ΛPφ
〉√

〈σ̇ΛΛ〉

√
〈σ̇PφPφ

〉 − 〈σ̇εPφ
〉2

〈σ̇εε〉 −
〈σ̇ΛPφ

〉2
〈σ̇ΛΛ〉


 (4.24)

So the final equations, which are equivalent to those of Carlsson et al. (1996) except for

slight generalization of the magnetic geometry, are:




∆ε

∆Λ

∆Pφ


 =




1
2
〈2 v α(v) + β(v)〉

1
2v2
〈(−1 + 3λ2)B−1 γ(v)〉

1
2v
〈F B−1 λ (2 v α(v)− γ(v))〉


∆t+



√〈σ̇εε〉 0 0

0
√〈σ̇ΛΛ〉 0

〈σ̇εPφ
〉√

〈σ̇εε〉
〈σ̇ΛPφ

〉√
〈σ̇ΛΛ〉

√
〈σ̇PφPφ

〉 − 〈σ̇εPφ
〉2

〈σ̇εε〉 −
〈σ̇ΛPφ

〉2
〈σ̇ΛΛ〉





ζε

ζΛ

ζPφ


√∆t.

(4.25)

By separately turning off different terms in Eq. (4.25), the collision terms can

be “benchmarked.” By “benchmarked” we mean that we can make sure our code is

working as intended, which is most easily done by taking limiting cases that can be

checked against other codes or by analytical methods.

First, leaving only theε drift term should give us just energy slowing down. In

Fig. 4.2, we plot the energy of anα-particle initially born at 3.5 MeV versus time, in a

20 keV deuterium plasma.

There is also a term which represents diffusion in energy. Leaving only this term

on in the code, the variance of the normalized energy for 5000 350 keVα-particles in a

20 keV deuterium plasma is plotted in Fig. 4.3. The solid line isσ̇εεt as calculated above.

Note that agreement is good for short times, but significant deviation begins occurring

when Var(ε/ε0) ≈ 0.3 or the standard deviation is on the order ofε0/2. There are three

causes for this: One is that the diffusion coefficient is a function of velocity and thus as
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Figure 4.2: The energy of anα-particle, born at 3.5 MeV, versus time in a neutral, 20 keV
deuterium plasma. The solid line is determined from Eq. (4.21) using the initial velocity
for the evaluation, the dots represent output from the simulation.

particles begin to diffuse significantly they will start to diffuse at different rates, changing

the measured value of the variance. More important, and what causes the variance from

the simulation to be less than the predicted one, is that boundaries in energy exist both

at low and high energy. At high energies particle orbits get large enough to intersect the

wall. At low energies a artificial boundary is imposed as we are not interested in the

evolution of thermal particles.

As suggested by Carlsson, Hellsten, and Eriksson (1996), the pitch angle scat-

tering can be benchmarked against analytical theory, if we turn off the energy slowing

down and energy scattering. We get an equation forfα which is separable inλ and

time. This can be solved in terms of Legendre polynomials. For an initial distribution

fα(λ, v, t = 0) = δ(λ− λ0) the solution is

fα(λ, v, t) =
∑
l=0,∞

(l +
1

2
)Pl(λ0)Pl(λ)e

− (l)(l+1)γ(v)t

4v2 . (4.26)

This expression can be compared to the results of the COM simulation for a high
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Figure 4.3: The growth in the variance of the normalized energy for a distribution of
5000α-particles, born at 350 keV in a 20 keV deuterium plasma. The solid line is the
analytical rate of growth, dots represent output from the code.
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Figure 4.4: Collisional evolution of aδ function in pitch, benchmarked against the OR-
BIT code and the analytical expression. The smooth black line is the analytical calcula-
tion, the jagged black line is the simulation result with 30000 particles, the light line is
the result from ORBIT with 50000 particles.
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Figure 4.5: Collisional evolution of aδ function in pitch, for longer times. Eventually
particles pitch angle scatter far enough that some become trapped. At this point the
analytical result for a homogeneous magnetic field and the simulations differ.

aspect ratio equilibrium as shown in Fig. 4.4. The agreement is good. Note that, when the

simulation is run for longer, the results disagree with the analytical theory, as shown in

Fig 4.5. This is because as time goes on some particles scatter far enough in pitch angle

to cross the passing-trapped boundary. When this occurs, the distribution function in the

interval (−λpt,+λpt) is flattened very rapidly (on the order of a bounce time, which is

much less than a pitch angle scattering time). This causes the distribution to be roughly

flat between these two points. Both cases also show good agreement with the ORBIT

code.

4.3 Stochastic Ripple Diffusion

Stochastic ripple diffusion (SRD) is caused by the distortion from axisymmetry due to

the finite number of field coils which create the toroidal field [GOLDSTON, WHITE, and

BOOZER 1981]. It can lead to energetic particle losses by breaking thePφ invariant. If

the ripple amplitude is sufficient, diffusion inPφ can occur for trapped particles (although

the particlesµ andε are conserved under interaction with the ripple). One can see from
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an examination of anε, µ, andPφ space plot, that diffusion inPφ may eventually lead to

fast particles hitting the wall. This will be an important consideration forα-channelling,

for two reasons: First, it introduces a faster timescale which we must be concerned with

into the system, i.e. if we are dealing with trapped particles which are being affected by

SRD we must now get them out in a timescale short compared to the SRD time rather

than the slowing down time. This timescale can be milliseconds, much faster than the

100’s of milliseconds for the slowing down time, and thus presents a concern on the

required power level for the waves which are used. Second, in Chapter 5, we will see

thatα-channelling seems to work best when passing particles are brought out and turned

into trapped particles near the edge. This coincides with the region where the ripple is

strongest and therefore SRD most likely to be a factor. On the other hand, it may also

be the case that interaction with ripple is useful for accomplishingα-channelling, since

it provides a means of transporting a select group of particles near to the edge without

any energy extraction. In particular this may be a useful aid in extracting deeply trapped

particles which do not have enough parallel energy to be pushed out by the TAE.

While the full investigation is yet to be done, we have taken the first step in trying

to address SRD within the COM framework. We employ accurate analytical estimates of

the stochastic ripple threshold, based on work by White et al. (1996) and more recently

White (1998) in the COM code. The basic idea is as follows. Due to the ripple in the

magnetic field, a perturbation is added to the guiding center Hamiltonian which varies as

H1 ∝ δ sinNφ, whereδ is the ripple amplitude andN is the number of field coils. This

perturbation gives

Ṗφ =
−∂H1

∂φ
(4.27)

φ̇ =
∂H0

∂Pφ
+
∂H1

∂Pφ
. (4.28)

In practice, a simplifying assumption can be made, which is that most of the

change in a particle’sPφ occurs at its bounce point. When this is done the change in a

particlesPφ in one half orbit (one pass through a banana tip) can be estimated analyti-

cally. Following White et al. (1996) we arrive at a mapping for the evolution ofPφ =
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-ψbanana tip due to SRD (we assume up-down symmetry of the equilibrium).

Pφt+1 = Pφt −∆ sinNφt (4.29)

Nφt+1 = Nφt +Nφb,t+1 +Nφp,t+1 (4.30)

Pφt+2 = Pφt+1 −∆ sinNφt+1 (4.31)

Nφt+2 = Nφt+1 −Nφb,t+2 +Nφp,t+2, (4.32)

where∆ = gρ
√
πNq/(B∂θB)1/2. White (1998) has undertaken a detailed analysis of

this mapping to determine the stochastic threshold. His analytical expression has been

implemented in the simulation, and a comparison with numerical results is shown in

Fig. 4.6. The agreement is good at low energy, as shown here, but not good at higher

energies due to finite orbit width corrections to the expressions of White (1998).

For the COM simulation, this routine can be used as in White et al. (1996),

that is, assume particles are lost as soon as they cross into the stochastic domain. More

ambitiously we could follow the diffusion of the ripple particles in this domain. While in

principle the mapping could be followed, this is not desirable. Evaluating the mapping

requires keeping track of phase information, which, as discussed earlier, is something to

be avoided. Furthermore, the time steps would be limited to 1/2 of a bounce time per

step, which is much shorter than is preferred. Instead, the evolution of the distribution

function could be modeled by

∂f

∂t
=

∂

Pφ
D(ε, µ, Pφ)

∂

Pφ
f (4.33)

whereD is zero for regions below stochastic threshold and related to∆ above threshold.

Then, applying techniques used in the previous section, an average and random change

to Pφ due to this operator could be computed and applied to particles in a Monte Carlo

fashion.
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Figure 4.6: Plot of the trapped portion ofε, µ, andPφ space for 700 keVα-particles.
The + represents points inµ,Pφ space where∆ is above the stochastic threshold. The X
represents particles confined for 5000 transits, as determined by the ORBIT code. A *
arises when the two overlap.

4.4 Wave Particle Interactions

Let us consider the effect of the MCIBW on the particles. There are two ways to go about

calculating the interaction of the MCIBW and the particles. One approach would be to

assume that the interaction can be approximated by quasilinear diffusion, then determine

the quasilinear diffusion equation, and from that obtain expressions for the change in the

COM, much like was done with collisions. An alternate approach would be to derive a

mapping from the Hamiltonian of the particle, for the COMs, which would allow us to

investigate the approach to stochasticity (or at least estimate the stochastic threshold). In

the following section we use the quasilinear formalism to determine the increments to the
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COM and we estimate the requirements for the particle to be above stochastic threshold.

It will be useful to consider the action angle formulation of the problem, as done by

Kaufman (1972). This approach does not require bounce averaging of the quasilinear

equation for a homogeneous system, but directly incorporates the full particle dynamics.

4.4.1 Action-angle formulation

We consider a particle’s motion in a tokamak. The motion of theα-particles takes

place in a 6-dimensional space, however, the unperturbed motion is integrable, and thus,

action-angle variables for the motion can be found [KAUFMAN 1972]. The advantage of

these variables is that the unperturbed Hamiltonian can be written as

H = H0(J), (4.34)

where theJ ’s are the actions. It can be seen immediately that they are constant in time as

the Hamiltonian is independent of the canonical position coordinates,θ. The equations

for θ̇ are trivially integrated. In particular the momenta and coordinates are

J1 = µ θ1 = Ω1t+ θ1
0 (4.35)

J2 =

∮
dψt θ2 = Ω2t+ θ2

0 (4.36)

J3 = Pφ θ3 = Ω3t+ θ3
0, (4.37)

whereΩi = ∂H/∂J i. TheΩi represent, respectively, the gyrofrequency averaged over

a poloidal orbit, the bounce frequency,ωb, which is 2π divided by the time taken to

complete a poloidal transit and the toroidal precession frequency,ωd, which is the amount

of φ precessed in one poloidal orbit divided by the bounce time.

Consider the interaction of particles with a perturbation which is of the form

H = H0(J) +H1(J, θ, t) (4.38)

Note thatH1(J, θ, t) is deceptively simple. In reality it represents the perturbation felt by

the particle as it goes along its unperturbed orbit. Unlike a more standard representation
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of the perturbation, i.e.H1(r, t), which only depends on the three position variables and

time, this representation depends, in general, on all six variables and time.

4.4.2 Quasilinear diffusion in action-angle variables

The approach we take here is to derive the quasilinear diffusion in action angle variables

and then transform the diffusion operator toε, µ, andPφ space. Now, following Kauf-

man (1972) or Eriksson and Helander (1994), the quasilinear diffusion equation for this

system is:

∂f

∂t
=

∂

∂J i
Dij ∂f

∂J j
(4.39)

Dij = π
∑
n,ω

|H1(J,n, ω)|2δ(ω − n · Ω)ninj (4.40)

and

H1(J,n, ω) =
1

(2π)4

∫ ∫
H1(J, θ, t)e

−iωte−in·θdtd3θ. (4.41)

Now let us consider the form ofH1 for the MCIBW. First we write downH1 in

terms of real space variables and then map toJ, θ.

We take the MCIBW to be an electrostatic wave which is localized in a narrow

layer between two|B| surfaces. The details of the MCIBW modeling are discussed in

Chapter 6, Sec. 6.3. The ray tracing we use for the MCIBW assumes that the MCIBW

changes most rapidly in direction of∇B which can be taken to be−R̂ for the purposes

of a 1-d slab geometry. In the slab,kz is preserved, however, there is a projection ofkx

ontok‖ due to the poloidal field of the wave, which is important for the wave dynamics

and wave particle interaction. In the tokamak the toroidal component of the wave,nφ is

conserved. We separate out that part of the wave phase. We take the wave phase, S, to be

S =

∫ X

dX ′ · kX(X ′) + nφφ− ωt+ φ0, (4.42)
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where X is theR̂ direction in the tokamak. Thus, the form of the potential we take is:

Φ = Φ0(r)e
iS, (4.43)

whereΦ0(r) is both slowly varying and independent ofφ. Note that we can write∇S as

∇S = kX(X)

(
∂X

∂θ
∇θ +

∂X

∂ψ
∇ψ

)
+ nφ∇φ (4.44)

∇S = k⊥e1 +
(
b̂ ·∇S

)
b̂ (4.45)

k2
⊥ = k2

X +
n2
φ

R2
− k2

‖, (4.46)

wheree1 is a unit vector perpendicular to the magnetic field andk‖ is given by

k‖ = b̂ ·∇S = nφ
q

JB
+ kX

1

JB

∂X

∂θ
. (4.47)

In the large aspect ratio limit,k‖ becomes

k‖ = nφ/R0 + kX
ε

q
sin θ. (4.48)

If the second term in the above equation is of opposite sign to the first andkX becomes

large enough,k‖ can flip (i.e. change) signs from the sign it had when launched. The so

called “k‖ flip” is very important to the viability of theα-channelling effect by means of

the MCIBW as discussed in Sec. 5.5.

The perturbation,H1 is just qΦ. Let us separate out the fast gyro-motion and

the slower guiding center motion. The position of the particle can be written asX =

Xg.c. + ρ. Then

H1 ≈ Φ0(Xg.c.)e
i(S(Xg.c.)+ρ·∇S) (4.49)

= Φ0(Xg.c.)e
iS(Xg.c.)eik⊥ρ sinα (4.50)

= Φ0(Xg.c.)e
iS(Xg.c.)

∞∑
l=−∞

Jl(k⊥ρ)eilα (4.51)

whereα =
∫ Xg.c. Ωdt, andΩ is the gyrofrequency at the guiding center of the particle.
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We can now calculateH1(J,n, ω) from Eq. (4.41). Because of the assumptions

above,Φ0 is independent of the angleθ1, andθ3. Thus ,

H1(J,n, ω) =
1

(2π)3

∞∑
l=−∞

∫
Φ0(θ

2,J, ω)ei(
RXg.c dX ′·kX(X ′)+nφφ+φ0)Jl(k⊥ρ)eilαe−in·θd3θ,

(4.52)

where the Fourier transform in time has already been performed. The integrations over

θ1 andθ3 can be written as

H1(J,n, ω) =
1

(2π)3

∞∑
l=−∞

∫
dθ2Φ0(θ

2,J, ω)ei(
RXg.c dX ′·kX(X ′)+φ0)Jl(k⊥ρ)e−in

2θ2

×
∫
dθ1eilα−n

1θ1
∫
dθ3einφφ−n3θ3 (4.53)

Note thatα andφ can be written as

α =

∫ t

Ωdt = Ω1t+

∫ t

(Ω − Ω1)dt = θ1 + f(θ2, ...) (4.54)

φ =

∫ t

φ̇dt = Ω3t+

∫ t

(φ̇− Ω3)dt = θ3 + g(θ2, ...), (4.55)

so that the integrals overθ1 andθ3 can be simplified. This has interesting implications for

a wave with one value forn1, n3, andω. It means thatH1(J, θ, t) ∝ F (J, θ2)e−i(n
1θ1+n3θ3−ωt).

Returning to the Hamiltonian, by dividing the time derivative ofJ i by the time derivative

of H, it is now easy to show relationship

dJ i

dH
= −∂H1/∂θ

i

∂H1/∂t
. (4.56)

Because of the simple form ofH1 for the case of a wave with one value forn1, n3, and

ω, it is easy to show

dµ

dε
=
n1

ω
(4.57)

dPφ
dε

=
n3

ω
, (4.58)

which can be trivially integrated. Eqs. (4.57) and (4.58) describe how a particle will stay
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on a line inε, µ, andPφ space when interacting with a single wave!

Also, note that the remaining integral overθ2 can be converted to an integral over

time (sincedθ2/dt = ωb), leading to an expression forH1 which is:

H1(J, n,n
2, nφ, ω) =

1

τb

∞∑
n=−∞

∫
dtΦ0(θ

2,J, ω)Jn(k⊥ρ)

× ei(
RXg.c dX ′·kX(X ′)+n

R t Ωdt+nφ

R t φ̇dt−nΩ1t−n2θ2−nφΩ3t+φ0) (4.59)

Note from Eq. (4.40), thatD is proportional toδ(ω−n ·Ω), thus everywhere inD we can

replace(n1Ω1 + n2Ω2 + n3Ω3) with ω, including in the expression forH1. We combine

all of the terms in the phase to get:

H1(J, n, n
2, nφ, ω) =

1

τb

∞∑
n=−∞

∫ τb

0

dtΦ0(θ
2,J, ω)Jn(k⊥ρ)eiφn(t) (4.60)

dφn
dt

= kX (Xg.c)vXg.c.X
+ nΩ + nφφ̇− ω (4.61)

dφn
dt

≈ k‖v‖ + nΩ− ω (4.62)

d2φn
dt2

≈ vg.c. ·∇(k‖v‖ + nΩ− ω) =
v‖
JB

∂

∂θ
(k‖v‖ + nΩ),

(4.63)

where the drifts are neglected compared to the parallel motion. Note that|ωτbH1| is the

magnitude of the energy change,∆ε, the particle would receive on passing through the

wave region (which we will return to later).

4.4.3 Stochasticity

An additional, subtlety involves the summation of Eq. (4.39). This sum has already

been collapsed, because we know thatn1 = n the harmonic at which the particle is

resonating. Alson3 = nφ. What remains is just calculating the sum overn2 and dealing

with the δ function. Theδ function arises from the quasilinear theory which assumes

that particles are on unperturbed orbits, and therefore a particle only diffuses if it exactly

satisfies resonance. There are two distinct ways in which the resonance is broadened
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physically. Extrinsic broadening could occur due to collisions or a varying wave state

due to a turbulent plasma, or possibly even noise intentionally induced at the antenna.

Intrinsic broadening could arise from the nonlinear change in the particles motion due to

the kicks themselves. Here we estimate the amplitude of the kicks required to produce a

broadening of the resonance. Equivalently, how large must the nonlinear islands around

each resonance be in order to overlap each other, and thereby cause the motion of the

particles to be stochastic?

Let us determine the wave field necessary for two adjacent resonances to overlap.

To begin with, note that points inJ space can be mapped toε, µ, andPφ space (really we

only needε(µ, J2, Pφ) sinceJ1 = µ andJ3 = Pφ). Let I denote a point inε, µ, andPφ
space. Then, in this space, consider two pointsI andI + ∆I, which satisfy resonance,

i.e.,

ω = nΩ1(I) + n2ωb(I) + nφωd(I) (4.64)

ω = nΩ1(I + ∆I) + (n2 + 1)ωb(I + ∆I) + nφωd(I + ∆I). (4.65)

Subtracting these two equations, and expanding to first order in∆I, we find

∆I ·∇I(nΩ1 + n2ωb + nφωd) = −ωb. (4.66)

As discussed above the diffusion path for particles interacting with a single wave must

occur along a line inε, µ, andPφ space. Thus, the∆I satisfy:

∆I =




1
n
ω
nφ

ω


∆ε, (4.67)

so that Eq. (4.66) can be rewritten as

∆εs =
−ωb

L(nΩ1 + n2ωb + nφωd)
(4.68)

L =
∂

∂ε
+
n

ω

∂

∂µ
+
nϕ
ω

∂

∂Pφ
. (4.69)

Now the islands will overlap, i.e. theδ function will be broadened if∆ε > ∆εs, where
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∆ε is a typical kick given by the MCIBW. For illustrative purposes, consider a passing

particle in a high aspect ratio tokamak. Then, converting back to real units for a moment,

it is easy to see thatΩ1 = Ω0, ωb = |v‖|/(qR0), andωd = v‖/R0. For simplicity, we

assumeq is constant. Evaluating the resonance condition and the derivatives specified

above, and noting that sinceq is taken constant the derivative with respect toPφ vanishes,

we get (again with physical units for clarity):

ω = nΩ0 + |v‖|n
2 + nφσq

qR0
(4.70)

L(nΩ1 + n2ωb + nφωd) =

(
1− nΩ0

ω

)
n2 + nφσq

q|v‖|R0
, (4.71)

whereσ is the sign of the parallel velocity. Expressing the resonance condition in a more

convenient form,

ω − nΩ0

v‖2
=
n2 + nφσq

q|v‖|R0
, (4.72)

and substituting into Eq. (4.68), we find:

∆εs =
2λ2εωb(

1− nΩ0

ω

)2
ω
, (4.73)

whereλ is the pitch of the particle. A similar analysis for deeply trapped particles at high

aspect ratio (which haveΩ1 = Ω0, ωb =
√
εε/(qR0), andωd = qε/(εR0) ) gives

∆εs trapped =
2εωb(

1− nΩ0

ω

)
ω

=
1

λ3

(
1− nΩ0

ω

)√
ε

2
∆εs passing, (4.74)

where hereλ is the pitch of the passing particle.

For stochastic threshold we require that kicks given to the particle by the wave

be greater than∆εs. While this is only a crude calculation, it shows that the stochastic

threshold is increasing quickly with energy (ωb ∝ √
ε, implying ∆εs ∝ ε3/2 for both

passing and trapped particles). Furthermore, the kicks given to the particle (as we shall

see later) decrease with increasing particle energy. Thus, for some high enough value

of the energy,∆εMCIBW < ∆εs, and the motion will no longer be stochastic. Note that
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while trapped particles also have a stochastic barrier at high energy (in the high aspect

ratio limit), their stochastic threshold is typically much less than the threshold for passing

particles and thus they will be stochastic to much higher energies than passing particles.

This barrier at high energy was discussed in the context of particles in a mirror

machine by Rosenbluth (1972) and is called superadiabaticity (even though the particles

are in the presence of a perturbation with frequency large enough to break their adia-

batic invariant, the invariant still holds). Note that the island widths calculated above

included only one toroidal mode number and adding more mode numbers should de-

crease the spacing between resonances, thereby decreasing the threshold for stochastic

overlap, conversely increasing the energy at which the particles are superadiabatic. For

now, we consider energies low enough that the islands overlap and therefore the sum

of n2 in Eq. (4.39) can be formed yielding just1/ωb. In practice, some advantage to

α-channelling might occur if the particles were superadiabatic at high energies; this is

discussed in Chapter 8.

4.4.4 Quasilinear diffusion coefficient

Returning to the diffusion equation, for convenience, we substitute∆ε/(ωτb) for H1 .

Then,D, the QL diffusion coefficient is

D =
π

ωb

∑
n,nφ,ω

|∆ε|2
ω2τ 2

b




n× n
n(ω−Ω1 n−nφ ωd)

ωb
nnφ

n(ω−Ω1 n−nφ ωd)
ωb

(−ω+Ω1 n+nφ ωd)
2

ωb
2

nφ (ω−Ω1 n−nφ ωd)
ωb

nnφ
nφ (ω−Ω1 n−nφ ωd)

ωb
nφ

2



(4.75)

where, as in Eriksson and Helander (1994), theδ function has been used to eliminate

n2 everywhere and the sum overn2 has been performed. Now that we haveDij for the

action-angle variables we must transform it toε, µ, andPφ space. Following Eriksson

and Helander (1994), Eq. (4.39) is transformed to

∂f

∂t
=

1√
g

∂

∂I i
√
gD̄ij ∂f

∂I j
(4.76)

D̄ij =
∂I i

∂Jk
∂I j

∂J l
Dkl = GDGT , (4.77)
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where
√
g is the Jacobian of the mapping fromI to J which is1/ωb for I i = (ε, µ, Pφ),

and

G =
∂I i

∂Jk
=




Ω1 ωb ωd

1 0 0

0 0 1


 . (4.78)

Note that at this point a significant simplification of the above formula takes place,

GDGT =




ω2 nω ω nφ

nω n× n nnφ

ω nφ nnφ nφ
2


 (4.79)

So that, in the end the equation takes on the remarkably simple form:

∂f

∂t
=

1

τb

∑
n,nφ ,ω

L
|∆ε|2

2
Lf, (4.80)

whereL is defined in Eq. (4.69) above. The fact that only the operatorL enters into the

equations as above arises from the fact that a single wave diffuses a particle along a line

in ε, µ, andPφ space. Equivalently the microscopic kicks satisfy Eqs. (4.57) and (4.58).

Now we can calculate the stochastic and deterministic components (diffusive and

drift terms) in much the same way as was done for collisions. We get a drift term and a

diffusive term as in Sec. 4.2. For ease of presentation defineβε = 1, βµ = n/ω, βPφ =

nφ/ω then

hi =
∑
n,nφ,ω

1

τb
L
|∆ε|2

2
βi (4.81)

dσij
dt

=
∑
n,nφ,ω

|∆ε(n, nφ, ω)|2
τb

βiβj (4.82)

g =




√
σ̇εε 0 0

σ̇εµ√
σ̇εε

√
− σ̇2

εµ

σ̇εε
+ σ̇µµ 0

σ̇εPφ√
σ̇εε

−
σ̇εPφ

σ̇εµ

σ̇εε
+σ̇µPφr

− σ̇2
εµ

σ̇εε
+σ̇µµ

√
σ̇PφPφ

+
−2 σ̇εPφ

σ̇εµ σ̇µPφ
+σ̇εε σ̇2

µPφ
+σ̇2

εPφ
σ̇µµ

σ̇2
εµ−σ̇εε σ̇µµ


(4.83)
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For a singlen, nφ, ω the expression forg collapses to just the first column, signifying

again diffusion along a line inε, µ, andPφ space, for multiplen, nφ, or ω diffusion will

take place in three dimensions. The expressions for a single wave are:

hi =
1

τb
L
|∆ε|2

2
βi (4.84)

g =




1 0 0
n
ω

0 0
nφ

ω
0 0


 |∆ε|2

τb
(4.85)

4.4.5 Calculation of the diffusion coefficient for the MCIBW

We now calculate∆ε for the MCIBW. This can be done using a stationary phase cal-

culation to evaluate Eq. (4.60). For now we consider interaction with only onen, nφ, ω.

Assuming only a singlen andω is well justified for the case we are considering. Typ-

ically an energetic particle can only resonate with a low frequency wave (ω < 2Ω0), at

one value ofn for an aspect ratio 3 reactor, where the magnetic field varies only by a

factor of two across the plasma. For low aspect ratio tokamaks or high harmonic opera-

tion or both, ions can resonate with a single frequency wave at many different cyclotron

harmonics across the plasma. The single frequency approximation is well satisfied as

typically δω/ω < 1%. Thenφ spectrum in the plasma is determined by the spectrum of

the antenna at the wall, and it typically is not very narrow for present day experiments.

The stationary phase calculation will tell us how much of a kick the particle

receive whenω−k‖v‖−nΩ = 0. While in an infinite homogeneous plasma the particle’s

time in resonance would only be limited by nonlinear effects, in a tokamak there are a

number of factors which can cause a resonant particle to dephase. For example, in a

tokamakΩ ∝ B and thus as a particle moves across the field, it slips out of phase with the

wave because of its changing gyrofrequency. Another dephasing source, which typically

is not important, is the variation ofk‖v‖ due to the dependence ofv‖ onB. Finally, for

the MCIBW,kx [VALEO and FISCH 1994] is varying rapidly as a function of position at

the ion-ion hybrid layer, and, as we have seen (Eq. (4.47)), this has a component parallel

to the field. The rapid variation ofkx leads to a rapid variation of k‖ [VALEO and FISCH
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1995], and this in turn limits the amount of time the particle is resonant. Considering

this, the value for∆ε (assuming the particle satisfies the resonance condition) is

∆ε = qωΦ0(rg.c.)e
iϕ0Jn(k⊥ρ)

√
2π

v‖
JB

∂
∂θ

(k‖v‖ + nΩ)
, (4.86)

whereϕ0 is the phase of the interaction and all quantities are to be evaluated at the

location where the resonance condition is satisfied.

4.4.6 MCIBW benchmark

While the formulation of the MCIBW particle interaction appears similar to that of col-

lisions, there are also a number of subtleties which arise in its implementation. It is

important to identify and benchmark each simple limit of the complete problem.

In the case of one wave, it is easy to check that the particle moves along the

correct diffusion paths, since there are two conserved quantities. When more than one

nφ is present, the motion of the particle in (ε, Pφ) or (µ, Pφ) is no longer along a line,

but is a random walk in two dimensions. The COM simulation has been tested for these

conditions.

Certain subtleties arise when giving kicks to the particles. As outlined in Sec. 4.1,

when a particle is given a kick, it is necessary to ensure that the particle has not been

pushed outside the boundaries ofε, µ, andPφ space. When the particle is interacting

with the MCIBW it is also necessary to ensure that any kick given to the particle by the

MCIBW does not push the particle out of interaction with the wave. That is, the parti-

cle must still be able to satisfy resonance with the wave after receiving a kick from the

wave. This requirement arises from the microscopic reversibility of the motion (i.e. if

time were turned backwards the particle would be able return to its previous orbit). This

condition is probably not important for problems like ICRH, which have significant wave

fields across much of the plasma. These waves are thus resonant with most parts of phase

space, so that the likelihood of the particle getting kicked into a region of nonresonance

is small. However, for the MCIBW, which is both spatially localized and requires signif-

icant Doppler shift for interaction, it is very important, because particles can be pushed
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out of resonance or their orbits can be pushed so that they no longer cross the location of

the MCIBW. This condition is implemented by checking that the resonance condition is

still satisfied after every wave kick is given to the particle. Of course, in the presence of

collisions, this will not necessarily be true, but then it is the collisions which cause the

particle to get kicked out of resonance not the wave itself.

4.4.7 Collisionless diffusion

There are both diffusive terms and drift terms acting on the particle due to the wave.

By diffusive, we mean terms in the Langevin equation for the change in the particles

constants of motion which are multiplied by a stochastic random variable. The drift

terms are deterministic. In terms of a one dimensional Fokker Planck equation:

∂f

∂t
= − ∂

∂ε
A(ε)f +

1

2

∂2

∂ε2
D(ε)f (4.87)

Assuming the principle of dynamic equilibrium or microscopic reversibility of the kicks

[ZASLAVSKY 1985],A = 1/2 dD/dε, and Eq. (4.87) can be rewritten as

∂f

∂t
=

1

2

∂

∂ε
D(ε)

∂f

∂ε
(4.88)

Then the change ofε in some time∆t can be written as:

∆ε =
∂D

∂ε

∆t

2
+
√
D∆tζ (4.89)

whereζ is a Gaussian random variable with mean zero and variance one. The term

proportional toA is a drift term and the term proportional to
√
D is a diffusive term. From

Eq. (4.88) the steady state solution of this equation with reflecting boundary conditions is

clearlyf(ε) constant. It is interesting to see how the solution is consistent with a nonzero

drift. SinceD(ε) is varying as a function ofε, the drift must be present to ensure that

f(ε) is a constant in steady state. In the absence of the drift term, one would expect that

particles would spend the most time whereD is small and little time whereD is large,

and thus the density would not be flat along this line in phase space. The drift term acts to

exactly counteract this effect, ensuring that the density of the particles is constant along
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the diffusion path. The energy dependence of the diffusion coefficient does not alter the

steady state solution, rather the dependence ofD on energy changes the time it takes for

the distribution to relax to the steady state.

A very useful benchmarking tool is to consider a single initial condition interact-

ing with a wave that has just one (nφ, ω) and take the diffusion coefficient to have an

analytical form. Interacting with just onenφ and oneω means that the diffusion path is a

line. If this line inε, µ, andPφ space (the diffusion path of the wave) intersects the wall,

then the steady state solution off along this path will be zero, i.e., eventually all of the

particles will leave and hit the wall. If, on the other hand, the diffusion coefficient goes

to zero somewhere along this line then the distribution function will flatten in the areas

of nonzeroD. If the diffusion coefficient takes on a simple form, the diffusion equation

can be solved analytically, providing a benchmark for the code. We now formulate this

one dimensional problem. Consider Eq. (4.80), recalling the form ofL from Eq. (4.69).

We want to make this explicitly one dimensional, by a change of coordinates. Consider

the coordinate system

L =
∂

∂ε
+
n

ω

∂

∂µ
+
nϕ
ω

∂

∂Pφ
(4.90)

u = Pφ − nφ
ω
ε (4.91)

v = µ − n

ω
ε (4.92)

w = ε, (4.93)

clearly Lu=Lv= 0, while Lw=1, therefore we can substituteL = ∂/∂w. Since we

are considering one initial condition, it is easy to determine the boundary conditions.

Below some energy,εthreshold, the particle will not be able to resonate with the wave,

while at some high energy,εloss, the particle will hit the wall. Finally, for the simplest

comparison, we measure time in units of the bounce time,dN = dt/τb. Then Eq. (4.80)

can be rewritten

∂f

∂N
=

∂

∂w
D(w)

∂f

∂w
(4.94)

f(wloss) = 0,f ′(wthreshold) = 0. (4.95)



74 Chapter 4. Constants of Motion Simulation

0 50000 100000 150000 200000
Number of Poloidal Orbits

1

2

3

4

5

L
os

se
s

HA
.U

.L

Figure 4.7: Comparison of an analytical calculation (line) and the COM simulation
(points) results of the losses versus time for a single particle interacting with a single
wave.

This equation is separable in the variablesN andw. The second order differential equa-

tion inw is a Sturm-Liouville problem that can be expanded in eigenfunctions [RISKEN

1989b]. The steady state solution isf(w) = 0, but we are interested in comparing the

time behavior of the losses to those of the code. ForD(w) constant, the solution is quite

simple:

f(w, t) =
∞∑
n=0

an cos

(
(2n + 1)π(w − wthreshold)

2(wloss −wthreshold)

)
e
− (2n+1)2π2Dt

4(wloss−wthreshold)2 ,

(4.96)

where thean are determine by the initial conditions. Using this form we can calculate

the fraction of particles lost by computing the flux through the boundaryw = wloss. This

can be compared to the predictions of the COM simulation for the same configuration.

In Fig. 4.7 the analytical flux is shown as a solid line. The points are obtained by binning

the loss times of 10000 instances of a single particle from the COM simulation. The

agreement is quite good, confirming that the code is operating correctly with a constant

diffusion coefficient.

It is also useful to investigate a case whereD(w) is not constant, as such a case
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Figure 4.8: Comparison of an analytical calculation (line) and the COM simulation
(points) results of the losses versus time for a single particle interacting with a single
wave.

will have drift terms as well as diffusive terms. We takeD(w) ∝ 1/w, modeling a diffu-

sion coefficient which might arise naturally if the particles interacted with the wave over

a fixed distance, and therefore had a time in resonance inversely proportional to velocity.

The eigenfunction expansion is now more complicated (it is in terms of Bessel func-

tions,J−2/3, J2/3), but can be done easily enough by Mathematica [WOLFRAM 1996]. In

Fig. 4.8 the losses versus time are plotted. Again the agreement is quite good. Note that

the drift terms are important. In this case, the drift is in the negativew direction, acting

to hold the particles in. (When the simulation is run with the drifts turned off, the mean

exit time is 30% shorter than the exit time with the drifts present.)

While this validates that the code is working for simple forms of the diffusion co-

efficient, there is a more subtle problem which arises when using the calculated diffusion

coefficient, Eq. (4.86), in the presence of several waves. This problem arises because

particles can fall in or out of resonance with the waves, either by changing their velocity

or changing their orbits, so that they no longer intersect the mode conversion layer of

one of the waves. When this happens, the diffusion coefficient changes quickly from one

time step to the next. In these cases, the drift term may not be treated correctly, unless

considerable care is exercised.
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Figure 4.9: A diffusion coefficient with a large jump, as might arise when a particle starts
resonating with more than one wave.

For illustration purposes consider a stepwise constant diffusion coefficient case.

The diffusion coefficient versusw is shown in Fig. 4.9. To identify the problem such aD

causes, it is useful to plot the steady state distribution function, thus we put an artificial

barrier atw = 6.0 so that the particles do not hit the wall. We then plot the distribution

function, which is obtained by sampling many instances of the same particle at different

times and then binning the resulting distribution ofw’s.

First we consider the distribution function for constantD, shown in Fig. 4.10.

Note that the distribution is quite flat, in accord with our expectation. The dark line in

Fig. 4.11 shows the distribution function in steady state for the diffusion coefficient in

Fig. 4.9. Obviously this is not a constant, and therefore not a valid solution. The origin

of the discrepancy turns out to be that particles go from one region to the other without

feeling the effects of the changingD arising from the sharp jump.

This discrepancy could be mitigated if this jump were smoothed (although this is

somewhat complicated for the COM simulation since it is not always easy to determine

where jumps will occur), and the time step were chosen small enough so that every

particle would “feel” the jump as it stepped across it. The time step required can be

determined by ensuring that a typical step is small compared to the spatial scale on which
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Figure 4.10: The distribution function for the case of constant diffusion coefficient.
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Figure 4.11: The distribution function obtained by the simulation when the diffusion
coefficient is as shown in Fig. 4.9. The dark line is the unmodified code, the light line
the distribution function when a suitable average of the diffusion coefficient is used.
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D changes. Define

LD =
D
∂D
∂w

. (4.97)

Then we want

∆x ≈
√
D∆t < LD. (4.98)

This however can become computationally prohibitive, especially ifLD is small, since,

if we are interested in diffusing things across a distance scaleLw (in our case the amount

of energy the particle gains before hitting the wall), the number of time steps goes like

(Lw/LD)2. Of course it would be possible to come up with an adaptive method which

took small time steps only whereD was changing rapidly.

An alternative is an implicit method for determining what kick to give the particle.

That is to say, give the particle a trial kick, determine what the diffusion coefficient is

where it ends up and then give the particle a kick based on the average of the diffusion

coefficients where it starts and where it ends up. This would have to be iterated upon

to ensure that the trial location is close to the actual location that the particle jumps to.

While these iterations involve more computation, it is possible to take longer time steps

than those used in the method above which explicitly uses the current location of the

particle for the calculation ofD and its derivative.

This method has been implemented approximately (with only one iteration) and

benchmarked. The light curve in Fig 4.11 shows the resulting distribution function. Note

that the curve is still not flat, but it is much closer than the explicit scheme previously

used.

It is also possible to calculate analytically the losses vs. time for the diffusion

coefficient shown in Fig. 4.9. The calculation is essentially the same as the calculation

outlined earlier, except that the differential equation is solved separately in the different

D regions and then the solution is matched at the point whereD jumps, giving a condition

for the eigenvalues.

Fig. 4.12 shows the result of our comparison between the COM simulation with
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Figure 4.12: Comparison of an analytical calculation (line) and the COM simulation with
the explicit scheme (points) for the case ofD discontinuous.

the explicit scheme and the analytical calculation. For this case, it is clear that particles

are getting “stuck”, since the mean time for the particles to leave is almost twice the

mean exit time of the analytical calculation. Furthermore there is a long tail on the

simulation results making the standard deviation of the loss time about twice that of the

analytical calculation. Note that withD being discontinuous, there is no way of taking

small enough time steps to satisfy Eq. (4.98).

Fig. 4.13 shows the losses calculated from the approximately implicit method. In

contrast, they agree rather well with the analytical calculation, except for the reduction in

the peak. The mean and standard deviation of the loss time from the simulation is about

15 % larger than those of the analytical calculation. However, in view of the accuracy

of other parts of the calculation such an approximation is within acceptable limits (more

accuracy could be had using a fully implicit time step).

4.4.8 Calculation of diffusion due to toroidal Alfvén eigenmodes

The action-angle formalism is useful when investigating the interaction ofα-particles

with toroidal Alfvén eigenmodes, and their various relatives. For toroidal Alfv´en eigen-
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Figure 4.13: Comparison of an analytical calculation (line) and the COM simulation with
the implicit scheme (points) for the case ofD discontinuous.

modes,ω is much less than the gyrofrequency and thereforeµ is conserved. Also, unlike

the case above there is a discrete spectrum of waves. As we are interested in describ-

ing the motion with a diffusion equation, some care must be exercised since the discrete

spectrum suggests that the quasilinear diffusion approach may be invalid.

In fact, this problem is much more than just conceptual. It is a problem forα-

channelling. We are interested in using the toroidal Alfv´en eigenmodes to transport the

particles across much of the plasma, and thus it will be necessary for the islands associ-

ated with each mode to overlap throughout phase space. If this is accomplished then the

motion in the wave will be diffusive. This requirement will give a power requirement on

the toroidal Alfvén eigenmode independent of collisionality of theα-particles, since the

island width depends on the mode amplitude and the amplitude depends on the power.

This problem of discrete, well-separated, resonances manifests itself in the for-

mal quasilinear diffusion equation given in Eq. (4.39). Basically theδ function, which

can be integrated over for the MCIBW case, must remain in the case of toroidal Alfv´en

eigenmodes, where there is no resonance overlap. Thus the general form of the quasilin-

ear diffusion equation can be written as (using the form ofDql in ε, µ, andPφ space from
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above):

∂f

∂t
=
∑
nφ

1

τb
Lπ
∑
n2

ω2
b |H1(J, n

2, nφ, ω)|2δ(ω − n2ωb + nφωd)Lf

(4.99)

L =
∂

∂ε
+
nϕ
ω

∂

∂Pφ
(4.100)

This expression gives kicks only to particles which satisfy:

ω − n2ωb − nφωd = 0 (4.101)

Unlike the MCIBW case, the steps(inε, µ, andPφ) between resonances can be large and

thus the sum overn2 (which was used to eliminate theδ function ) cannot be performed

in the case where stochastic overlap does not occur.

At this point two approaches can be taken, one is to assume that stochastic over-

lap will be reached via some external mechanism to get rid of theδ function. (This is

essentially what was done in an early version of the code.) Alternatively, one can con-

sider the effect of the naturally occurring resonance broadening terms. Berk et al. (1995)

did just this in developing a “line-broadened” quasilinear theory. The basic idea is to

broaden the resonance condition to some finite width, and allow diffusion to take place

in that region. If two resonances overlap than diffusion will occur across those two reso-

nances. Physically the broadening can be due to finite wave amplitude, finite growth rate

and finite collisionality. For the case we are interested in, where we assume the mode

is not growing, but rather the energy in the wave is being pumped in externally by an

antenna, we assume that the first effect is dominant. It is then possible to rewrite the

diffusion equation above as in Berk et al. (1996).

4.5 Collisional Evolution of the Beam Ion Distribution

As an example of a problem that would be quite time consuming using a guiding center

code consider the collisional evolution of the distribution of neutral beam injected parti-

cles. The initial distribution of the particles, i.e. the orbits they ionize on, can be obtained



82 Chapter 4. Constants of Motion Simulation

from a TRANSP run with special flags set [MCCUNE 1997]. This distribution is then

used in the COM simulation as the initial distribution of the beam particles. The density

and temperature profiles from TRANSP, as well as the magnetic equilibrium based on a

splined JSOLVER reconstruction of the TRANSP data is used. For this simulation 50000

particles were used. The runs shown here take about 1.2 hours of CPU time on a DEC

Alpha workstation, and have a time step of about 0.5 milliseconds. The total simulation

time is 0.1 seconds. Note though that particles are removed from the COM simulation

as they drop below a threshold energy (in this case near 15 keV), thus the CPU time per

step is reduced as time goes on, since fewer and fewer particles are simulated. Averaged

over the length of the run, only 20000 particles were simulated.

A typical run for 0.1 seconds with 1000 deuterons in TFTR would take ORBIT

about two to four hours on the CRAY C90, translating to 40 to 80 hours of CPU time for

a simulation comparable to the one above. Of course if just collisions are being simu-

lated the pitch angle scattering and slowing down times might be artificially increased in

ORBIT. Even in the presence of ripple, if one is only interested in the number of particles

lost, it is possible to throw out particles which enter in the stochastic ripple domain and

the simulation can be speeded up considerably [WHITE et al. 1996]. Furthermore the

more physics added to the COM code the longer it will take, although generally speaking,

calculating the bounce time dominates and thus the collisional and wave portions do not

add that much time. Also note that the situation will be different for different particles

and different machines, as ORBIT must resolve the particles’ motion around the torus,

and therefore it will take twice as much CPU time to simulate a 400 keV deuteron as it

will to simulate a 100 keV deuteron in the same device. On the other hand, the COM

simulation is constrained by the rate at which orbits are changing due to the perturba-

tions, for the most part independent of the speed of the particles, but simulating a system

with twice the collisionality may take twice as long in order for the COM simulation to

be resolved. Finally it is important to note that the COM simulation takes significantly

more overhead in its implementation than a guiding center code like ORBIT.

Figures 4.14, 4.15 and 4.16 show the evolution of the number of particles at a

given energy, the distribution of particles’λ, and the density of the particles versusψ at

20 millisecond intervals for TFTR shot 82601 which had only cogoing beam injection.
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Figure 4.14: The density of particles vs. energy at 20 millisecond intervals. The initial
peaks correspond to the full,1/2, and1/3 energy components of the beam. Time pro-
ceeds from light to dark. The total number of particles is decreasing since particles are
absorbed when they get to some threshold energy, in this case 15 keV.

4.6 Timing

There are three easy ways to speed up the COM simulation significantly. The first is that

the general geometry which is used expresses everything in terms ofψ andθ, however all

of our calculations of orbit quantities specifyψ andB. Thus, if we want to know, say the

R position of the particle at someψ, we currently calculateB, (fromBorb (ψ)), then do

a root finding to findθ which satisfiesB (ψ,θ)=Borb (ψ). This typically takes 10 calls to

B (ψ,θ). In principle thespline code which is used to create the spline representation

of the geometry could be modified to giveθ as a function ofψ andB. Looking at code

timing data this root finding and its associated function calls typically take up 60% of the

CPU time, this suggests that the run time could be reduced by a factor of nearly two by

implementing the more appropriate coordinate system.

The second thing which could be done is to calculate some quantities on a grid in

ε, µ, andPφ space before the run takes place and use look up tables and interpolations to

evaluate these quantities, rather than calculate integrals over the orbit at each time step.

This was suggested by Eriksson and Helander (1994) and it has been implemented in the
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Figure 4.15: The density of particles vs. pitch at 20 millisecond intervals. The initial
peaks arises because of coinjection of the beam particles.
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Figure 4.16: The density of particles vs.ψ at 20 millisecond intervals.

FIDO code by [CARLSSON, HELLSTEN, and ERIKSSON1996; CARLSSON, ERIKSSON,

and HELLSTEN 1994], who obtained an order of magnitude speed up.

Finally, this code has only been run on a Sun UltraSparc or Dec Alpha worksta-
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tion up until now. The program should be easily parallelizable due to its nature (i.e. test

particle codes should parallelize easily). Furthermore the code has been written with-

out any machine specific routines, such as graphics or even numerical libraries, and thus

should be easily portable to a massively parallel machine.

4.7 Summary

The general problem of a particle of arbitrary orbit width interacting with waves and col-

lisions in a tokamak has been formulated and implemented in a Monte Carlo simulation.

In the next chapter this simulation will be applied to the study of howα-channelling

might possibly be implemented in a reactor. In Chapter 6 and Chapter 7 we will show

how the simulation can also be used to examine existing experimental data and firmly

establish key building blocks for theα-channelling effort.





Chapter 5

Reactor Scenario forα-Channelling

with Two Waves

T HE FIRST STEP TO ACHIEVING THE CHANNELLING effect is to

demonstrate that waves can be amplified as they cool theα-particles, with

theα-particles moving to the wall, where they are extracted at lower en-

ergy. This chapter addresses just this necessary first step, that is, how waves

might control an entire birth distribution ofα-particles.

Recall that the channelling effect is like shaking particles out of a bottle through

certain holes. The 3D volume here is the energy (ε), the magnetic moment (µ), and

the canonical angular momentum (Pφ) of the α-particles; the boundary of the bottle

corresponds to values of these constants of the motion for orbits intersecting the physical

boundary of the tokamak. Waves diffuse particles in this constants-of-motion space (ε-

µ-Pφ space). The trick is to devise plasma waves that shake most of theα-particles into

“holes” in the bottle at low energy. What is described in this chapter is how we used

our numerical code to discover promising parameter regimes forα-channelling and the

interesting features exhibited by collections of particles in response to the waves.

The chapter is organized as follows: In Sec. 5.1 we discuss the basics of the wave

particle interaction. We show that, while a single wave will not be able to accomplish

α-channelling, two waves acting in concert can extract significant energy from a single

87
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particle while bringing it to the wall. In Sec. 5.2, we show that two waves can be em-

ployed to extract significant energy from an entire distribution ofα-particles, not just a

single particle. We discuss what configuration of waves is able to accomplish this and the

key sensitivities of the energy extraction to variations in this configuration. In Sec. 5.4,

we describe the distribution of the exiting particles. Sec. 5.5 highlights the importance

of two assumptions that are taken for granted in this chapter. Sec. 5.6 summarizes this

chapter.

5.1 Basics

In Chapter 3 we discussed the diffusion paths ofα-particles interacting with waves in a

simplified geometry. We hypothesized that a single wave alone was unable to accomplish

theα-channelling effect in this simplified geometry, because of constraints on the slopes

of the waves, and showed that two waves might be able to accomplish the channelling

effect. In the toroidal geometry of the tokamak, one may wonder how much of the insight

from the simplified geometry is still relevant.

Actually, the insights carry over to a surprising degree. We consider the problem

in ε, µ, andPφ space. For a particle interacting with a wave with toroidal mode number

nφ and absorbing energydε, the particle’sPφ changes by

dPφ/dε = nφ/ω. (5.1)

For waves withω ∼ Ωα0, anα-particle will receive a kick in velocity ifω−k‖v‖ = nΩα,

wheren is the harmonic number andΩα is the localα-particle cyclotron frequency, such

that

d(µB0)/dε = nΩα0/ω ⇒ dε⊥/dε = nΩα/ω. (5.2)

Waves withω � Ωα0 (e.g. the toroidal Alfvén eigenmode, or TAE), leaveµ invariant.

Note that throughout this thesis we use TAE as a generic term for any low frequency

eigenmode.
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While the amplitude of the kick depends on the details of the resonant interaction,

the direction inε-µ-Pφ-space is completely determined by Eqs. (5.1) and (5.2). Thus, in

a toroidal geometry the problem becomes three dimensional with a complicated bound-

ary, however the diffusion paths remain straight lines in this space, as can be seen from

Eq. (5.1)-(5.2).

In analogy to the simplified problem, we can think of−Pφ as a radial variable

(although this is only strictly true in the limit ofε going to zero), with the center being

nearPφ = 0 and the wall atPφ =−ψwall. Note that the same constraints on using one wave

apply. In order to estimatenφ, consider∆Pφ ∼ −ψwall is needed to move anα-particle

to the wall. Assuming the maximum change in energy∆ε ∼ −ε0, from Eq. (5.1),

nφ ≈ ω

Ωα0

R2
0

ρ2
0

ψwall

B0R2
0

, (5.3)

in order to remove theα-particles from the reactor. For an equilibrium with large aspect

ratio A, ψwall/(B0R
2
0) ≈ 2/(qA2), implying nφ ≈ 1000 to get theα-particles to the

edge in a reactor sized tokamak withR0 ∼ 5 m, A = 3,B0 ∼ 6T andq = 3. Such

a largenφ is unachievable experimentally. Using only the TAE, which hasnφΩα0/ω ∼
(500−2000)nφ, produces the opposite concern, i.e.,α-particles ejected with little energy

extracted.

For example, consider extraction by the MCIBW alone. The MCIBW breaks

theµ invariant but is unable to drive theα-particle to the periphery ifnφ is too small. In

Fig. 5.1, we show the orbit of anα-particle interacting with an IBW wave withnφ = 50 in

a simple TFTR like geometry. The outer orbit is the largest orbit the particle can sample

and still be resonant with the wave. In this orbit, theα-particle has lost about 2/3 of its

initial energy and essentially all of its perpendicular energy. At this point, constrained

through Eq.(5.1), theα-particle can lose no more energy and so cannot quite make it to

the periphery. Theα-particle could be extracted either in a lower current equilibrium

(which reducesψwall) or in the presence of a higher mode number IBW. However, in

practice, lower current equilibria are not reactor relevant and higher mode numbers in a

TFTR-size tokamak would be difficult to excite efficiently.

Therefore, our investigations concentrated on using two waves in concert. Al-
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Figure 5.1: Poloidal cross section of orbit of a cogoingα-particle interacting solely with
a Mode Converted Ion Bernstein Wave (MCIBW). If the particle were to lose energy
under interaction with this wave it would move from the central orbit to the outermost
orbit, eventually losing 2.5 MeV.

most all the energy can be extracted from a singleα-particle through the use of two

waves [FISCH and HERRMANN 1995], one withω � Ωα0 (theα-particle cyclotron fre-

quency on axis) such as the toroidal Alfv´en eigenmode [CHENG et al. 1985; CHENG and

CHANCE 1986] and its relatives, and one withω ∼ Ωα0 such as the mode converted ion

Bernstein wave (MCIBW) [PARK et al. 1985] which has1 < Ωα/ω < 3/2 in deuterium-

tritium plasmas. The high frequency wave is able to break the adiabatic invariance ofµ,

and thereby diffuse the particle in perpendicular energy. The low frequency wave breaks

thePφ invariant, diffusing theα-particles radially. Ideally, the combination will diffuse

the particle to the tokamak periphery extracting both parallel and perpendicular energy.

However, unlike the case of one wave only [FISCH and RAX 1992a], with two waves,

there are no constraints on the particle motion, so that someα-particles may be heated

while others are cooled.

Let us see what happens to the same particle interacting with a MCIBW as in

Fig. 5.1, when a toroidal Alfv´en eigenmode is also introduced. The succession of orbits

in Fig. 5.1 assumes that between orbits theα-particle has lost energy to the wave ac-
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cording to Eqs. (5.1) and (5.2). The result is that theα-particle cannot reach the plasma

periphery by interacting only with this wave. Now consider instead the interaction of this

α-particle with only a TAE-like mode; in Fig. 5.2 such an interaction is depicted, where,

upon repeated interactions, theα-particle orbit can explore the set of orbits shown. The

α-particle begins near the plasma center at 3.5 MeV; it can then explore the outer orbits,

with the outermost orbit at 2.7 MeV. None of these orbits, however, intersects the plasma

boundary, so theα-particle remains bracketed in both position and energy.
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Figure 5.2: Poloidal cross section of cogoingα-particle interacting solely with a TAE like
mode. Parameters as in Fig 5.1. If the particle were to lose 0.8 MeV under interaction
with this wave it would move from the central orbit to the outermost trapped orbit. The
particle cannot proceed further because it would no longer be resonant with the wave.

The simultaneous presence of both of these waves, however, leads to different

behavior. In Fig. 5.3, we depict theα-particle succeeding in reaching the plasma periph-

ery, if both waves are present, and if theα-particle always loses energy upon resonating

with either wave. In this case, where all kicks are to lower energy, theα-particle loses

2.3 MeV to the waves before exiting at the plasma periphery.
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Figure 5.3: Same as Fig. 5.2 except theα-particle interacts with both the MCIBW and a
TAE like mode, exiting at the periphery with 1.2 MeV left.

5.2 Cooling Scenario with Two Waves

Of course, a set of waves that cools one particle may be ineffective on another particle,

or, worse yet, tend to heat other particles. How can we find an effective set of waves the

acts on the complete birth distribution? This search is expedited by first developing a

number of insights and and by using our quick turn-around simulations.

To develop these insights, we begin by demonstrating that a good, if not optimal

solution exists. Then we will explain the reasoning that guided us to this solution, as well

as how better solutions can be found by “perturbing” around this solution.

Consider the following promising case for a reverse shear tokamak reactor with

A = 3, R0 = 5.4 m,B0 = 6 T, andIp = 16.3 MA (this is a design which was consider

by the ARIES-RS team). In this “advanced” reactor, 70% of the energy of the ejected

α-particles (73% of those born) is diverted to waves, corresponding to 51% of theα-

particle power if we use both MCIBW and toroidal Alfv´en eigenmode. The location

of the waves and other wave parameters are discussed below. In Fig. 5.4 and Fig. 5.5,

the birth locations of 1000 3.5 MeVα-particles are shown in a fixed-energy slice of
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constants-of-motion space (see Appendix A for a discussion of this space). Those that

eventually reach the tokamak periphery are color-coded to show the total energy ex-

change with each wave. Particles remaining in the tokamak are shown in solid black.

The IBW (Fig. 5.4) extracts the most energy from those particles which have significant

amounts of perpendicular energy. In contrast, the TAE (Fig. 5.5), which must conserve

µ, extracts the most energy from those particles which have the most parallel energy. In

this case, only 0.2% of theα-particles were heated while being extracted.
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Figure 5.4: Energy extracted (MeV) by the IBW vs. initial location of particle in
constants-of-motion space. The IBW extracts an average of 1.14 MeV per ejectedα-
particle.

Of the 51% of theα-particle power extracted in this example, 28% goes into the

TAE and 23% into the IBW. This power flow might, in fact, sustain the wave amplitudes

necessary to cool theα-particles in a time short compared to the slowing down time as

discussed later

There are a number of idealizations in these simulations. Collisions are not

present, and the amplitudes of the kicks the particle receives from the waves is deter-

mined as an input parameter, rather than from a diffusion coefficient (these effects, which
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Figure 5.5: Energy extracted (MeV) by the TAE-like mode vs. initial location of particle
in constants-of-motion space. The TAE extracts an average of 1.30 MeV per ejected
α-particle.

are discussed in Chapter 4, were later added to the code and are included in the simula-

tion of the experiments discussed in Chapter 6 and 7). Thek‖ spectrum of the MCIBW

was taken from−nφ/R0 to nφ/R0, which was based on ray tracing calculations done by

Valeo and Fisch (1994). Thatk‖ can be opposite in sign tonφ [VALEO and FISCH 1994],

the so-called “k‖ flip,” is important because cogoingα-particles then satisfy a resonance

condition with the IBW that is correctly phased for energy extraction (see Sec. 5.5). For

the TAE mode, it is assumed that so many modes are present within a certain radius,

that all of the particles within that radius are diffused, eliminating the need for selecting

only certain particles through a resonance condition. In addition to specifying where the

mode exists, the value ofnφ/ω for the mode is specified. Although these assumptions are

crude, the diffusion paths used arepreciselycorrect for both the MCIBW and the toroidal

Alfv én eigenmode. The location of the waves which accomplished this effect are shown

in Fig 5.6. Where the light grey is the area over which the AE-like mode is assumed and

the dark grey area labeled 1 very near the edge is the region of the MCIBW.
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Figure 5.6: Location of waves for the two wave scenarios. The light grey is the area
over which the TAE-like mode is assumed to exist. The dark grey regions 1,2,3 represent
the location of the MCIBW for three different cases discussed in the text. The strange
shape of the MCIBW region 2 arises from the shape of the|B| surface in a reverse shear
plasma.

5.3 Other Two Wave Scenarios

Let us now examine how this choice of wave parameters gives a good result and what

ways of varying these parameters might even lead to a greater cooling effect.

We find that it is necessary for the MCIBW to be near the edge for significant

cooling to occur on average. When the MCIBW is located near the center, for example

in region 2 of Fig 5.6, almost all of theα-particles leave the plasma, (95% for this case)

in a fixed number of steps, but no net energy is extracted from the wave!

Upon closer examination, we can see that manyα-particles are heated by the

IBW before being ejected. While the TAE still extracts 20% of theα-particle power, the

net effect of the IBW is to heat theα-particles by almost that amount. By looking at

Fig 5.7 we see that nearly 50% of the particles leave the plasma after being cooled, while
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the other 50% leave the plasma after being heated significantly! Based on many different

runs, it seems that locating the MCIBW in the center is a poor strategy.

What is happening in all of these cases, of course, is that heating and cooling al-

ways occur simultaneously; however, in the good case, the heated particles do not hit the

wall. Let us think of the web of diffusion paths inε, µ, andPφ space. When the MCIBW

is located near the center, the resonant region in constants-of-motion space and diffu-

sion paths can connect to the boundary at energies significantly above the birth energy.

Random walks can easily be formed from the center to the edge which involve heating

rather than cooling. One way in which this can happen is for countergoing particles to be

heated up significantly. Because the phasing used isnφ > 0, this means they must move

in. However, if they are heated enough, they can cross the passing-trapped boundary,

giving them a large radial step outwards. Then they can freely interact with the toroidal

Alfv én eigenmode and continue on their way out of the plasma. Placing the MCIBW

at the edge, however, means that the particles which come out are cooled and generally

trapped by the time they reach the MCIBW layer. If they get heated by the MCIBW here,

they tend to move back in; whereas, if they get cooled, they tend to move out closer to

the wall. With the MCIBW very close to the edge, this tendency strongly favors paths

where particles get out by being cooled.
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Figure 5.7: Histogram of the energy extracted from particles when the MCIBW is near
the center.
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This is verified by simulations with the wave location as shown in Fig. 5.6 with

the MCIBW located in region 1. Now 64% of theα-particles are extracted, with, on

average, 1.8 MeV of energy given to the wave per particle, leading to a total of 34%

of theα-particle power given to the wave. It is also of interest to note that if the IBW

power is concentrated at point 3, results about the same as those achieved for power

concentrated at surface 1 can be obtained.

To gain further insight we depict in Fig. 5.8 the amount of energy extracted from

α-particles with different initialε, µ, andPφ coordinates. The full set of points represents

theα-particle birth distribution. We see that while the energy extraction is quite good

in some areas of phase space, the deeply trapped particles are not getting out at all.

Furthermore, little energy is being extracted from the particles which have lowµB0/ε

(deeply passing particles). By referring to Fig. 5.8 we can pinpoint the “problem”α-

particles, and then alter the wave characteristics so as to address these problems.

Recall that the toroidal Alfv´en eigenmode extracts mainly parallel energy from

the particles as it moves them out. The amount the particles are moved per unit energy

extracted is given by Eq. (5.1). For this 34% extraction casenφΩα0/ω = 3500 for all

values ofµB0/ε; however, this is not optimal. Ideally we would extract more parallel

energy by the toroidal Alfv´en eigenmode from those particles which have more parallel

energy and less from those which have less. This can be accomplished by tailoring the

value ofnφΩα0/ω vs.µB0/ε. For the case described initially, we usednφΩα0/ω = 3500

for particles withµB0/ε > .85, andnφΩα0/ω = 3500/3 for the remaining particles. This

choice of waves tends to maximize the energy extraction. The lower resonant frequencies

experienced by highµB0/ε particles [BIGLARI et al. 1992] are consistent with this

choice. The TAE then extracts almost all the energy from the particles withµ ∼ 0

(passing particles), while allowing some particles withµB0/ε ∼ .85 (trapped particles)

to be moved out far enough that they can interact with the IBW, which is located near

the edge for this simulation. This increases the amount of energy extracted from 34% to

51%, and increases the number of particles lost from 64% to 73%.

Further improvement can be had if we could tap the energy of the deeply trapped

particles that are not leaving the plasma. Fig 5.8 suggests that if these particles were

to get out, significant energy could be extracted from them. In order to determine why
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Figure 5.8: Energy extracted (MeV) by the both waves vs. initial location of particle in
constants-of-motion space for MCIBW near the edge, but no tailoring ofnφ/ω for the
TAE. Note that while almost all of the particles energy is being extracted from particles
near the passing trapped boundary (µB0/ε ≈ 0.85), particles which are deeply passing
(µB0/ε near zero) have significantly less energy extracted.

these particles are not exiting the plasma, we simulate one of these particles interacting

with both waves. To aid in understanding, the particle is given only cooling kicks. The

succession of orbits is shown in Fig. 5.9. Note that, as the particle moves out, its ba-

nana tips shrink towards the midplane. Recall that while the toroidal Alfv´en eigenmode

moves particles much greater distances than the MCIBW as it cools them, it still extracts

energy as it moves the particles out. However, the toroidal Alfv´en eigenmode can only

effectively tap the parallel energy of the particle. Once the particle runs out of parallel
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Figure 5.9: A succession of orbits of a deeply trapped particle interacting with the TAE.
All of the particle’s parallel energy is extracted before it can reach the MCIBW layer,
and thus it is stuck in the plasma.

energy, it can no longer be pushed out by the toroidal Alfv´en eigenmode. In this case,

these deeply trappedα-particles get stuck before they can reach the MCIBW layer and

thus are not able to leave the plasma and give their energy to the wave.

However, these deeply trapped particles might be taken out to the IBW layer, and

then extracted, through stochastic ripple diffusion [WHITE et al. 1996], which does not

extract energy or alterµ as it diffuses particles inPφ. To model this effect, the simulation

was modified so that particles withµB0/ε > 1.0 were treated as diffusing inPφ with

almost no energy extracted. Then, in contrast to 73% of particles extracted 93% ofα-

particles are now extracted, each cooled on average to 1/3 of their birth energy, with

61% of the total power going to waves! Figures 5.10 and 5.11 show the extraction vs.

ε, µ, andPφ for this case. In arriving at this case, note how important it is to be able to

pinpoint exactly where inε, µ, andPφ space the wave combination works well and where
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Figure 5.10: Energy extracted by the MCIBW when thenφ/ω for the TAE is tailored.

it did not.

In all of these simulations the TAE is chosen to exist only part of the way to the

wall, but, so long as the relative amplitudes of the MCIBW and TAE can be controlled,

the result is not significantly changed if the TAE extends to the wall. On the other hand,

if the location of the TAE does not overlap with the MCIBW layer, few particles would

be lost and little energy extracted.

5.4 Cooled Distribution at the Wall

The distribution function of the exitingα-particles exhibits interesting features. Fig. 5.12

shows the position in velocity space of theα-particles that hit the wall. Note the bunching
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Figure 5.11: Energy extracted by the TAE whennφ/ω for the TAE is tailored.

in v‖, with a range of perpendicular velocities.

Because the distribution is almost entirely cogoing or trapped particles, bunching

also occurs in the poloidal exit angle. In Fig. 5.13, the distribution of theα-particles on

the wall vs. poloidal angle is plotted where0◦ is at the outer midplane,180◦ at the inner

midplane and whether the loss occurs on the upper or lower half of the tokamak depends

on the direction of the∇B drift. The loss is on the outer midplane, because, if the wall of

the tokamak is a flux surface, cogoing ions whose orbits are slowly deformed outward,

no matter where they receive a kick from the wave, will eventually scrape off at0◦. In

contrast countergoing ions undergoing a slow deformation of their orbit will strike 180◦.

By making the size of the last kick theα-particle receives bigger (smaller), this loss can

be distributed (localized). One may also significantly alter the distribution of the losses

by changing the shape of the wall relative to the shape of the flux surfaces.
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Figure 5.12: Velocity space position for particles leaving the tokamak after having their
energy extracted. Semi-circles represent energies of 3.5 MeV and 1.75 MeV.

Note that in these simulations the amount of power flowing into the wall (20–

30%) is much larger than the expected tolerance of future reactors (1–5%), if the loss

is localized. While the loss might be tolerable if it were not localized, the interesting

challenge is to exploit the bunching in phase space for further energy extraction.

5.5 Two Key Questions

In the simulations which demonstrate that significant channelling can be achieved, sev-

eral assumptions were made. Two key assumptions are that the MCIBW experience a

k‖ flip and that the collisionless limit be applicable. These appear to be reasonable as-

sumptions. Ray-tracing calculations do predict thek‖ flip. At some wave power the

collisionless limit is certainly attained. Nonetheless, we do assume that thek‖ flip, in

fact, occurs and that the collisionless limit is attained at reasonable power levels. In

Chapter 7 we show that there is ample data to support these two assumptions.

In Sec. 5.5.1, we explain why thek‖ flip is necessary. In Sec. 5.5.2 and Sec. 5.5.3

we estimate the wave power flowing in the plasma that leads to the collisionless limit.
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Figure 5.13: Histogram of losses vs. poloidal angle in degrees forα-particles ejected by
the two wave scenario. Two cases are considered with the final kick varying by a factor
of 8.

5.5.1 k‖ flip of the MCIBW

Thek‖ flip of the MCIBW wave is a major part of what makes the MCIBW very attractive

as a candidate wave forα-channelling. This has already been discussed briefly in Sec. 4.4

and will be discussed in more detail in Sec. 6.3.1 and Sec. 7.1. Recall that what we mean

by a flip is that the parallel phase velocity of the launched wave is opposite in sign to the

parallel phase velocity of the mode converted wave.

That thek‖ of the MCIBW could flip sign if the effect of the poloidal field were

strong enough was noticed by Valeo and Fisch (1994). This can be seen as follows.

As discussed in Sec. 6.3.1, since the dispersion relation for the MCIBW changes most

rapidly in the direction of−X̂ after it mode converts, its wavelength in this direction will

become short. Recalling Eq. (4.47) from Chapter 4 in the large aspect ratio limit,k‖ is

just

k‖ = nφ/R0 + kX
ε

q
sin θ. (5.4)
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Even though the poloidal field is small compared with the toroidal field, i.e.,O(ε/q), kX
can become quite large for the MCIBW, and the second term ink‖ can become larger

thannφ/R0. In the event thatnφ/R0 andkXX̂ ·Bp are in opposite directions the sign of

k‖ can “flip”.

This peculiarity leads to desirable effects, both in terms of its damping on the

background fuel ions as well as its amplification by the fusion byproducts.

As pointed out by Valeo and Fisch (1994), this change ink‖ as the wave propa-

gates prohibits the wave from damping on the electrons, since the parallel phase velocity

of the wave is very large, in fact infinite at the point of flipping. Eventually, under certain

circumstances, the wave reaches large enoughk⊥ that it is able to damp on the thermal

tritium ions. Thus the wave avoids electron damping while it is amplified convectively,

finally damping on tritium. The ability of the waves which are amplified by theα-particle

power to heat ions is central to theα-channelling concept.

With respect to the wave amplification, note thatα-particles must interact with

nφ > 0 waves in order to move out while being cooled. To see this, note that a particle

moving from the center to the periphery of the plasma moves to lowerPφ (assuming its

drift from its flux surface is small compared to the tokamak minor radius). Then, from

Eq. (5.1),α-particles will cool as they leave the plasma only fornφ > 0. On the other

hand, forα-particles to interact with the MCIBW, they must satisfy resonance, which is

v‖ = (ω−Ωα)/k‖. Mode conversion in DT plasmas occurs to the high field side of theα-

particle gyroresonance layer, so thatω < Ωα. Thus, where the wave particle interaction

occurs,k‖ must be opposite the sign ofv‖. In particular, this implies that a cogoing,

passing deuteron resonates only with waves such thatk‖ less than zero. However, the

wave that was launched hask‖ greater than zero, implying that the cogoingα-particles

will not be able to resonate with the wave unless the wave undergoes ak‖ flip!

In practice, many of theα-particles are trapped by the time they reach the mode

conversion layer, if the MCIBW is located near the edge. This trapping arises from the

extraction of parallel energy by the toroidal Alfv´en eigenmode and the movement of the

particles out so that they feel a larger mirror ratio. In principle, the trapped particles

could interact either on their cogoing or countergoing legs, which diminishes (for some

α-particles) the need of thek‖ flip for particles to satisfy resonance. However, it is still
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useful to have thek‖ flip even for interactions with trapped particles, as can be seen

from Fig. 5.14. As the trapped particles cool upon interaction with the MCIBW, they

lose perpendicular energy and gain parallel energy, and thus eventually they cross from

trapped to passing. If they do so while interacting on their cogoing leg (k‖ flipped), they

become cogoing passing particles, while if they are interacting on their countergoing

leg, they become countergoing particles one full banana width inside of the cogoing

particle, making it that much harder to get the cooled particles to hit the wall. Also,

note that countergoing particles will hit the wall on the inner midplane, which may be

less desirable than having theα-particles hit the wall on the outer midplane as shown in

Sec. 5.4.
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Figure 5.14: Particle interacting with the MCIBW and becoming trapped. If it resonates
on the cogoing leg (k‖ flipped) it becomes a cogoing particle upon becoming passing.
If it resonates on the countergoing leg (nok‖ flip) it becomes a countergoing passing
particle.
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5.5.2 Power for the toroidal Alfvén eigenmode

In order to neglect collisions the energy stored in the TAE must be large enough to diffuse

theα-particles across the required region in a time short compared to theα-particle’s

slowing down time. Thus we need

Dε

ε2
α0νs

� 1 (5.5)

whereDε is the energy diffusion coefficient of theα-particles in the TAE,εα0 is the

birth energy of theα-particles, andνs is the energy slowing down rate of theα-particles.

One might suppose a further constraint on the stored energy, namely, that the islands

in ε, µ, andPφ space associated with the TAE be overlapped so that the particles can

diffuse across the affected region. For a fixed number of modes present, this would be a

requirement on the energy in the modes. However, this can be eliminated by increasing

the number of modes present, reducing the amplitude necessary for stochastic overlap.

Hence the inequality Eq. (5.5) gives the requirement inDε.

We can computeDε by extending the calculation of Wu [WU et al. 1995]. We

consider, in the high aspect ratio limit, a passingα-particle in a tokamak interacting

with a mode which hasA =A‖b̂ whereA‖(ψ, θ, ϕ) = Am(ψ)ei(nϕ−mθ−ωt) andΦ(ψ, θ, ϕ)

determined by requiring E‖ = 0. The frequency of the TAE is given byω = vA

2qR
whereq

andvA are evaluated at the value ofψ (poloidal flux) whereq = m+1/2
n

.

Then the expression for the rate of change of the energy of a particle near reso-

nance (keeping only the slowly varying term) is given by:

dε

dt
=
v‖ωt2

κ
sin(Θ) (5.6)

d2Θ

dt2
= ωt

2 sin(Θ), (5.7)

whereΘ = nϕ−(m−1)θ−ωt. The(m−1) term arises due to the wave resonating with

the particle drift motion, which hassin θ andcos θ dependence. The resonance condition
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is dΘ/dt ≈ (n− m−1
q

)v‖ − ω = 0. The parametersωt andκ are given by

ωt
2 = ωκv‖

(
1 +

v2
⊥

2v2
‖

)
B2 q2

2ε(nq −m)

(
1 +

ε2q′

q2(nq −m)

)(
δBψ

B

)
(5.8)

κ = n − m− 1

q
+

(m− 1)q′v‖
q2

(1− nv‖
ω

) (5.9)

whereq, the safety factor, andε, the local aspect ratio, are functions ofψ. Assuming that

the decorrelation time is approximately the trapping time (1/ωt) we get

Dε ≡ (∆E)2

2∆t
≈ v2

‖ω
3
t

2κ2
= C(n,m, ψ, v‖)

(
δBψ

B

)3
2

. (5.10)

This analysis gives an approximate value of the energy diffusion coefficient for

anα-particle which satisfies resonance with a given modem,n. Note that the resonance

condition is only satisfied locally (in fact at one particular value ofq). To estimate the

minimum amplitude required (so that the global diffusion ofα-particles from the center

to the edge takes place on a time scale short compared to the energy slowing down time),

we assume that manym’s andn’s are excited. For eachm andn there is aq for which

a cogoing 3.5 MeVα-particles is resonant. We take the mode amplitude to be nonzero

from the resonance point halfway to the next closest resonance point on both sides. We

then find theδBψ/B which ensures that Eq. (5.5) is satisfied across the plasma cross

section. For the reverse shear reactor we are considering here we find that at low values

of n (1–10),δBψ/B ≈ 3 × 10−4 satisfies the requirement above. At high values ofn

(20–50)δBψ/B ≈ 10−3 is necessary.

The power, PTAE, in the mode that produces a perturbationδB, is given by [BERK

et al. 1992],

PTAE = 2γd

∫
(δB)2

4π
dx, (5.11)

whereγd is the linear damping rate of the eigenmode. Assuming∂Am(ψ)
∂ψ

= 0 we find
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δBθ, δBϕ� δBψ. Evaluating the time average we then get

PTAE ≈ 2γd

∫ (
gψψδB

ψ2
)

8π
dx ≈ 2γd

(
δBψ

B

)2 ∫
gψψB

2

8π
Jdψdθdϕ.

(5.12)

We can express this in terms of a ratio of theα-particle power by multiplying byPατE
TE

= 1

where TE is the thermal stored energy of the plasma. Calling1/βM = 1/(8πTE)
∫
gψψB

2Jdψdθdϕ,

we can conveniently write

PTAE
Pα

≈ 2
γd
ω

(
δBψ

B

)2
1

βM
ωτE . (5.13)

Plugging in typical numbers for these quantities, withδBψ/B ≈ 3× 10−4, we find that

PTAE
Pα

≈ 26
γd
ω
. (5.14)

The range ofγd/ω has been experimentally measured in work by Fasoli [FASOLI

et al. 1996; FASOLI et al. 1996; FASOLI et al. 1995] to lie between10−4 and10−1.

The first scenario in Sec. 5.2 had 51% of theα-particle power going to waves, with 28%

of the totalα-particle power diverted to the TAE and the remainder to the IBW. Thus, a

value ofγd/ω < 10−2 should be sufficient for achievement of self-consistent steady state

operation.

Note that the requirement onDε may be even less stringent than Eq. (5.5). In the

51% channelling case, on average 1.3 MeV was extracted fromα-particles by the TAE

before they left. The perturbation amplitude above assumed 3.5 MeV must be extracted.

Thus the required wave amplitude could be reduced by(3.5/1.3)(8/3) reducing the power

dissipated by approximately 14. Of course, it is necessary to diffuse some particles the

whole 3.5 MeV by the TAE, and these would not exit in a slowing down time if PTAE

were 14 times smaller.

Note also that the radial mode extent was taken to be exactly right, so that no

power would be “wasted”, supporting the mode in regions where it was not diffusing the

α-particles. On the other hand, the diffusion coefficient shows considerable variability
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across the plasma minor radius for flatδBψ/B profiles. The level above was chosen so

that, at the minimum, the collisionless limit was satisfied. By tailoring theδBψ/B radial

profile so that the collisionless limit is never greatly exceeded, the required power might

be reduced reduced further from the estimate given in Eq. (5.14).

Note also that we considered only the steady state channelling. We showed that

the power flowing directly from theα-particles to the TAE in steady state appears to be

sufficient to maintain the necessary wave amplitudes. We did not address the initiation

of the channelling effect which requires external power to start. The external power

requirements may be significant, although it is possible that ways of bootstrapping the

α-channelling effect up from low power levels could be found.

5.5.3 Power for the MCIBW

The power in the MCIBW must also be sufficient to satisfy Eq. (4.60). An estimate for

Dε can be obtained from Sec. 4.4.4 and Sec. 4.4.5. Squaring Eq. (4.86) and dividing by

the bounce time we find

Dε ≈ q2Φ2
0Jn(k⊥ρ)

2

τb

2πω2

v‖
JB

∂
∂θ

(k‖v‖ + nΩ)
(5.15)

We now need an estimate forΦ0. The MCIBW is an electrostatic wave with

kX � k‖. Previous calculations [VALEO and FISCH 1994] have found that (for the cor-

rect poloidal phasing of the waves) damping is not significant until after the wave group

velocity goes through zero and it the wave reaches its maximum amplitude. For such a

convectively damped wave, the relevant field amplitude is determined by balancing the

incoming power with the wave energy flux. The cold plasma dispersion relation can be

used to estimate these quantities. The power fluxPX is then [STIX 1992]:

PX ≈ ω

8π
Φ2

0kXεXX (5.16)

In steady state this power will equal the power flux from the antenna,PIBW/A where A
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is the spot size in the plasma. Setting these two equal gives:

Φ2
0 ≈

PIBW
A

8π

ωkXεXX
. (5.17)

For the mode converted IBW the cold plasma dispersion tensor termεXX → 0 at

the mode conversion layer, so thatΦ0 blows up. While the derivation of Eq. (5.17) breaks

down at the mode conversion layer we can estimate the relevant amplitude by calculating

Φ0 one perpendicular wavelength before the resonance [VALEO and FISCH 1995]. Thus,

Φ2
0 ≈

PIBW
A

4

ω ∂εxx

∂X

. (5.18)

This expression can be plugged into Eq. (5.15) to obtain a diffusion coefficient which in

turn can be plugged in to Eq. (5.5) to estimate a power level. Plugging in some typical

numbers for the cooling scenario outlined Sec. 5.2 we find a power level of approximately

100 MW would be sufficient. In this scenario 23% of theα-particle power is diverted to

the IBW. For a 3 GW thermal reactor, with 600 MW ofα-particle power, the MCIBW

would be amplified by approximately 140 MW. Thus, in steady state, the diverted power

could support the IBW at the required amplitude. However, there are a number of ways

in which this calculation might change.

The requirement onDε may be less stringent than stated. The MCIBW in the

first scenario only extracted 1.1 MeV on average from the particles. If the diffusion

coefficient were set at a level which would diffuse only 1.1 MeV in a slowing down time

the power could be reduced by (3.5/1.1)2 ≈ 10. However this would sacrifice the cooling

of those particles which could be cooled by almost 3.5 MeV by the IBW.

An important effect for a self-consistent calculation would be to take into account

the distribution ofα-particles at the MCIBW layer near the edge. In the 51% channelling

case, on average 1.3 MeV was extracted fromα-particles by the TAE before they left.

Since the particles are first moved out by the TAE and then interact with the IBW, on

average, the IBW will be interacting with particles which are slower and tend to have

much of their parallel energy extracted. From the expression above forDε, such particles

would be expected to have higher diffusion coefficients since they tend to spend more
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time in resonance.

While the power flowing directly from theα-particles to the IBW in steady state

may be sufficient to maintain the necessary wave amplitudes, significant external power

will be necessary to get the channelling process started.

While these arguments suggest the collisionless limit is attainable at reasonable

power levels, only quite detailed calculations of the wave propagation, damping, and

wave-particle interaction can substantiate this assumption.

5.6 Summary

What has been shown here is that low frequency waves and ion Bernstein waves can act

in concert to extract upwards of 50% of theα-particle power from a tokamak reactor.

The best case reported here was 61% extracted, which was 2/3 of the energy from 93%

of the particles, with the other 7% remaining in the plasma.

This study has been done with a generic advanced tokamak reactor. If the bene-

fits were sufficient, a tokamak designed to optimizeα-channelling might be envisioned.

Such a reactor may look very different from the reactor used in these simulations, and it

may be possible to design one specifically to optimize theα-channelling effect.

The waves utilized in these simulations enjoy substantial experimental documen-

tation. The mode converted ion Bernstein wave has been studied as a means of heating

electrons or driving currents [MAJESKI et al. 1994; MAJESKI et al. 1996; MAJESKI

et al. 1996] and experiments have documented the interaction of these waves with deu-

terium beam ions in D-He3 plasmas [DARROW et al. 1996]. Importantly, for the cooling

scenarios presented here, experiments have shown that the layer of mode conversion can

be controlled quite precisely by varyingω/Ωα and the species mix of the plasma.

The TAE, generically used here for any low frequency eigenmode, has many

different forms (e.g. TAE, EAE, KTAE, etc.), which have been shown to cause the loss

of fast ions [WONG et al. 1991], and recently shown to be driven unstable by energetic
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α-particles [NAZIKIAN et al. 1997]. Experiments [FASOLI et al. 1995; FASOLI et al.

1996] indicate that these modes can be launched externally.

Forα-channelling it is important that the waves that are amplified at the expense

of theα-particle power damp on ions. Theoretical calculations show that certain Alfv´en

eigenmodes damp on plasma ions [BETTI and FREIDBERG 1992], and mode converted

ion Bernstein waves in a moderately deuterium rich reactor damp on tritium ions [VALEO

and FISCH 1994]. Recent experiments in DT plasmas show strong ion heating by the

MCIBW under certain conditions [WILSON et al. 1998].



Chapter 6

Modeling Fast Particle-MCIBW

interactions on TFTR

T ESTING THEα-CHANNELLING EFFECT experimentally requires sev-

eral hurdles to be overcome. Today (and for the foreseeable future), there is

only one running experiment, JET, that has the capability to operate in DT

and therefore to produce the appropriate birth distribution ofα-particles.

Theα-channelling scenarios discussed in the previous chapter require two very differ-

ent waves (toroidal Alfv´en eigenmodes and MCIBW) to interact with theα-particles

in order to accomplish cooling. At present, both of these waves require further experi-

mental investigation for a complete understanding. Even if both waves were present in

a DT plasma, diagnosing the occurrence of theα-channelling itself is an experimental

project of its own. To convince those working on the only available DT tokamak that

this experiment is worth scarce machine time requires not only the hope that, in prin-

ciple, α-channelling could have a telling effect on the viability of the tokamak reactor

concept, but that the experiment itself has a large probability of success. In this respect,

the experiments on TFTR provide a critical database.

First, it is possible to validate separately the various elements which make up

α-channelling. Both the MCIBW and toroidal Alfv´en eigenmode in themselves provide

a host of interesting physics problems. Recently, serious efforts have been undertaken

113
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to understand the toroidal Alfv´en eigenmodes on JET [FASOLI et al. 1996; FASOLI

et al. 1996; FASOLI et al. 1995] and the MCIBW in DT and D3He plasmas on TFTR

[M AJESKI et al. 1996; ROGERS et al. 1996; MAJESKI et al. 1996; WILSON et al.

1998]. Experiments were conducted on TFTR which observed interactions between the

MCIBW and fast ions [DARROW et al. 1996; DARROW et al. 1996; FISCH et al. 1996;

DARROW et al. 1997].

In this chapter, we review the experimental and theoretical foundations of the

MCIBW. We take particular interest in TFTR experiments which demonstrated a strong

fast particle MCIBW interaction. In order to fully appreciate the data from these ex-

periments we review the MCIBW, the fast ion species which are present, the lost alpha

detectors [ZWEBEN et al. 1990; DARROW et al. 1995], and the ways in which fast

particles hit the wall in tokamaks in Sec. 6.1. We then provide an overview of the data

from the experiments which exhibited fast ions interacting with the MCIBW in Sec. 6.2.

These fast ion losses can be understood in terms of a theoretical framework which is

developed in Sec. 6.3. While the theoretical framework is able to account for some of

the observations, to include all of the various effects it is necessary to rely on numerical

simulations of the losses which is done in Sec. 6.4. We then summarize the results of this

chapter.

In Chapter 7 we will pursue analysis of these experimental observations further

to show how, from the TFTR experiments, key elements of the building blocks forα-

channelling can, in fact, be deduced.

6.1 Overview of Experiments

Many experiments related to mode conversion heating and current drive in DT and D3He

plasmas were carried out on TFTR from December, 1994 to March, 1997, led by R. Ma-

jeski and D. Darrow. For the most part, our discussion here will focus on the D3He

discharges carried out with the 43 MHz antenna. These discharges were carried out prior

to the summer of 1996, after which most mode conversion experiments used 30 MHz RF

on DT plasmas. Figure 6.1 shows a schematic diagram of the experiment. The fast mag-
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Figure 6.1: Schematic of a D3He mode conversion experiment on TFTR.

netosonic wave is launched from the low field side into a D3He plasma and propagates to

the ion-ion hybrid layer (whose location depends on the wave frequency, toroidal field,

and the density of each ion species). Once the wave reaches the mode conversion layer,

it mode converts to a short wavelength electrostatic wave and damps, predominantly on

electrons. Typical parameters for these discharges were Ip = 1.4 MA, n3He /ne from 0.1

to 0.25 (the rest was deuterium or deuterium-like, i.e. a charge to mass ratio of one half),

and BT ranging from 4.4 to 5.3 T. For these conditions the mode conversion layer was

within 25 cm of the magnetic axis.

In many of these discharges, a strong loss of energetic ions was observed on at

least one of the lost alpha scintillator detectors [ZWEBEN et al. 1990; DARROW et al.

1995]. The lost alpha diagnostic detects energetic ions impinging on the wall in four

poloidal locations at one point toroidally in TFTR. It has limited resolution in both pitch

angle and gyroradius. In principle, theseα-particles detectors reveal a wealth of infor-

mation: the time history of the losses at each poloidal angle, can be had a function of

pitch angle and energy (gyroradius). That would be a signature in four dimensions (time,

poloidal angle, pitch angle, energy).



116 Chapter 6. Modeling Fast Particle-MCIBW interactions on TFTR

These lost alpha signatures make up the bulk of our data set. The characteris-

tics of the losses under varying experimental parameters provide an invaluable database

for benchmarking the COM simulation and for uncovering key physics relevant toα-

channelling.

6.1.1 MCIBW physics

Mode conversion of the fast magnetosonic wave to the ion Bernstein wave has been

experimentally confirmed [PARK et al. 1985]. More recently it has been the subject

experiments both on TFTR [MAJESKI et al. 1996; ROGERSet al. 1996; MAJESKI et al.

1996; WILSON et al. 1998] and Alcator C-Mod [BONOLI et al. 1997]. We present

here the results of these experiments which are especially relevant forα-channelling and

describe the experimental conditions for the fast ion loss experiments.

The MCIBW is launched from the low field side in TFTR and propagates as a

fast wave to the ion-ion hybrid layer, whose location is determined by the solution of

(assumingω � Ωe, and only two species are present),

c2k2
‖

ω2
=

ωp1
2

Ω1
2 − ω2

+
ωp2

2

Ω2
2 − ω2

, (6.1)

whereωps = 4πnsqs
2/ms, andΩs = qsB/msc. This equation can be solved for the

value of B at the mode conversion layer. Note thatΩ1 < ω < Ω2 is satisfied at the mode

conversion layer [STIX 1992] (we take the charge to mass ratio of species 2 to be greater

than that of species 1).

In Fig. 6.2 the position of the mode conversion layer is plotted versus the toroidal

field on axis and the ratio of3He to electron density for a 43 MHz wave in a TFTR

plasma. The mode conversion layer can be swept across the plasma by fixing the ratio

of n3He /ne and varying the toroidal field, or by holding the field fixed and changing the
3He concentration. Note that the value ofω/ΩD orω/Ω3He at the mode conversion layer

depends only on the ratio n3He /ne. The mode conversion layer moves to the deuterium

cyclotron layer (ω = ΩD) as n3He /ne goes to 1/2 (which is the maximum value it can

reach given charge neutrality), and moves toward the3He cyclotron (ω = Ω3He) layer as
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Figure 6.2: The major radius of the mode conversion layer (Rmc) for a 43 MHz wave in
D3He TFTR plasmas. B is taken to beB0R0/R here, which is a good approximation for
TFTR. We have plotted Rmc vs. B0, the toroidal field at the center of the device, and the
fraction of3He in the plasma.

n3He /ne approaches zero.

Experiments were performed to investigate both mode conversion heating and

current drive. First, high efficiency mode conversion (greater than 50%) can in fact be

achieved with a launch from the low field side of the tokamak [MAJESKI, PHILLIPS,

and WILSON 1994]. This theoretical result was confirmed in the TFTR experiments

[M AJESKI et al. 1996], using a break-in-slope analysis to analyze changes in electron

temperature when the input power was changed rapidly. It was deduced that from 60% to

80% of the coupled RF power was deposited as electron heating at the mode conversion

surface. By determining the power deposition profile, it was determined that the power

was being damped with a radial full width at half maximum of 15 to 20 cm. This estimate

actually overstates the width of the mode conversion layer, because the mode conversion
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layer is a vertical strip intersected by many flux surfaces, but, as the heated electrons

travel along their flux surfaces, they smear out the power deposition profile. The peak of

the electron power deposition profile was found to agree with the location predicted by

Eq. (6.1), within the error bars which are on the order of±5 cm [MAJESKI et al. 1996],

for many different values of the toroidal field, and3He densities.

The MCIBW current drive experiments demonstrated that currents can be driven

both on and off the magnetic axis. More than 100 kA of current were inferred to be

driven by 2.2 MW of ICRF power in one case. While the measured currents agree with

the predicted current within the errorbars, there are many uncertainties in the prediction,

such as the amount of power coupled, the spectrum of the coupled power, the mode

conversion efficiency, and how much current was driven in the opposite direction due to

the backward lobe of the antenna spectrum. The uncertainty in the theoretically predicted

value of the current is about a factor of two [MAJESKI et al. 1996].

More recently, experiments investigating mode conversion heating in DT were

carried out [ROGERSet al. 1996; WILSON et al. 1998]. Initial results were disappoint-

ing, as only 10-20% of the power appeared in the mode converted wave. It was later

determined that a small amount of7Li , (which was used in TFTR for conditioning) was

present in these discharges. Since7Li has a charge to mass ratio between that of tritium

and deuterium, it apparently was absorbing almost all of the ICRF power. Presumably

small quantities of9Be or 11B would also absorb large amounts of power. For the pur-

poses ofα-channelling it is worth noting that using Li, Be, or B for minority heating

would lead to a large fraction of the absorbed power going to the ions. The critical en-

ergy at which the energy slowing down rate on ions is equal to that on electrons is [STIX

1992]

εc = 14.8Te

(
A3/2

ne

∑
i

niZi
2

Ai

)2/3

≈ 9.3ATe (6.2)

where A is the atomic mass number, and in the latter expression we have takenZi/Ai

equal to one half (which is an over estimate due to the presence of tritium, but close

enough for our purposes). Thus tail7Li, 9Be, or11B ions less than≈ 60, 80, or 100 Te,

respectively, should deposit most of their power on the ions.
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Experiments carried out without the7Li present (6Li was substituted) demonstrate

mode conversion in DT plasmas [WILSON et al. 1998]. If the ion temperature was high

enough, strong localized ion heating, was observed, with up to 75% of the RF power

going to the ions. In fact, even though only 1 MW of RF was being injected on top of

18 MW of beam power, RF modulation was found to modulate the ion temperature by

several keV at the mode conversion layer.

It is interesting to note that ion heating in DT mode conversion was predicteda

priori by Valeo and Fisch (1994). Ion heating is crucial forα-channelling as currently

envisioned, because the RF power given up by theα-particles to the waves must then

flow into ions, so that a hot ion mode can be maintained.

6.1.2 Fast ion species

In the absence of beam heating, the relatively cold plasmas of the MCIBW experiments

(Ti around 4 keV) produce almost no charged fusion products (CFPs), so that there are

essentially no fast particles present. By comparing experiments with and without neu-

tral beam heating, it is easy to determine that the observed losses during MCIBW ex-

periments must arise from an interaction of the MCIBW with fast particles. However,

determining exactly which species of fast particles is being lost is more difficult.

Neutral beams can be injected into TFTR either cogoing or countergoing to the

current (or both), creating cogoing or countergoing ions which are predominately at 100

keV (although significant components exist at 1/2 and 1/3 of this energy). The injected

species can be either D or T and, in the presence of neutral beam heating, a plethora of

energetic charged particles can be present. For D beams on D3He background plasma,

one can expect significant populations of 1 MeV tritons, 800 keV3He ions, and 3 MeV

protons from the DD fusion reactions, 3.6 MeVα-particles and 14.7 MeV protons from

the D3He fusion reactions, as well as the D beams themselves. The ratio of beam ions to

charged fusion products is on the order of 104 for these plasmas with D beam injection.

For T neutral beam injection into D3He plasmas, the only fast particles in significant

numbers will be beam tritons and 3.5 MeVα-particles from the DT reaction.
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For the discussion below, note the gyroradius of different particles. Considering

particles with all of their energy in the perpendicular direction, with massm, energyε,

and chargeq,

ρ =

√
2ε/m

Ω
=

√
mε

qB
. (6.3)

Thus, a 3.5 MeVα-particle, a 1.75 MeV deuteron, and a 1.17 MeV triton all have the

same gyroradius if they have the same pitch (equivalently the same fraction of their en-

ergy in the parallel direction). Furthermore, the guiding center trajectory of any particle

depends only on its pitch, gyroradius, and position. Thus the motion of a 3.5 MeV

α-particle and a 1.75 MeV deuteron, with the same pitch and initial location, are indis-

tinguishable on the basis of their guiding center motion in the absence of collisions.

In the presence of collisions, one can distinguish between theα-particle and the

deuteron, as the slowing down rate of theα-particle will be twice as fast. Some slowing

down times on axis for the plasmas typical of these experiments are given in Tab. 6.1.

At r/a = 0.3, the slowing down time is shorter by a factor of two than the time on axis,

while the pitch angle scattering time remains about the same.

particle energy slowing
down time

pitch angle
scattering time

100 keV D 0.076 0.160

1.75 MeV D 0.171 11.3

3.5 MeVα 0.085 10.9

100 keV T 0.078 0.198

1.16 MeV T 0.240 7.66

Table 6.1: Collisional times (the inverse energy slowing down rate and the inverse pitch
angle scattering rate in seconds) for various particles for ne = 8 · 1014/cm3, Te=Ti=5
keV, Zeff = 3.5.
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6.1.3 Losses of fast particles and their detection

Good confinement of fast particles is crucial to the future operation of fusion reactors.

It is an area that has been heavily studied, both theoretically and experimentally. In

TFTR the losses of charged fusion products and ICRF minority tails has been extensively

studied [ZWEBEN et al. 1990; ZWEBEN et al. 1994; ZWEBEN et al. 1997; DARROW

et al. 1996; HERRMANN 1997]. For our purposes here, it is useful to go over the main

loss mechanisms and their detection.

The experiments that were carried could not have been done at all without the

lost alpha scintillator detectors mentioned earlier. These detectors are located on the wall

of TFTR, 20◦, 45◦, 60◦, and 90◦ degrees below the outer midplane, at a one toroidal

location. Note, becauseB ×∇B is in the downward direction for TFTR, losses only

occur below the midplane. A schematic of the detector is shown in Fig. 6.3. The detector

admits particles with gyroradii between 2 cm and 11 cm, and pitch angles between 45◦

and 83◦ degrees (v‖/v between 0.71 and 0.12 in the cogoing direction). The 45◦, 60◦,

and 90◦ have a thin metal film over their aperture, which prevents hydrogenic ions of less

than 400 keV and helium like ions with less than 900 keV from penetrating.

These detectors were designed to give information about the confinement of the

3.5 MeV fusionα-particles which were present in large numbers during TFTR’s DT

campaign, but they can detect other energetic ions as well. The detectors have no ca-

pability to distinguish two different species with the same gyroradius. This weakness is

somewhat compounded by the fact that the guiding center motion of a particle depends

only on its gyroradius and pitch. Thus, the signature from a 3.5 MeVα-particle born with

pitch λ0, at position(ψ0, θ0) will be the same as the signature from a 1.75 MeV D ion

born with the same pitch at the same location. Of course in most cases this ambiguity is

inconsequential since only 3.5 MeVα-particles are present in large numbers. However,

as mentioned above, in D3He plasmas with D beams as many as 5 different types of fast

particle are present, many with similar gyroradii.

The detectors have only limited resolution in gyroradius and pitch angle, a con-

sequence of providing the maximum signal, and the widest range of detection of fast

particle losses. Also, the absolute calibration of the detectors is very difficult and is un-
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Figure 6.3: The poloidal projection of a 3.5 MeVα-particle born onto a loss orbit, and
hitting the lost alpha detector at 90◦(left). On the right is a schematic diagram of a lost
alpha scintillator detector. Where the escaping particle hits the scintillator is dependent
on the particles’ pitch angle and gyroradius. Figure from D. Darrow.

certain to within a factor of 2 or 3 [ZWEBEN et al. 1994]. Rather than use an absolute

calibration, losses are typically compared with the neutron signal. For first orbit losses of

charged fusion products which have associated neutrons (like DT and DD reactions, but

not D3He), if the birth profiles of fusion products and plasma current remain the same

throughout the discharge, the first orbit loss rate should be proportional to the neutron

signal throughout the discharge, although it can vary considerably from shot to shot as

the profiles vary. An estimate of the number of lost particles can be made by estimat-

ing the level of first orbit losses and multiplying by the number of neutrons. When the

ratio of the lost alpha detector signal to neutron signal changes significantly during the

discharge, it is usually indicative of non first orbit losses.

We discuss four different ways in which charged energetic particles can hit the

wall in the tokamak. First, we discuss the so-called “first-orbit” loss, which for most

TFTR discharges is the dominant loss mechanism. This loss arises from charged fusion

products which are born on trajectories that intersect the wall. By far the vast majority of

these particles are trapped particles that have banana widths larger than the minor radius.

These particles are typically born countergoing near the center, mirror on the high field
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Figure 6.4: The guiding center motion of three 3.5 MeVα-particles which strike the
90◦ detector. A represents a passing particle which strikes the detector with a pitch
angle below the passing trapped boundary. B is a “fattest banana” orbit which strikes the
detector with pitch angle at the passing trapped boundary. C is a more deeply trapped
particle which strikes the detector above the passing trapped boundary.

side, and intersect the wall before reaching the outer midplane. These losses depend

strongly on the birth profile of the fusion products, the total current, and the current

profile of the plasma. These losses represent a background level for the experiments we

are interested in. Typically, for a 1.4 MA discharge, 10-20% of the charge fusion products

might be lost to first orbit losses. In Fig. 6.4 we show the guiding center trajectory of 3

3.5 MeVα-particles born onto loss orbits that hit the wall at the 90◦ detector.

In Fig. 6.5 we summarize the first orbit losses for the entire plasma for a 1.4 MA

discharge. In the top graph, we show the distribution of the losses versus angle along

the bottom half of the wall. In the four graphs beneath the large graph, the pitch angle

distribution of the losses is shown at the four detectors (20◦, 45◦, 60◦, and 90◦). The

sharp jump in the pitch angle distribution at each detector signifies the passing trapped

boundary. Particles with pitch angles lower than this boundary are passing, and therefore,

like particle A in Fig. 6.4, must come from a large radius on the inner midplane. Particles
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with pitch angles just greater than the passing trapped boundary are trapped particles, like

particle B above. This particle passes much closer to the core of the plasma than does

particle A, and since the radial distribution of fusion products is typically taken to be

(1− (r/a)2)n where n is 8-12, the source rate for particle B is much greater than that for

particle A, leading to the much higher level at the detector.

Figure 6.5: First orbit losses of a birth distribution ofα-particles. Poloidal distribution
of losses(top). Pitch angle distribution of losses at each of the 4 detectors (bottom).

In addition to first orbit losses, there are losses that occur from small changes

in the orbits of initially confined particles. In Fig. 6.6, four examples are given of a

confined particle which undergoes an orbital change and becomes a lost particle. In both

Fig. 6.6A and Fig. 6.6B, the confined particle is countergoing. For case A, the particle

crosses from passing to trapped. The resulting trapped particle has a very large banana

width (comparable to the minor radius), and thus hits the wall, in this example near the
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90◦ detector. In case B, the particle is given a radial kick moving it onto an orbit which

is slightly farther out and hits the wall near the inner midplane. Case C shows the loss

of an initially cogoing particle, which also has received a radial kick moving it onto a

loss orbit which hits the wall near the outer midplane. Finally, case D shows a trapped

particle whose banana tip has moved radially, causing it to intersect the wall near the

outer midplane.
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Figure 6.6: Examples of confined particles transitioning to lost orbits.

6.2 Fast Particle MCIBW Interactions on TFTR

Experiments on TFTR have seen large losses of energetic ions to the four lost alpha

detectors mentioned above during MCIBW experiments [DARROW et al. 1996]. Data
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has been compiled from both piggyback experiments (where losses were detected dur-

ing mode conversion heating and current drive experiments) and dedicated experiments

(where the physics of the losses themselves was being investigated). Many TFTR shots

(hundreds) exhibited losses significantly in excess of first orbit losses under varying con-

ditions when MCIBW is present. This represents a vast database which can be used for

validating hypotheses about the losses. In this section, we summarize the experimental

observations of these losses.

The observations from the lost alpha detector in two mode conversion experi-

ments which are identical except for the ratio of n3He to ne are shown in Fig. 6.7. While

these discharges have virtually identical RF power, neutron rate and neutral beam injec-

tion power, the loss on the lost alpha detectors at 60◦ and 90◦ is as much as ten times

higher for n3He = 0.20 ne than the losses for the case corresponding to n3He =0.15 ne,

which appears to be at the level of first orbit losses. The loss observed is much larger

than the losses which are typically present in rf discharges without mode conversion

[DARROW et al. 1996], where as much as 5 MW of RF power only modulated the first

orbit losses by 30%.

Discharges without deuterium neutral beams, but otherwise identical to the dis-

charges in the last section, show no sign of enhanced loss, implying that the loss is not

due to an energetic3He tail formed by RF minority heating (which in any event would

be more likely for the case with lower n3He not higher n3He). Thus, the loss must be

due to either the deuterium beams or one of the charged fusion products that is present

interacting with the MCIBW.

Figure 6.8 shows the gyroradius of these losses compared to typical first orbit

losses, showing the MCIBW induced loss is at significantly larger gyroradius. This im-

plies significant heating of the lost particles is occurring. The mean energy of the lost

particles would be about 1.5 MeV if the loss is DD tritons and 2.25 MeV if the loss is

heated beam deuterons. The pitch angle distribution suggests that the loss is strongly

peak around the passing trapped boundary. Data at other detectors also shows a loss at

the passing trapped boundary; however, the loss at lower poloidal angles is typically at

lower gyroradius.

Initially, there was a great deal of uncertainty about which fast ion species was be-
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Figure 6.7: Two discharges which are nearly identical except for n3He/ne = 0.20 for the
solid line and n3He/ne = 0.15 for the dashed line. Plotted are the ICRF power, the D
neutral beam injection power, the neutron signal which is a measure of the rate of fusion,
and hence CFP production, and the signal at the lost alpha detectors at 90◦, 60◦, and 45◦.
Figure from D. Darrow.

ing lost. The lost alpha detectors could provide little help in identifying the lost species.

In a D3He plasma with D beams there are 5 different charged fusion products present

along with the beams themselves. It was found that, when tritium beams were injected

instead of deuterium beams, the loss went away. This tended to rule out energeticα-

particles since they would be present in both discharges. Both 3 MeV and 14 MeV

protons and 800 keV3He ions were deemed unlikely to be the lost species since respec-

tively there would be difficulty satisfying wave particle resonance, the sensitivity of the

detector was low at very high energies, and the high collisionality left no time for the

particle to be accelerated and ejected. This left just the 1 MeV DD tritons and the 100

keV beam deuterons as candidates for the lost species.

Tritons were attractive since the losses would only require about 0.5 MeV of

heating. In contrast the D beams would have to be heated on the order of 2 MeV before

being lost. Furthermore, typically when a large tail is pulled out on a distribution (such
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Figure 6.8: The gyroradius distribution of the MCIBW related loss (solid line) and first
orbit loss (dashed line) at the 90◦ detector. The first orbit losses peak at the birth energy
of the CFP’s, in this case from the DD and D3He reactions, and the width is representa-
tive of the instrumental width. The losses associated with the MCIBW peaks at higher
gyroradius and is broader, indicating significant heating of the fast ions that are lost.
Figure from D. Darrow.

as the D beams) by RF, magnetics measurements register an anisotropy in the plasma

stored energy (i.e. the perpendicular stored energy increases). No such signature was

observed. Finally while RF tails can get up to high energies, one would probably expect

that if the D beams were being accelerated, the gyroradius distribution would peak at low

gyroradius and trail off at higher gyroradius.

On the other hand, D beams could more easily produce the large loss levels seen

in Fig. 6.7. If, typically, the charge fusion product losses are around 10% of the number

of CFP’s, then if the loss is 10 times bigger than first orbit loss almost every CFP would

have to be expelled. This argument requires a detailed knowledge of the loss distribution

on the wall. If, in fact, the MCIBW losses were localized toroidally or poloidally, this

argument would not be a refutation of T loss.

Further evidence on the nature of the loss was provided by “beam blip” experi-

ments, as illustrated in Fig 6.9. These experiments involved blips of neutral beam injec-

tion concurrent with the RF. The beam blip was useful for a number of reasons. It pro-

vided a distribution of beam particles and fusion products which had a narrow spread in
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energy, as opposed to the slowing down distribution which develops after the beams have

been on a while. Furthermore it allows the isolation of such things as the time it takes for

a particle to get out, which will shed light on the diffusion coefficient. By comparing the

lost alpha signal integrated over the discharge to the first orbit losses which were large

only early in the discharges, when the CFPs were being produced by the deuteron beams,

a more accurate estimate of the ratio of total losses to number of charged fusion products

could be obtained. These comparisons show more convincingly that many more particles

were coming out than were born as CFPs, again pointing towards beam deuterons as the

lost species.

The dilemma regarding which species is lost species is resolved by the data in

Fig. 6.9, which shows very different behavior when the D beams are injected cogoing

and countergoing to the current, with symmetrically phased RF(both signs ofnφ present).

Neither fusion product distribution would be affected significantly by the direction of

the beams, thus identifying heated beam deuterons, in particular, countergoing beam

deuterons, as the dominant lost species.

Besides the strong heating and large losses, there are other signatures of the mode

conversion losses. In particular, the losses seem to depend strongly on the location of the

mode conversion layer as shown in Fig. 6.10. This plot shows the losses of fast ions to

the detector vs. the toroidal field for fixed ratio of n3He to ne. Recall from Fig. 6.2 that as

we increase the B field at fixed3He density the mode conversion layer moves out.

Because of their importance, losses in the presence of phased waves and the de-

pendence of the losses on input power are discussed in Chapter 7.

Finally while the losses for the most part behave in the manner shown here, the

losses are not completely reproducible [DARROW 1996]. An exhaustive search of what

appear to be the relevant plasma parameters has not come up with an explanation.
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Figure 6.9: Losses of cogoing and countergoing deuterium beam ions in the presence of
symmetrically phased RF. Discharge at 4.8 T, 1.4 MA with mode conversion layer on
axis. Note that even for the cogoing beam injection, which shows no anomalous loss, the
neutron production persists for much longer than the beam slowing down time. Figure
from D. Darrow.

6.3 Theoretical Considerations

We now attempt to lay a theoretical basis for analyzing and drawing conclusions from

these experiments, by considering some simple elements of this problem, namely the

resonance condition, and the path inε, µ, andPφ space that the particle must follow, and

the physics of the MCIBW. Surprisingly, we are able to make some predictions on the

basis of these simple calculations. In the next section these simplified models will be

verified with simulation results. For now we neglect the effect of collisions, returning to

it in Chapter 7.
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Figure 6.10: Relative losses at the 90◦ detector for n3He/ne = 0.15 versus the toroidal
field. The losses peak when the mode conversion layer is thought to be closest to the
axis. Figure from D. Darrow.

6.3.1 IBW wave physics

The details of the MCIBW are important to understanding the fast ion losses. In partic-

ular, the MCIBW losses will be sensitive to the location of the mode conversion layer,

the extent over which the wave exists, the mode conversion efficiency and coupled RF

power, thek‖ andk⊥ spectrum, thenφ spectrum, the spot size, and the electric field am-

plitude. We begin by giving an overview of how each of the above might be determined,

and then explain how the wave is described in the simulation.

The spectrum of modes launched by the antenna can be analyzed by Fourier de-

composing in toroidal mode number, since, as the mode propagates, and even under goes

mode conversion, the toroidal mode number is conserved. This is true due to the axisym-

metry of the tokamak, and remains true even though k⊥, kθ, k‖ all may change rapidly

as the mode propagates through the tokamak. The ICRF antennas used for these exper-

iments in TFTR could launch a fast wave either with symmetric or asymmetric toroidal

phasing. For symmetric phasing, which is used in mode conversion heating experiments,

and the majority of the MCIBW- fast ion interaction experiments, the spectrum of wave

power peaks at aboutnφ ≈ ±36− 43. For asymmetric- phasing, which is used for mode

conversion current drive, the majority of the RF power (approximately 75%) can be put
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into the lobe in the desired direction withnφ ≈ ±22 − 25, however about 25% of the

power is directed in the opposite direction withnφ ≈ ∓43.

The MCIBW is launched into the plasma as the fast wave from antennae on the

low field side edge of TFTR. The spectrum of launchedk‖’s (equivalently, launchednφ)

can be estimated by taking the Fourier transform of the current distribution in the anten-

nae and the images currents. The spectrum can be very simple for a single antenna, or

very complicated for multiple antennas, especially considering that the relative phasing

between the antennas, could vary during the discharges. In Fig. 6.11 the spectrum ofk‖
for a single antenna with symmetric phasing is shown. In Fig. 6.12 the spectrum for two

antennae, symmetrically phased is shown.

Figure 6.11: Spectrum of coupled power for the TFTR bay M antenna, which was used
in the 43 MHz D3He mode conversion experiments, assuming symmetric phasing.

Once the coupled spectrum has been determined, it is necessary to understand the

mode conversion of the fast wave. Majeski, Phillips, and Wilson (1994) showed the effect

of the cutoff-resonance-cutoff triplet on the mode conversion efficiency is quite strong.

The power mode-converted in these cases is very dependent on parallel wavelength, since

it depends on the amplification of the electric field at the mode conversion layer which

can occur when there is a standing wave pattern formed due to the effect of the high field
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Figure 6.12: Spectrum of coupled power for the TFTR bay L and M antenna, assuming
symmetric phasing and no phase difference between the antennas.

side cutoff. Thus they show an example for DT mode conversion which has nearly 80%

mode conversion efficiency fork‖ equal to 7 or 11 cm−1 but almost no mode converted

power at 8.5 cm−1.

After the wave mode converts to the MCIBW it is necessary to use ray tracing to

follow it. Valeo and Fisch (1994) have done this for the case of DT mode conversion,

keeping the important effects of a poloidal field and arbitraryk⊥ρi. They found that the

waves were highly dispersive and typically damp in a narrow region around the mode

conversion layer. They also found very interesting behavior depending on the direction

of the poloidal field compared to the gradient of the magnetic field. This arises from the

shift in k‖ which occurs due to the projection ofkX onto the poloidal field (wherekX is

the wavenumber in the direction of the magnetic field gradient). For the case where the

shift adds to the launchedk‖, the only effect is for the wave to damp more quickly on

the electrons due to the higherk‖ and therefore lower values ofω/k‖vthe. However in

the case where the shift is in the opposite direction ofk‖, the wave moves to smaller and

smallerk‖. As it does so, its phase velocity gets very large, and thus the wave cannot

damp on electrons. However, as the wave moves to yet higher field,kX increases further

and the wave phase velocity reverses directions, i.e.k‖ flips at high enoughkX ! After k‖
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flips, it turns around and starts heading towards lower B. This reversal in space means

that the group velocity goes to zero, and therefore power and electric field amplitude

builds up at this point in the plasma. Eventually the wave reachesk⊥ρthi ≈ 1 and it

damps on ions ork‖ turns around enough that it can damp on the electrons again. Which

of these occurs depends on the location of the mode conversion layer, and the relative

temperatures of the ions and electrons. As pointed out above, significant ion heating has

been observed in DT mode conversion experiments, consistent with this picture.

While some of these things are easy to calculate, and have been verified experi-

mentally (such as the mode conversion layer location), others require full wave codes to

determine correctly (like the spotsize and the mode conversion efficiency versusk‖), and

still others are open areas of research (thek‖ andk⊥ spectrum). Furthermore the exper-

iments on TFTR were carried under a wide range of experimental conditions. It is the

difference in losses between different experiments that one usually wants to understand.

Even if the codes existed to calculate all of the above quantities once, doing so for each

of the required experimental conditions would be a very large task. Thus in modeling

the MCIBW, we have of necessity used a simplified description that captures much, but

not all, of the relevant physics. For the physics that is not directly modeled, we have

estimated the appropriate parameter and used that in the simulation. Future work should

include full 3-D ray tracing of the MCIBW in the magnetic geometry, some accounting

for the dependency of the mode conversion efficiency on thek‖, and full-wave analysis

for determination of the spot size at the mode conversion layer.

For symmetric phasing, we assume that twonφ in each direction are sufficient to

account for the antenna spectrum and the filtering effect of the mode conversion itself.

Typicalnφ’s for the ray tracing werenφ = ±18,±43 corresponding tok‖ at the edge (R

= 360 cm) of .05 cm−1 and .12 cm−1. The results of the simulation were found to be

very sensitive to the assumed spotsize of the wave, so this parameter was typically varied

between 15 and 30 cm.

For the details of the spectrum after mode conversion we have used the ray tracing

code of Valeo and Fisch (1995). Here, we summarize the physics included in this code.
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Consider the full hot plasma dispersion relation in a uniform magnetic field [STIX 1992]:

∣∣∣∣∣∣∣∣∣∣∣

εxx − n2
z εxy εxz + nxnz

εyx εyy − n2
x − n2

z εyz

εzx + nznx εzy εzz − n2
x

∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.4)

whereB ∧ ẑ = 0, n · ŷ = 0. Assuming(k⊥ρi)2 ∼ 1, ω ∼ Ωi, k‖ << k⊥, β << 1 andω

not too close toΩi, we can justify the neglect ofεxz compared tonxnz, εyy compared to

n2, and ofεyz. With these assumptions, we obtain,

∆ ≡ εxx − n2
zεzz

(εzz − n2
x)
− εxy

2

n2
= 0 (6.5)

The strongest variation of∆ with position is through the variation inB. This is then

solved in the ray approximation, including only the inhomogeneity in B and a “poloidal”

field: B = B0R/x(ẑ + θx̂) The local parallel wavevector is

k‖ = k‖0 + θkx (6.6)

The approach taken was to run the code off line and store the results in a file,

which was then processed further and output into a file which was read in by the COM

simulation. Important input parameters for this code are thekz, the plasma temperature

and density of both species, the toroidal field strength, and the poloidal field strength.

Typical values of the temperature and total density were taken and the code was run

for varying3He concentrations, launchedkz, and toroidal field strength. Furthermore a

typical value of the poloidal field strength dotted with the wave vector at the mode con-

version layer,θ in the notation above, was chosen. Of course in reality this value varies

considerably with height above the midplane where it is zero, and, to further complicate

the situation different ions cross the mode conversion layer at different heights, so that

each interacts with the MCIBW at a different value ofθ. While it would be possible to

write the COM simulation, so that it could handle several values ofθ, this was not done.

Instead a value ofθ=0.05 was chosen for most runs. A plot ofθ versus height above the

midplane for different mode conversion layer positions is shown in Fig. 6.13.
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Figure 6.13: Plot of the projection of the poloidal field in theR̂ as a function of height
along the mode conversion for a typical D3He mode conversion experiment. The three
lines correspond to the mode conversion layer being on axis and 15 cm to either side.
The sign ofθ would be negative for z< 0.

Typically, four different sets of data were necessary to simulate an experiment if

both cogoing and countergoing beams were present. These correspond to(nφ > 0, θ >

0), (nφ > 0, θ < 0), (nφ < 0, θ > 0), (nφ < 0, θ < 0). As discussed below in

order for the beam deuterons to interact, different parts of the spectrum must be present.

Consider a countergoing deuteron at 100 keV. These deuterons will interact with waves

which have(nφ < 0, θ < 0). However, as the deuterons increase their energy they

require less Doppler shift to interact, thek‖ they interact with gets closer to zero, and

thus they interact with the waves which have(nφ < 0, θ > 0). It is important that the

k‖ spectrum of these two sets of waves overlap, otherwise deuterons will reach some

maximum energy, and will not be able to resonate with the wave any more, and no

deuteron losses would be possible, which is inconsistent with the observations.

In Fig 6.14 a typical ray tracing diagram for the MCIBW is shown, similar to

those in Valeo and Fisch (1994). The solid lines represents three differentnφ’s (-37,-

43,-49) ray traced forθ > 0. The dashed lines arenφ’s (-17,-22,-27) forθ < 0. While

the rays are traced for several initialnφ, this is just to get a feel for the sensitivity of

the waves to changingnφ. Typically only one of each group of three would be used

in the COM simulation. In Fig 6.15 thekX of the wave is plotted vs.k‖. The linear
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Figure 6.14:kX vs. R from ray tracing of the MCIBW for n3He/ne = 0.15, B = 5.0 T.
The two sets of waves shown correspond tonφ = -37,-43,-49 withθ = 0.05(solid) andnφ
= -17,-22,-27 forθ = −0.05 (dashed). The lines across the rays show the points along
the ray where 75%, 50%, 25% of the initial power is left.

relationship seen comes from Eq. (6.6). Note that because each ray starts withkX near 1

cm−1, two waves with the samenφ interacting with opposite signs ofθ will not overlap,

but instead theirk‖ will be separated by approximately2θkX0. In light of the importance

of spectrum overlap discussed above in ensuring the deuterons can satisfy resonance as

they are heated it is necessary to use two groups ofnφ’s with opposite signs ofθ in order

to ensure that the spectrum overlaps. Thus the rays shown correspond to two different

groups ofnφ with opposite signs ofθ.

In addition to the spectrum of waves present determining whether or not the beam

deuterons can resonate, the details of the wave determine the strength of the deuteron

MCIBW interaction. In Fig. 6.17 the electric field amplitude, as determined from the

power flux to the mode conversion surface and the group velocity of the waves, versus

thek‖ of the wave is plotted. The peaks for the rays withθ < 0 arise from the build up

in amplitude which occurs when the group velocity of the wave in the R direction goes

to zero, and the wave turns around. Eventually, at high enoughk‖ the waves damp and

the electric field amplitude goes to zero.
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Figure 6.15:kX vs. k‖ for the MCIBW for n3He/ne = 0.15, B = 5.0 T.
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Figure 6.16:k‖ vs. R for the MCIBW for n3He/ne = 0.15, B = 5.0 T.

6.3.2 Resonance condition

The resonance condition for a particle to interact with the MCIBW is

k‖v‖ = ω − nΩ(B), (6.7)

where n is the harmonic with which the particle is interacting. As discussed above the

MCIBW usually damps within a few cm of the mode conversion layer, thus we can take
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Figure 6.17: Electric field amplitude in esu vs.k‖ for the MCIBW for n3He/ne = 0.15, B
= 5.0 T, assuming 1 watt/cm2 incident flux.

B to be Bmc, the value of the field at the mode conversion layer and require the particle

to be resonant at the mode conversion layer if it is resonant at all. Dividing through by

ω, and substitutingν = nΩmc/ω, we get,

k‖λ =
ω√
2ε

(1− ν). (6.8)

Table 6.2 summarizes the valuesν and k‖λ which are typical for different fast ion species

resonating with the MCIBW. Note that due to the localized nature of the MCIBW and the

large distance from the mode conversion layer to the resonance layer, only ions going in

one direction will be able to resonate with onek‖. From the table we see that deuterons

andα-particle interact withk‖ of the same sign as their parallel velocity while tritons

interact withk‖ of opposite sign for mode conversion in D3He.

This is unlike the case of ICRF minority heating in which the wave is able to

interact with minority ions going in opposite directions on the low field and high field

side of the resonance layer for a fixedk‖. For most discharges we are discussing, sym-

metric phasing was used, and so both signs ofk‖ are present and thus ions going in both

directions can be resonated with. This does not mean cogoing and countergoing ions

will behave the same under interaction with the MCIBW. The motion of the particles in

ε, µ, andPφ space depends on thenφ that the particle is interacting with, and this creates
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an important asymmetry that will be discussed in Sec. 6.3.4. In some discharges with

phased RF there were fast ion losses, which will be discussed in Sec. 7.1.

Species
n n3He/ne = 0.20, B = 5 T n3He/ne = 0.15, B = 5 T

ν k‖λ(cm−1) ν k‖λ(cm−1)

100 keV D 1 0.83 0.15 0.81 0.164

3.5 MeVα 1 0.83 0.036 0.81 0.04

100 keV T 2 1.11 -0.11 1.07 -0.08

Table 6.2: The k‖λ which different fast ion species resonate with is shown for two cases,
both with B = 5 T, but one case has 15%3He and the other 20%. Since the mode conver-
sion layer is closer to the deuterium/α-particle resonance for higher3He concentration
the required k‖λ is lower in this case. For tritium, which interacts at the second har-
monic, the opposite is the case. Sinceν is independent of toroidal field for the same3He
concentrations, the required k‖λ is independent of the toroidal field.

While theα-particles and the beam tritons can resonate with waves in the launched

spectrum, the k‖λ required for deuterons is large compared with the spectrum which is

launched into the plasma during symmetric phasing. For a typical beam deuteron pitch

of 0.8 thek‖ required is≈ 0.21cm−1, almost twice the peak of the antenna spectrum. As

explained above, the MCIBW does upshift as well as downshift. The combination of this

upshift and the presence of some deuterons withλ greater than 0.8 allows a fraction (∼
5-20% ) of the beam ions to resonate with the MCIBW at 15%3He levels. The typical

number of deuterons that interact with the wave is discussed in more detail in Section 6.4

below. The resonance condition is more easily satisfied for the deuterons at higher3He

fractions.

Given thek‖ spectrum from the ray tracing, and knowing the details of the beam

slowing down, one can estimate the maximum time a beam particle could slow down

before it fell completely out of resonance. This estimate can be compared to beam blip

experiments which were done to estimate the “threshold energy” of interaction. These

experiments varied the amount of time between a neutral beam blip and the start of the

RF, thus allowing the deuterons to slowdown before interacting with the wave. The fast

ion losses can then be plotted versus the time delay. The experiments suggested a delay
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of 20 to 40 ms was sufficient to wipe out almost all the losses, consistent with a threshold

energy of 65-80 keV [HEETER et al. 1997]. From the previous section the maximumk‖
at which the MCIBW has any significant power is about 0.22 cm−1. If we require the

particle to have a pitch of at most 0.9 (few deuterons which are on flux surfaces near the

axis have pitch higher than this), the energy threshold can be estimated about 70 keV,

giving some confidence in the ray traced MCIBW.

Finally, while one typically thinks of slow particles having a hard time satisfy-

ing resonance, for the MCIBW it may also be the case that fast particles cannot satisfy

resonance. Since the MCIBW exists only over a narrow layer it is not necessarily true

that a fast particle can resonate with a givenk‖ (for ICRF, a fast particle can satisfy reso-

nance with a givenk‖ at location given bynΩ = ω − k‖v‖). Thus when beam deuterons

are being heated, it is important that the spectrum be broad enough that both a 100 keV

deuteron and a 1.6 MeV deuteron (which is 4 times faster but will more typically have

a v‖ twice that of 100 keV deuterons since most of the energy gain is in perpendicular

energy) can resonate. Fortunately, the up shifts and down shifts of the MCIBW spectrum

discussed above are sufficiently broad to cover this range again lending some credibility

to the ray tracing.

6.3.3 Trajectory in v⊥, v‖ space

As discussed in Chapter 4 particles interacting with the MCIBW diffuse along a line in

ε, µ, andPφ space. Recall from Eqs. (4.57) and (4.58) that

dµ

dε
=
nΩ0

B0ω
(6.9)

(where all expressions have been returned to their dimensional form for clarity). This

relationship leads to interesting implications for the fast ion MCIBW losses.

For ICRF minority heating Eq. (6.9) is the cause of “resonance localization”

[HSU et al. 1984; HAMMETT 1986], which is the tendency for particles interacting

with an ICRF wave to have their banana tips approach the resonance layer, i.e. where

ω = nΩ. For ICRF whenk‖ is small particles will resonate at the resonance layer, and
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Eq. (6.9) implies that∆µBres = ∆ε, or that particles get their kicks in perpendicular en-

ergy only. For finitek‖ particles receive their kicks away from the resonance layer, and

thus get kicks in parallel energy as well as perpendicular energy. However, resonance

localization still occurs, as discussed by Hammett (1986), i.e. the effect of the kick away

from the resonance layer is the same as if the particle had gotten a kick in perpendicular

energy when it crossed through the resonance layer. This can be seen from the form of

Eq. (6.9) which is obviously independent ofk‖.

As we shall see, considering the case of fast particles interacting with the MCIBW

leads to a more complicated view of “resonance localization”. Examine a particle satis-

fying resonance with the MCIBW. Mark its location inv⊥, v‖ as passes by a particular

mod B surface (choosing theω = Ω resonance layer is not convenient for MCIBW since

this is far from where the particle receives its kicks, and the particle may not even pass

through this layer).

ε⊥ = µB = µ0B +
nΩ

ω
∆ε (6.10)

ε‖ = (ε− µB) =

(
ε0 − µ0B + ∆ε

(
1− nΩ

ω

))
(6.11)

where∆ε is the total energy exchanged with the wave,Ω is the gyrofrequency at the mod

B surface we are interested in. This can be written in terms of the pitch and velocity and

usingν = nΩmc/ω from above:

ε⊥ = µ0B +
νB

Bmc
∆ε (6.12)

ε‖ =

(
ε0 − µ0B + ∆ε

(
1− νB

Bmc

))
(6.13)

λ =

√
1− νB

Bmc
− v2

0

v2

(
1− λ2

0 −
νB

Bmc

)
(6.14)

v =
√

2(ε0 + ∆ε) (6.15)

Note thatv⊥/v =
√

1− λ2, v‖/v = λ. λ will be real so long as the particle reaches the

mod B surface we are discussing. These equations are valid for ICRF ifBmc is taken to

beBres andν is determined at the resonance layer.
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Consider Eq. (6.12), and takeB = Bmc. From Table 6.2, for T interacting with

the MCIBW in D3He (at the second harmonic),ν is greater than 1. For∆ε positive, we

see that the gain in the triton perpendicular energy is greater than∆ε, i.e. on gaining

energy from the MCIBW the triton converts some of its parallel energy to perpendicular

energy. For the deuteron,ν is less than one and therefore as it gains energy from the wave

it gains both perpendicular and parallel energy. This implies that a triton interacting with

the MCIBW will cross the passing trapped boundary quickly while a deuteron will take

longer to cross the passing trapped boundary. Recall that a major loss mechanism for fast

ions, and the only one which can readily explain losses at the 90◦ detector, is crossing

the passing-trapped boundary.

Consider the two separate cases of a countergoing 100 keV beam deuteron inter-

acting with the MCIBW in D3He, with the mode conversion layer on axis and the same

deuteron resonating with the fast wave (i.e. no mode conversion) with the deuterium res-

onance layer on-axis (note that these two examples must have different RF frequencies).

The solid line in Fig 6.18 shows the deuteron’sv⊥ andv‖ (normalized to its injection

energy) when it crossesB = B0, as determined by Eq. (6.14,6.15). The passing trapped

boundary is marked by the dotted line, which turns into a solid line (markedθ(ε)) at

high enough energy, representing particles which are energetic enough to hit the wall

when they become trapped. Additionally, trapped particles which are energetic enough

to scrape off on the outer midplane are marked by the line 0◦, (see the caption for more

details). The particle interacting with the MCIBW, which in this case hasνB/Bmc of 0.8

heads to higher|v‖| as it gains energy, eventually crossing the passing trapped boundary

after gaining 1.5 MeV and hitting the wall near the 90◦ detector. The deuteron heated by

the fast wave, which hasνB/B0 of 1 crosses the passing trapped boundary after gaining

just 300 keV of energy. Eventually it too gains more than a MeV and is scrapped off at

the outer midplane. In Fig. 6.19 the poloidal projection of the deuteron orbit interacting

with the MCIBW is shown.

Now let’s consider the case of a 100 keV countergoing beam triton interacting

with the MCIBW in D3He, shown in Fig. 6.20. The MCIBW, which hasνB/Bmc of 1.07

for this case, pushes the triton across the passing trapped boundary before it reaches 400

keV, which is below the threshold energy at which the particle would hit the wall. This

explains the absence of losses at the 90◦ detector when beam tritons are injected instead
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Figure 6.18: The trajectory of a 100 keV deuteron gaining energy from either the
MCIBW or the fast wave (FW). The dotted line represents the passing trapped boundary
at the point the plasma whereB = B0 andψ = 0.3ψwall (particles below are passing
while particles above are trapped). At sufficiently high energy if a passing particle be-
comes trapped it will hit the wall. This is noted by the dark solid line markedθ(ε). The
angle at which it hits the wall will depend on its energy, with lower energies correspond-
ing to the outer midplane while higher energies correspond to the inner midplane. The
solid line at an angle to the passing trapped boundary (marked 0◦) denotes trapped parti-
cles whose energy is so large their orbits scrape off on the outer midplane (see Fig. 6.6C).
If the boundary were plotted for a location with largerψ, it would be shifted to higher
pitch, i.e. for the samev‖ it would be at lowerv⊥, and conversely if the we move the
location closer to the center.

of beam deuterons. Unlike the fast wave heated deuteron, the triton does not even scrape

off on the outer midplane (although it is close and a different initial condition might

have scraped off and hit the wall). Eventually (whenλ → 0) the triton stops reaching

theB = B0 surface. The poloidal projection of the tritons orbit is shown in Fig 6.21.

Interestingly, tritons have a maximum amount of energy they can gain from the wave,

which can be seen from Eq. (6.15). TakingB = Bmc we see that as the particle gains

energy upon passing through the mode conversion layer,λ → √
1− ν. But ν is greater
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Figure 6.19: Poloidal projection of the orbit of a D interacting with the MCIBW.

than 1. Physically what will happen is that the triton will keep slowing down as it passes

through resonance. But the tritonneedsa Doppler shift to resonate with the MCIBW.

Thus as it slows down it will resonate with higher and higher k‖, which will have smaller

and smaller amplitudes. Eventually the diffusion coefficient will be zero, effectively

barring the triton from gaining any more energy. Another way of seeing this is that the

triton is trying to get its banana tips to the resonance layer, but the resonance layer is on

the low field side of the mode conversion layer, and the particle must pass through the

mode conversion layer to interact with the wave. In contrast, the deuteron interacting

with MCIBW is able to continue interacting so long ask‖ ’s are present which are lower

(in absolute value) than thek‖ it interacted with initially. This is because the deuteron

gains parallel energy as it gains perpendicular energy.
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Figure 6.20: Passing/trapped boundary and trajectory of a 100 keV T interacting with
MCIBW vs. v‖ andv⊥. See Fig. 6.18 for details.

6.3.4 Effect of nφ on the particle trajectories

While the movement inv‖ andv⊥ plays a very important role in the particle losses, it does

not tell the whole story. In particular, we have not addressed the interaction of cogoing

particles with the wave, nor the importance of radial transport. The equation relevant to

these issues is

dPφ
dε

=
nφ
ω

(6.16)

SincePφ = Fv‖/B − ψ, and for low energies thev‖ term is small, -Pφ can be treated

somewhat like a radial variable. On this basis, interacting with a wave withnφ/ω > 0

means that as the particle gains energy,Pφ increases, -Pφ decreases, hence, the particle

moves in. Conversely, withnφ/ω < 0, as the particle gains energy,Pφ decreases, -Pφ
increases, the particle moves out. This notion is not precise due to the parallel velocity

term inPφ.
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Figure 6.21: Poloidal projection of the orbit of a T interacting with the MCIBW.

This radial transport is important in the MCIBW particle dynamics for both co

going and countergoing particles. While the motion inv‖ andv⊥ is specified, as discussed

above, the location of the passing trapped boundary depends strongly on the position of

the particle, (the farther out the particle is the larger the inverse aspect ratio leading to

larger regions of trapped space). Thus if the particle is moved out while gaining energy

it is likely to cross the passing trapped boundary sooner, conversely if it is moved in as

it gains energy it will require a larger energy gain before the particle crosses the passing

trapped boundary. In fact, oncenφ is above some value the particle will continue to move

in as it gains energy, never crossing the passing trapped boundary. Figure 6.22 illustrates

a countergoing deuteron interacting with the MCIBW assuming different values ofnφ.

The amount of energy the particle gains before crossing the passing trapped boundary

(or even if the particle crosses the passing trapped boundary) depends strongly onnφ.



148 Chapter 6. Modeling Fast Particle-MCIBW interactions on TFTR

200 240 280 320
R Hcm L

-100

-50

0

50

100

Z
Hc

m
L

C

200 240 280 320
R Hcm L

-100

-50

0

50

100

Z
Hc

m
L

D

200 240 280 320
R Hcm L

-100

-50

0

50

100
Z

Hc
m

L

A

200 240 280 320
R Hcm L

-100

-50

0

50

100

Z
Hc

m
L

B

Figure 6.22: A countergoing deuteron interacting with the MCIBW for various values
of nφ < 0. Graph A shows a particle interacting with two waves withnφ = −18,−43,
which correspond to the values used in the ray tracing. It gains nearly 2 MeV before
crossing the passing trapped boundary and hitting the wall near 90◦. B shows the same
particle interacting with two waves, both of which havenφ = −60. This particle gains
1.2 MeV and then crosses the passing trapped boundary hitting the wall to the low field
side of the 90◦. C shows the same particle interacting with two waves withnφ = −23.
This particle gains 3.1 MeV and then crosses the passing trapped boundary hitting the
wall to the high field side of the 90◦. Finally, D shows a particle interacting with two
waves withnφ = −10. This particle gains 2.5 MeV and can gain no more, because if it
did it would stop crossing the MCIBW layer, and the wave cannot push the particle to a
place where it can no longer interact with it.
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Figure 6.23 illustrates a cogoing deuteron interacting with the MCIBW assuming

differentnφ. Recall that because of the Doppler shift required for deuterons to resonate

they interact predominantly with waves which havenφ > 0

The reason that particle D in Fig. 6.22 (particle B from Fig. 6.23) moves in (out)

as it is heated, even thoughnφ < 0 (nφ > 0) can be understood as follows. Consider

a particle interacting with a wave, withnφ = 0 and thereforePφ remains constant. As

this particle is heated its orbit will move in if it is countergoing and out if it is cogoing

and move out on the cogoing leg and in on the countergoing leg if it is trapped. This

can be seen by consider the curve of the particle inB,ψ space as discussed in Ap. A in

particular Fig. A.2. As the energy goes up the width of this theBorb curve spreads out

for µ/ε fixed (which these particles tend to have sinceµ/ε approaches a limiting value

after enough energy is gained). This spreading makes the intersections with the inner

and outer midplane move closer to the center for countergoing ions, closer to the wall

for cogoing ions and spreading out the intercepts for trapped particles. For large enough

|nφ| this effect is overcome by the change inPφ, and the expected behavior is recovered.
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Figure 6.23: A cogoing deuteron interacting with MCIBW for two values ofnφ > 0.
Graph A shows a particle interacting with two waves withnφ = 18, 43, which correspond
to the values used in the ray tracing. It gains nearly 2.3 MeV before it can proceed no
further. B shows the same particle interacting with two waves withnφ = 10. This particle
gains nearly 5 MeV and then hits the wall on the low field side.
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6.3.5 Theoretical summary

By examining the theoretical issues involved in the MCIBW beam deuteron interaction

we have been able to get some idea of the important issues involved in the experiments.

On the basis of these insights, predictions are able to be made about the nature of the

losses.

The way the heated particles move in velocity space leads to several observations

consistent with the experiments. For example, the absence of magnetics signature of a

large tail formation (which initially led to speculation that it could not be beam losses),

could be due to the deuterons gaining parallel and perpendicular energy upon interact-

ing with the wave, unlike the case of fast wave heating where the particles gain mostly

perpendicular energy. Of course it can be difficult to see a tail via excess perpendicular

energy when beams are injected, since the beam particles tend to have excess parallel

energy. Also, the absence of a loss at lower gyro radii is seen is a consequence of the

parallel heating of the deuterons, which significantly increases the energy they must ob-

tain before they can cross the passing trapped boundary. At the same time the absence of

significant losses during triton beam injection is explainable by the tritons movement in

velocity space upon interaction with the MCIBW.

The toroidal mode number the particles interact with can also explain some of the

observations. In particular, the absence of deuteron loss under co injection, even though

the extremely long tail in the neutron production shown in Fig. 6.9 for coinjection sug-

gests that the deuterons are being significantly heated. This can be seen to be consistent

with the fact that cogoing deuterons interact with thenφ > 0 waves which tend to move

the particles in as they heat them. This heating tends to move the hot cogoing deuterons

to regions of high wave power (near the midplane) and high density, unlike the case for

counter injection. Together with the natural tendency for cogoing beam particles to be

better confined than countergoing ones, this is a possible explanation for the significantly

longer neutron tail for coinjection than counter.

Finally we have seen that information about the waves may gleaned by the pres-

ence of the deuteron interaction, and its details. In the next section will expand upon

these hypothesis by doing simulations of many particles under more realistic conditions.
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6.4 Simulation Results

The previous section has given us a feel for what to expect when simulating the beam ion

MCIBW interaction, and given a plausible explanation for some of the observed phenom-

ena. However, to really be convinced that the model we have is describing some of what

is actually going it is necessary to carry out full fledge simulation. These simulations

significantly increase the number of effects modeled. For instance we use a distribution

of beam ions, taken from the TRANSP code prediction of where incident neutral beam

particles are ionized, to see the effects of a full fledged distribution of beam particles on

the losses. We now include the effect of the spot height of the MCIBW which, we will

see, will severely limit which particles can be ejected. Furthermore scans over various

wave parameters will tell us how the losses change as the toroidal field is varied or the

ratio of n3He/ne changes.

However, we still do not have a complete description of the problem. To give one

example, stochastic ripple diffusion is not included in these simulation. Its effect will

not be important for the losses of counter going particles, since they remain passing until

they receive their last kick and then hit the wall. Since they are not trapped while they are

confined SRD (which only effects trapped particles) is not relevant. On the other hand

some cogoing particles interacting with the wave may become trapped, and upon doing

so they do not hit the wall. Thus some of them will be affected by SRD. The effect of

SRD on these particles will be to diffuse their banana tips, possibly causing them to hit

the wall somewhere on the outer midplane. An investigation by Boivin, Zweben, and

White (1993) suggests that most of these losses would be to the 45◦ and 20◦ degree

detectors.

The description of the wave physics is also not complete as discussed above.

Many details of the waves enter into the strength and nature of the wave particle interac-

tion, and thus we cannot expect a complete description of the problem given the limited

amount of wave physics which is included. In particular, the results are sensitive to some

of the assumed parameters, which a more detailed modeling of the wave would provide

but is dealt with here by scanning over the parameters.

Finally, all of these simulations are done collisionlessly. Collisional slowing
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down, which is the dominant collisional process for these ions, will strongly affect the

number of deuterons which get out. Collisions will be discussed in the section on the

diffusion coefficient in Chapter 7.

In this section, the interest lies in the poloidal and energy distribution of the

losses, which the collisions do not strongly affect. For now the amplitude of the wave is

set to some level and the particles are allowed to diffuse in the wave for a given amount

of time. In comparing shots with different parameters the fraction of beam particles lost

will be used as one gauge of the effect of the MCIBW on the discharge. This number

should not be taken as an absolute number, as collisions and the wave amplitude will

strongly affect the fraction of particles that are lost. However for relative comparison

between two shots, it is a very useful number, since, presumably, collisions would affect

the two discharges in similar ways.

Note, however, that even collisionlessly it is important to let the particles diffuse

(as opposed to just heating the particle until it leaves the plasma). It is found that diffusive

kicks in energy to the particle creates a different distribution of the losses than heating

only kicks. This is not surprising, since in general the particles are interacting with more

than onenφ, and thus their diffusion is no longer along a line, but now along a surface in

two dimensions. By always giving heating kicks the full two dimensional surface cannot

be explored and the loss distribution is different than the diffusive case.

For these simulations, the beam distribution was taken from a TRANSP sim-

ulation of a TFTR discharge which included both co going and countergoing beam

deuterons, with a current, toroidal field, and plasma density which was typical for the

discharges with MCIBW. TRANSP has a post processor which will create a Monte Carlo

distribution of beam orbits consistent with the beam deposition profile [MCCUNE 1997].

Each orbit is specified by the square root of the normalized toroidal flux on the outer

midplane, the pitch, and the energy. Typically 10000 particles were used. The magnetic

geometry was obtained as described in Appendix A with the TRANSP characterization

of the equilibria at a given time as an input. The geometry used had B = 4.8 T, I = 1.4

MA with a 12 cm Shafranov shift. Note that for one of the scans done below the toroidal

field was varied from 4.4 to 5.3 T. In the actual experiment this scan was performed at

constant current, however, for the simulations the geometry used was the same in each
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discharge, but scaled by the toroidal field. This means that the simulation at 5.3 T is

really a simulation of a B = 5.3 T, I = 1.54 MA discharge. The effect of this discrepancy

is discussed below. The waves were ray traced using the code of Valeo and Fisch (1994)

as described above.

6.4.1 Toroidal field scan

Before proceeding to the simulation results, we consider one of the implications of the

preceding section’s discussion on the losses as the toroidal field is varied. In Fig 6.24 the

trajectories of a deuteron inv‖, v⊥ space at B = B0 is shown. The three different lines

correspond to the deuteron interacting with the MCIBW at three different toroidal fields,

but with n3He/ne = 0.15 in all three cases. At the lowest field, 4.7 T, the mode conversion

layer is on the high field side of the magnetic axis, while at 5.3 T the mode conversion

layer is on the low field side of the axis. Examining Eq. (6.15), note thatν = nΩmc/ω

depends only on the fraction of3He, however, the term that matters isνB/Bmc. This

leads to the deuterons crossing the passing trapped boundary much sooner with the mode

conversion layer on the low field side of the axis (5.3 T), than with the mode conversion

layer on the high field side (4.7 T). For the case shown here, the deuteron at 5.3 T crosses

the passing trapped boundary and does not hit the wall. At 5.0 T the deuteron hits the

wall near the outer midplane, after gaining more than 1.0 MeV. The 4.7 T case hits the

wall near 90◦ after gaining almost 2.0 MeV. It is possible that some of this behavior is

responsible for the localization of the losses as the toroidal field is scanned as shown in

Fig. 6.10.

The insight from Fig. 6.24 is borne out in simulation results shown in Fig. 6.25.

In this figure, the loss energy of a distribution of beam deuterons is plotted versus the

poloidal angle at which they exit. In all cases the ratio of n3He/ne = 0.15, however

the toroidal field is scanned from B = 4.4 T, 4.7 T, 5.0 T and 5.3 T, moving the mode

conversion layer from the high field side to the low field side. Note that the losses move

to lower energy and lower poloidal angle as the toroidal field is raised, just what would

be expected from the preceding discussion. The losses near the 90◦ are at energies close

to 2 MeV consistent with the experimental data shown in Fig. 6.8. Furthermore at lower

poloidal angles, the losses tend to be at lower energy, consistent with the observations.
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Figure 6.24: The movement of an initially 100 keV deuteron inv‖,v⊥ space due to in-
teraction with the MCIBW for n3He/ne = 0.15, but varying toroidal field. The passing
trapped boundary is shown as a dotted and solid line. The solid lines represent the an-
alytical calculation of the particles path as well as some points corresponding to the
simulation of these particles. Note that the lower the field the higher the energy at which
the particle crosses the passing trapped boundary.

In the case above, the fraction of the beam distribution which could resonate with

the wave was typically 13% - 21.5%, with the peak coming at 4.86 T when the mode

conversion layer was closest to the axis. Since the Doppler shift required to resonate

with the MCIBW depends only on the3He fraction, these variations arise from geometric

factors, like whether or not the particles pass through the MCIBW layer, and what their

v‖ is when they do. The number of particles kicked out is about 0.5% for the 4.4 T, 4.7

T and 5.3 T cases, and almost 2% for the 4.86 T and 5.0 T cases. Note that this strong

peaking of the number of lost particles, as well as their localization near 90◦ when the
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mode conversion layer is nearest the magnetic axis (4.86 T, 5.0 T) is strikingly consistent

with the observations shown in Fig. 6.10.

However, data for the detectors other than the 90◦ detector also peak when the

mode conversion layer is on axis, unlike the somewhat localized losses for 4.86 T and 5 T

shown in the simulation results. Furthermore the experimental data shows that the losses

at the 90◦ detector decay more slowly as the field gets higher and whereas the losses at the

60◦ detector decay more slowly as the field gets lower, seemingly contradicting the trend

shown above. Two possible explanations lie in stochastic ripple diffusion spreading out

the losses especially to the 20◦ detector and 45◦ detectors, some wave phenomenon not

accounted for. Also as noted above the simulations all use the same magnetic geometry,

based on a TFTR shot with 4.8 T, 1.4 MA, but with a scaled magnetic field, which also

results in a scaled current. In the experiments the current was held fixed as the magnetic

field was varied. This means that the simulations at 5.3 T had somewhat higher currents

than the experiment, while at 4.4 T the current was somewhat lower than experiments.

Using the correct equilibria for each run would tend to shift the losses poloidally a few

degrees for both the higher and lower field cases.

The pitch angle distribution of the lost particles is shown in Fig. 6.26. This distri-

bution is consistent with losses at the passing trapped boundary, with the slight variation

in pitch angle at a given poloidal angle due to the spread in energy of the particles hitting

the wall at that location.

One parameter which strongly affected the losses was the assumed spot size of

the MCIBW. For these simulations the spot size was assumed to be constant. In practice

though, the wave power is focused as it travels towards the magnetic axis, and then

defocused on the other side. Thus when the mode conversion layer is on the high or low

field side of the axis the spotsize will probably be larger than assumed here. The electric

field was taken to fall off in a Gaussian manner to half its value on the midplane at about

24 cm, giving a power deposition with a full width at half maximum (FWHM) of about

16 cm. The results of a 50% increase in the spot size are shown in Fig. 6.27 and 6.28.

In the first case, which has B = 4.4 T, the number of particles lost goes up by a factor of

4, including particles lost near the outer (inner) midplane, which previously could not be

lost. These particles are cogoing (countergoing) particles which cross through the mode
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Figure 6.25: Energy of the lost deuterons versus poloidal angle where they hit the wall
for B = 4.4 T, 4.7 T, 4.86 T, 5.0 T, 5.3 T.

conversion layer significantly above or below the midplane. With the expanded spot size

these particles can move out much more rapidly than before, and the wave amplitude is

large enough that they can receive a “last kick” to push them into the wall. In the second

case, which has B = 5.0 T the number of particles lost doubles.

6.4.2 n3He/ne scan

Recall Fig. 6.7, which shows the strong dependence of the losses on the density of3He.

To see if this effect was present in the simulation, a scan was performed of the ratio

of n3He/ne at fixed field. The effect of this scan is to move the mode conversion layer

from the outer midplane to the inner midplane. At low n3He/ne, the mode conversion

layer comes very close to the3He resonance layer, and is correspondingly far from the D

layer. Thus the Doppler shifts required to resonate with the wave become prohibitively
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Figure 6.26: Pitch angle (degrees) of the lost deuterons versus poloidal angle where they
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Figure 6.27: Loss Energy vs. poloidal angle for two different spot sizes. The toroidal
field is 4.4 T.

large, and no particles are able to resonate.

The results of a scan of n3He/ne from 0.1 to 0.25 at 5 T are shown in Fig. 6.29 and

6.30. The equilibrium for this case has a current of 1.7 MA, as opposed to the previous
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Figure 6.28: Loss Energy vs. poloidal angle for two different spot sizes. The toroidal
field is 5.0 T.

results in which the current was 1.4 MA. The change in current is to more accurately

reflect the conditions of Fig. 6.7. The fraction of deuterons resonant with the waves goes

from 8% at n3He/ne = 0.1 to 42% at n3He/ne = 0.25. As can be seen from the figure, the

fraction of particles lost increases substantially going from 0.05% at n3He/ne = 0.1, 2.1%

at n3He/ne = 0.15, 5.5% at n3He/ne = 0.2, 6.5% at n3He/ne = 0.25. The distribution of the

losses also changes markedly. Note that the large change in losses seen in Fig. 6.7 when

n3He/ne is changed could indeed be consistent with the simulation results shown here,

although the largest change in the simulation results is seen when n3He/ne goes from 0.1

to 0.15 whereas experimentally it was thought that n3He/ne was changing from 0.15 to

0.2 in Fig. 6.7. One possible explanation lies in the determination of n3He/ne. Changing

n3He/ne by 0.05 corresponds to movement of the mode conversion layer by only about 8

cm at 5 T. The experimental determination of n3He/ne is uncertain by an amount similar

to this [MAJESKI et al. 1996]. Alternatively, there are uncertainties in the modeling of

the mode converted wave which could shift the mode conversion layer by a few cm. For

instance only nominal values of temperature and density were used in the ray tracing as

opposed to determining the actual density and temperature at the mode conversion layer

for each discharge. Furthermore, the simulation assumes that the deuterons interact with

the mode converted wave at one value of|B|. In practice, the mode converted wave may

exist over several cm.

Another result of this strong sensitivity to n3He/ne may be an explanation for

the sometimes erratic time history or the losses. In many discharges the loss frequently
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Figure 6.29: Losses of beam deuterons for n3He/ne = 0.1 (a), 0.15 (b) and B = 5.0 T

peaks early in the discharge and then decays away with time. This could be due to small,

undetectable shifts in the mode conversion layer location due to a decreasing ratio of

n3He/ne as the shots evolves (arising, for instance, from beam fueling of deuterium).

One way in which the Fig. 6.29 and 6.30 do not replicate the losses in Fig. 6.7 is

the absence of a loss at 90◦. Actually those figures were for B = 5 T, however the actual

experiment was at B = 4.86 T. The losses for this value of B, with n3He/ne = 0.15, 0.20

are shown in Fig. 6.31 where the losses are seen to be near 90◦.

As a final note on the simulations, when tritium beams are substituted for deu-
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Figure 6.30: Losses of beam deuterons for n3He/ne = 0.2 (a), 0.25 (b) and B = 5.0 T

terium beams almost 70% of the particles are resonant for B = 4.8 T, n3He/ne = 0.15 (the

mode conversion layer near the axis). However only 0.3% of the tritons are lost, and all

of them are below the 400 keV threshold for the lost alpha detectors (although a few par-

ticles seem to hit the 20◦ detector, which does not have the foil prohibiting losses below

400 keV). Note that in addition to the particles crossing the passing trapped boundary

at low energy, examination of the orbit shown in Fig. 6.21 shows that as the triton gains

energy its intersection with the mode conversion layer tends to move to higher Z, thus

the 20 cm spot height severely limits the number of tritons which can be lost. This is

consistent with our expectation from the previous section, as well with the experimental
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(a) n3He/ne = 0.15, B = 4.86 T
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Figure 6.31: Losses of beam deuterons for n3He/ne = 0.15 (a), 0.2(b) and B = 4.86 T

observations.





Chapter 7

Key Implications of the TFTR

experiments

T HE EXPERIMENTS CONDUCTED ON TFTR are extremely important

to α-channelling for two reasons. First, they provide us with invaluable

experimental data on the interaction of the MCIBW and fast ions, and

thereby give data which can be used to benchmark the simulation. Sec-

ond, they allow us to infer key physics results which we then make use of to accomplish

α-channelling in a reactor.

In particular, this data is so valuable because it provides an integrated test of the

various facets ofα-channelling, albeit with heated particles rather than cooled ones, i.e.

it includes wave physics, fast particle physics, and the wave-particle interaction. Even if

we were able to test each component separately, we could not be very confident about

our prediction without an integrated test. If the experimental data can be used to validate

the simulation, than we will be much more confident about the predictions of the code

when extrapolating to fullα-channelling scenarios. This is the use to which the data was

put in the previous chapter.

In this chapter, we put the data to a different use, namely, the determination of key

physics results in support ofα-channelling. The two key results discussed here are thek‖
flip of the MCIBW in Sec. 7.1 and the diffusion coefficient for the deuterons interacting

163
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with the MCIBW in Sec. 7.2

7.1 Thek‖–flip

One of the most interesting predictions of the work of Valeo and Fisch (1994), which

has already been discussed in some detail in this thesis, is the flip of thek‖ of the wave,

due to the effects of the poloidal field. This wave has a parallel phase velocity in the

opposite direction of the launched wave phase velocity. As we have already pointed out

in Sec. 5.5 this effect is very useful forα-channelling. It also is important for the current

drive problem, as a wave withk‖ flipped would drive power in a direction opposite to the

launched direction, which would presumably be undesirable. Is there evidence of such a

k‖ flip in the TFTR data? If so, how would one detect it ?

One way of detecting such a wave would be to infer that a set of ions interacted

with that wave by means of a resonant interaction. Recall that fornφ > 0 thek‖ flipped

wave hask‖ < 0 and fornφ < 0, k‖ > 0.

Sincek‖v‖ = ω − ΩD > 0 cogoing ions must interact with waves which have

k‖ > 0 and countergoing ions resonate with waves which havek‖ < 0. Thus losses of

cogoing ions when onlynφ < 0 waves were launched, or losses of countergoing ions

when onlynφ > 0 waves were launched would provide unambiguous evidence of ak‖
flip.

Note though, that normally both co and countergoing ions are present, hence

any detected interaction could have been of the MCIBW with a particle going in the

direction that did not require ak‖ flip for it to interact. Another problem is that, in general,

for symmetric phasing, bothnφ < 0 andnφ > 0 waves are launched by the antenna.

This also makes the detection of thek‖ flip ambiguous, since a cogoing (countergoing)

deuteron, which must interact with a wave which hask‖ > 0 (k‖ < 0) could be interacting

with thenφ > 0 (nφ < 0) wave or thek‖ flippednφ < 0 (nφ > 0) wave (see Sec. 6.3.2).

It could be the case that comparing the simulation with and without thek‖ flipped wave

would give a significant enough discrepancy with the experimental result that one could

argue that thek‖ flipped wave must be present, but, given the ambiguity in the modeling
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of the wave physics, it is unlikely that such an argument would be convincing.

Both of these problems can be overcome. TFTR has the capability of injecting

neutral beams in either the cogoing or countergoing directions, and the RF can be phased

to give predominantlynφ greater or less than zero. Thus in order to directly test thek‖ flip

hypothesis, a few shots were carried out in July of 1996. These experiments used both

toroidally phased RF and cogoing and countergoing beams, in all four configurations.

Due to lack of run time time and difficulty with RF phasing, there was only time for one

or two shots in each configuration, all at low RF power levels (around 1.5 MW). The only

loss observed was for countergoing injection of the beams withnφ < 0, showing no signs

of ak‖ flip. However, ak‖ flip cannot be excluded on the basis of these experiments. The

absence of losses may well be due to low power levels or diffusion paths which do not

reach the wall, rather than the absence of thek‖ flip.

Fortuitously, in looking over old data in preparation of Fisch et al. (1996), we

stumbled across some runs which were used to investigate mode conversion current drive

[M AJESKI et al. 1996; MAJESKI et al. 1996]. These runs had asymmetric phasing of

the RF, and experiments were carried out withnφ < 0 (these waves would damp on

countergoing electrons pulling a tail of electrons in the counter direction which would

drive current in the cogoing direction), andnφ > 0 (driving counter current). Fortunately

many of these experiments had coinjection only of the beam deuterons. In Fig. 7.1 we

show a comparison between two of these experiments. By convention +90◦ phasing is

the phasing which drives co current and therefore hasnφ < 0. Thus we have evidence of

loss of cogoing injected beam deuterons withnφ < 0 demonstrating thek‖ flip!

While this picture is consistent there are a number of subtleties which cloud the

picture. First, the power launched from the antenna is not entirely directed in the direc-

tion of the phasing. Rather a significant portion (about a quarter) goes in the opposite di-

rection with a peaknφ about twice that of the dominantnφ. If this backward propagating

lobe were responsible for the losses there would be no need to invoke thek‖ flip. Second,

these experiments show significant losses of cogoing injected beam deuterons, which is

in contrast with later experiments showing no significant losses when only coinjection

occurs. Third, it is conceivable that cogoing injected beam deuterons have pitch-angle

scattered into countergoing or trapped particles and then are lost, again, removing the
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Figure 7.1: Losses of cogoing deuterium beams in the presence of phased rf. +90◦

phasing (counter to the current) results in significantly enhanced losses, whereas -90◦

phasing (co to the current) shows first orbit losses of fusion products only. Figure from
D. Darrow.

need for thek‖ flip to explain the data.

These questions have been addressed with several simulations which include both

the backward lobe of the RF and the effect of collisions, and show agreement with the

experimental results. In particular a simulation of the losses shows that for the case of

nφ < 0 there were significant losses, however, whennφ > 0 was chosen losses were

absent which is consistent with Fig. 7.1. Simulations with only the backward lobe (i.e.

no k‖ flipped wave) show no heated beam losses, ruling out the backward lobe as a

possible complication. Collisionless simulations as well as collisional simulations show

the losses, suggesting that cogoing deuterons do get out without pitch angle scattering

from cogoing to countergoing.

The reason cogoing deuterons are lost in these experiments while their loss is

typically absent in other experiments has to do with the location of the mode conversion

layer. The experiments investigating current drive effect typically had a ratio n3He /ne of
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0.25 placing the mode conversion layer far on the high field side, as close as any of the

TFTR experiments got to putting the mc layer near the D resonance layer. Because of

this the wave power, which focuses down to a spot size of± 15 - 20 cm when the the

mode conversion layer is on axis tends to defocus considerably as it goes to the high field

side. This defocusing spreads the power out considerably, increasing the spot size. This

increase in spot size allows cogoing deuterons to keep resonating with the wave as they

move farther and farther out, giving them a diffusion path to the wall. When the mode

conversion layer is on axis it is very difficult for cogoing deuterons to be lost.

Let us consider the last source of ambiguity concerning thek‖ flip. Conceivably

some deuterons pitch angle scatter from cogoing or trapped to counter going and then

start resonating with the wave. Ak‖ flip would not be necessary to explain the interaction

of these countergoing particles with the wave. But the number of particles which can do

this is small (see Fig. 4.15, which shows a cogoing injected beam pitch angle scattering

and slowing down), since the pitch angle scattering time for theses plasmas is a factor

of two to three longer than the slowing down time, and the particles will stop resonating

with the wave after slowing down below some threshold energy. Simulations with just the

part of the spectrum before thek‖ flip do indeed show losses due to pitch angle scattering

of cogoing particles to countergoing and then those countergoing particles resonating

with the wave. However, these losses are typically at low energies (300-400 keV), below

the detection threshold of the detectors (about 400 keV). Because so few pitch-angle

scattered particles could be made resonant, and we see from simulations that those that

are would be lost only at undetectably low energy, the scattering of cogoing particles

cannot explain the very large losses (relative to background) seen in Fig. 7.1. Thek‖ flip

remains the only explanation which is consistent with all of the data, according to the

COM simulation.

7.2 Diffusion Coefficient

Understanding the diffusion coefficient,D, of the beam deuterons interacting with the

MCIBW is very important for filling in theα-channelling puzzle, as it directly relates to

the power level required for accomplishing the channelling effect in a reactor.
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How can the diffusion coefficient be determined? It would be nice if we could

measure the in situ distribution function of the beam deuterons in all parts of phase space,

however such a measurement is not possible (pellet charge exchange can give a limited

amount of information about the distribution function at a single time in a small volume

of phase space). We do have information like that contained in Fig. 7.2, which shows

the neutral beam injection, the neutron rate, and the losses to the 60◦ lost alpha detector

versus time from a typical MCIBW beam blip experiment conducted on TFTR with 3.2

MW of RF power. As mentioned in Chapter 6, these experiments blipped the beams

early in the shot, providing a “delta” function source of beam deuterons to interact with

the wave.

This data contains a wealth of information about the strength of the MCIBW

beam particle interaction. Note the long decay of the neutron production rate. In con-

trast, consider Fig. 7.3 which has only 1 MW of RF power, and a much more rapid

neutron decay. Shots which have rf only show neutron production two orders of magni-

tude lower than those with beams. Together this is indicative of a significant tail of RF

heated beam deuterons being created by the MCIBW. Furthermore the losses appear to

have characteristic onset, peak and decay times, giving data points that can be compared

to theory or simulation. Finally, by comparing the overall level of losses from different

shots with different power levels an estimate of the diffusion coefficient can be obtained.

In this section we outline how one can estimate the strength of the wave particle interac-

tion using the data and simulation results.

A cursory glance at Fig. 7.2 shows that that we cannot treat the beam losses

as collisionless. For these plasmas a typical slowing down time for a 100 keV beam

deuteron is on the order of 100 milliseconds, and yet losses persist for several hundred

milliseconds after the blip. If the losses were truly collisionless it would be necessary for

the particles to exit in a time short compared with the slowing down time. Furthermore,

the level of losses varies strongly with the applied RF power. Collisionlessly one would

expect that all particles which can hit the wall (i.e. have a diffusion path intersecting

the wall) will, and thus the losses shouldn’t change strongly with power. Collisions,

however, change this; by dragging particles down in energy they increase the time for

particles to leave the plasma. They also can pull particles below the minimum energy

required for interacting with the wave. Once a particle falls below this energy it is most
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Figure 7.2: The results from a typical beam blip experiment. The dashed line shows the
neutral beam injection, the thin solid line shows the neutron measurement and the dark
black line shows the loss signal at the 60◦ detector. The RF power (3.2 MW) is on for
the whole time.

likely permanently removed from interacting with the wave.

Thus in order to get a an accurate representation of the experiments it is neces-

sary to include the effect of collisions in the COM simulation as done in Chapter 4. Now,

unlike the collisionless case with a single wave where the diffusion path was one dimen-

sional, or even the case of oneω and more than onenφ which is two dimensional , the

diffusion will be fully three dimensional inε, µ, andPφ space.

Before undertaking a simulation of particles interacting with both the waves and

collisions it is worthwhile to consider a modified version of the one dimensional problem

discussed in Sec. 4.4.7. Heeter et al. (1997) have used a one dimensional model which

includes diffusion in velocity due to the waves and collisional effects in order to deter-

mine how the losses might scale as the power is increased. For the correctly chosenD

and using experimental values for the threshold energy and estimates for the loss energy

the one dimensional model is able to nicely replicate the time history of the losses.

Before proceeding to the simulation and experimental results we get a simple
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Figure 7.3: The results from a beam blip experiment with only 1 MW of RF power.
The dashed line shows the neutral beam injection, the thin solid line shows the neutron
measurement. The signal at the 60◦ detector is not shown, since the losses show no
enhancement over first orbit losses.

estimate of the diffusion coefficient, and estimate the timescale for the losses to occur.

7.2.1 Simple estimate

We reproduce here Eq. (4.86) which gives the change in the particle energy upon one

pass through wave region.

∆ε = qωΦ0(rg.c.)e
iϕ0Jn(k⊥ρ)

√
2π∣∣ v‖

JB
∂
∂θ

(k‖v‖ + nΩ)
∣∣ (7.1)

We want a representative value for this quantity, keeping in mind that in practice this

expression can vary by factors of 10 or more for a single particle at different points in

ε, µ, andPφ space, and even more from particle to particle. From Fig. 6.15-6.17 we

choose ,k⊥ = 1.5 cm−1,k‖ = -0.15 cm−1, Φ0 can be estimated asE/k⊥. Note that

Fig 6.17 shows the electric field in statvolts/cm for an incident flux of 1 Watt/cm2 on
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the mode conversion layer. In a typical MCIBW experiment 2 MW of RF power was

launched and mode converted at R = 277 cm, with a spot height of about 35 cm (±17

cm), giving a typical intensity of 32 Watts/cm2. The electric field scales as the square root

of the intensity giving a value ofΦ0 of about 0.3 statvolts. We choose a countergoing

beam deuteron at about 250 keV which hasρ = 1.9cm, andλ = 0.63 at the mode

conversion layer. Note that the expression for∆ε above goes to zero at the zeroes of the

Bessel function. In practice, manyk⊥ are present at the MCIBW layer so that the effect

of these zeros is averaged over. The large argument expansion for the Bessel function is

squared and averaged overk⊥ρ, giving a term which goes like1/(πk⊥ρ), For calculating

the kick we use the square root of this term, which is about 0.3 for the case at hand. The

term under the square root above is a resonance time, andω times this term gives the

number of wave periods that the particle is resonant. The denominator of this term can

be rewritten

v‖
JB

∂

∂θ
(k‖v‖ + nΩ) ≈ v‖

JB

∂B

∂θ
v‖
∂k‖
∂B

(7.2)

where we have neglected the variation ofv‖ andB with θ compared with the variation

of k‖ which is quite large. This gives a resonance time,ωtres ≈ 20. Multiplying these

terms together we get∆ε = 1.8 statvolts. Finally converting from statvolts to volts gives

a factor of 300 yielding a “typical”∆ε on the order of 0.5 keV per bounce. The bounce

time for one of the beam ions interacting with the wave is on the order of 10−5 seconds.

It is useful to estimate a collisionless loss time. A typical particle that leaves gains

on the order of 1 MeV before leaving. If the deuteron were to receive only heating kicks

it could leave after 2000 bounces or about 20 milliseconds. Diffusively, however, the

number of bounces required goes like the square, implying that the bulk of the resonant

particles would leave after 40 seconds, much longer than the time of the discharge! In

fact given this diffusion coefficient, the fraction of particles leaving in less than a second

would be vanishingly small (roughly this is the probability that out of 10000 kicks (the

number of bounces in one second), there would be 2000 more plus kicks than minus

kicks, but given equally probable kicks, this is a more than 6σ event.) It would be

necessary to increase the kick size by a factor of 3 - 6 in order to have a non negligible

fraction of the beam deuterons extracted. We will see from the simulations that the

diffusion coefficient predicted from first principles is too small ( by a large factor) to
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explain the experimental losses.

7.2.2 Simulation results

While the above ball park estimate is useful, numerous effects included in the simulation

could change these estimates substantially. Thus an extensive scan of the simulated losses

vs. electric field amplitude was performed. The simulation of beam deuterons under

the effect of multiple ion Bernstein waves and collisions is the most computationally

challenging project in this thesis, and it puts to use almost every aspect of the COM

simulation. Typically 10,000 to 50,000 particles are simulated for the duration of a shot

(on the order of 1 second or 105 bounce times). Each run can take anywhere from 20

minutes to several hours on a Dec Alpha workstation. In order to have good statistics,

at the lowest electric field amplitudes, where few particles are lost, several runs with

different random number seeds have been combined.

Figure 7.4 shows the fraction of resonant beam particles which hit the wall in the

course of 1 second (note that only about 10% of the beam particles are resonant). This

scan shows both the collisional(lower) and collisionless losses. Note that some particles,

though they resonate with the wave, do not have access to diffusion paths which hit the

wall, and thus are stuck in the plasma. Furthermore the small spotsize (which is taken

to have Gaussian dependence on height above the midplane), means that some particles

which resonate feel extremely small amplitudes. This in turn means that the time scale for

these particles to leave the plasma is very, very long (essentially causing these particles

to be stuck as well). These two effects account for the fact that the collisionless fraction

lost only approaches 0.6 asymptotically in the plot shown here. The effect of collisions

is to reduce the losses by a factor of less than two at the highest fields shown and over a

hundred at the lowest.

Using the data from TFTR shots 95854-95862 [DARROW 1996], during which a

scan in RF power was performed, it is possible to make a comparison between the the-

oretical and observed value of the diffusion coefficient. In order to do this however it is

necessary to make an estimate for the absolute level of losses in these experiments. This

is an exercise fraught with uncertainties. Recall that the absolute calibration of the lost
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Figure 7.4: Collisionless and collisional loss of resonant ions vs. electric field amplitude

alpha detectors can be off by as much as a factor of two. Furthermore in computing a

global loss fraction we must make an assumption about the poloidal and toroidal distri-

bution of the loss, even though the detectors measure the loss rate at just one toroidal and

only four poloidal locations. In the absence of any evidence to the contrary we assume

that the loss is toroidally symmetric, but distributed poloidally on the outer bottom half

of the wall. For simplicity we take the loss level at the 60◦ detector to be representative

and calculate the total flux of energy to the wall over the course of the discharge. For a

beam blip it is natural to compare this energy to the total energy injected into the plasma

during the neutral beam injection. The results are shown in Fig. 7.5.

We would now like to compare the data to the simulation results. The simulation

can also be used to estimate the fraction of the energy of the beam blip which impinges on

the wall, and it can be plotted versus the inferred power. Upon doing this, though we find

that the simulation predicts no loss at the power levels which were present in the TFTR

experiments. This is not surprising. The simple estimate above suggested that “typical”

kicks were a factor of 6 to low for there to be any significant losses. This factor of 6 in

the kick size would translate to a factor of 36 in the power! Thus rather than directly

comparing the simulation results to the experimental losses, we attempt to infer how far

off the theoretical estimate of the diffusion coefficient is from the experimental results
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by lining up the experimental curve and the simulation results. The result is shown in

Fig. 7.5. When the simulation data has been shifted the best estimate for the enhancement

in the diffusion coefficient is somewhere between 30-70! Note that if the experimental

data were shifted up (down) by a factor of 10 the enhancement would decrease (increase)

by a factor of 2. From this enhancement, we can infer from Fig. 7.4 that the collisionless

limit could have been attained in TFTR at power levels from 12 to 27 MW.
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Figure 7.5: Fraction of the injected energy impinging on the wall due to acceleration of
the beam ions by the MCIBW. The solid dots are the experimental data, and the line
connects the simulation results. Note that the error bars on both curves are quite large,
as there is large uncertainty about the experimental losses and the simulation results
(especially at low power) are based on just a few particles.

Several consistency checks have been done, to ensure that the COM simulation

is operating as intended. In particular, as pointed out in Sec. 4.4.7, the code has bench-

marked against the analytical prediction for simple cases.
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Furthermore the results from the simulation appear to be consistent with the ex-

periments, in terms of the poloidal and energy distribution of the lost particles. It has

not been possible to compare the losses vs. time to those of the experimental data since

too few particles are lost from the simulations to provide meaningful histograms of the

losses vs. time. However, we can make a comparison between the mean exit time of the

simulations and the mean exit time for the experiments. The data is presented in Fig. 7.6

and shows good agreement (when the shift in power mentioned earlier is performed).

1 1.5 2 2.5 3 3.5 4
Power HMWL

0.05

0.1

0.15

0.2

0.25

M
ea

n
L

os
s

T
im

e
Hse

c
L

Figure 7.6: Mean loss time of the exiting particles vs. power level. The solid dots are the
experimental data, and the line is the simulation results.

The simulation results appear to be consistent with the experiments when the

diffusion coefficient is enhanced as above. How might we explain this large enhancement

in the diffusion coefficient? We think it unlikely that the anomaly arises from a bug in the

COM simulation, given the benchmarking against analytical results, and given the simple

estimate above using a random walk argument in one dimension which also suggested

that the analyticalD was much less than needed to explain the experimental result.

The most likely explanation is that our modeling of the wave from the ray tracing

discussed in Sec. 6.3.1 is too simple. The diffusion coefficient depends strongly on the

wave parameters which are determined from the ray tracing, in particular, the electric

field amplitude and the rate at whichk‖ is changing along the particle’s orbit. An in-
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crease by a factor of 5 to 9 of the electric field amplitude, a similar increase in the time

the particle spends in resonance (due too a less rapid spatial variation ofk‖), or some

combination of the two, could account for the discrepancy.

How could the ray tracing be off by so much? One possibility is that the simpli-

fied slab geometry of the ray tracing code we used may miss some large effect associated

with the toroidal geometry of the experiment. This could be rectified by a more com-

plete ray tracing code. It is also possible that the physics missing from the ray tracing

approach is important enough to cause such a large discrepancy. In this case we would

have to resort to a full wave code such as PENN [JAUN, HELLSTEN, and CHIU 1998].

The physics effects that come to mind are correlated wave-particle interactions or the

presence of cavity modes.

In any event, the power estimates forα-channelling in a reactor (Sec. 5.5.3),

which are based on the analytically calculated diffusion coefficient (assuming uncorre-

lated kicks and geometrical optics), should be reconsidered in light of the apparently

much larger experimentally deduced diffusion coefficient. While at the present we do

not know if the enhancement demonstrated here will, in fact, scale to a reactor, if it did,

the power levels required for the MCIBW would be significantly lower.

Note that, because we cannot be sure that we are modeling correctly the detailed

wave physics, nor that we can ascribe the discrepancy in TFTR data to specific physical

effects (such as internal modes or correlated kicks) that might or might not scale to a

reactor, we cannot draw the conclusion that the required 100 MW estimate that we gave

in Sec. 5.5.3 for collisionlessα-channelling in a reactor should be reduced by exactly

the factor of 30-70. However the data does motivate intense investigation of just this

possibility.



Chapter 8

Directions for Future Work and

Conclusions

C OOLING α-PARTICLES WITH WAVES in a tokamak is a fascinating

challenge. In this thesis, we combined theory, numerical simulations, and

analysis of experimental data to establish a framework for approaching this

problem. Significant advances have been made on all three efforts.

Theα-channelling scenarios presented here are impressive, but the work we have

done suggests more impressive scenarios might yet be found. Of course, there are a

number of caveats and limitations which must be addressed, and experimental validation

of each assumption is crucial. Future work might well address both the caveats affixed

to this work, as well as the opportunities for extending and improving the concept.

8.1 Improvements toα-Channelling Scenarios

Theα-channelling results for an advanced tokamak reactor using two waves presented

in Chapter 5 are promising. It is remarkable that the same set of waves was able to affect

the entire distribution ofα-particles in such a favorable way. There are several important

extensions of this work.
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The level of realism in the simulations should be improved. In particular the TAE

(or one of its variants) should be properly modeled. This will require considerable work,

since up to now this wave has been treated as a single wave with onenφ andω, existing

across much of the plasma. In reality, many modes will be necessary to get most of the

α-particles to diffuse from the center to the edge. Each mode has a differentnφ, ω, and

location. While this will undoubtedly makeα-channelling more complicated, the greater

degree of control (we are presuming that these modes will be excited externally) may

allow improvedα-channelling scenarios.

Attention should also be paid to other ways of improvingα-channelling, in par-

ticular increasing the amount of power channelled or the fraction of power extracted from

those particles which leave. For example, can the 32% of theα-particle power hitting

the wall (for the case with maximum extraction) be reduced? If it cannot be reduced, is

there some way in which that power might be put to good use by taking advantage of the

localized nature of the losses?

Along these lines there are several ideas which might be tried. One idea is to

modify the shape of the first wall of the tokamak, either to focus the losses on a single

point (one could imagine a small, easily replaced rod which is slightly inside the first wall

on the outer midplane to scrape off the cooledα-particles before they hit the wall itself),

or spread them out across as wide an area as possible to minimize the wall loading.

Another idea would be to try to move the MCIBW into the center. As discussed

in Chapter 5, this leads to the heating and ejection of many of theα-particles. This

heating might be avoided if there were a superadiabatic barrier to particle heating above

a certain energy. This barrier would function as a reflecting boundary in the constants

of motion space of theα-particles at high energy, and may allow a cooling scenario to

be developed with the MCIBW in the center. This in turn might significantly reduce the

α-particle power flowing to the wall.

Note also that theα-channelling scenarios in this thesis considered only an aspect

ratio 3, reverse shear tokamak. Other possibilities include exploring various tokamak

geometries at different aspect ratios and with different currents, or even optimizing the

geometry and plasma parameters for theα-channelling effect.
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8.2 Further Experimental Validation

Since it is unlikely that an integrated test of two waveα-channelling scenarios will be

performed any time soon, it is vital that each aspect ofα-channelling be independently

tested where possible. If we have confidence in each aspect on its own then we have a

greater degree of confidence in the simulation which combines these effects to simulate

a two waveα-channelling scenario.

In this thesis we were able to explore and test two such aspects for the MCIBW,

the k‖ flip and the diffusion coefficient. We verified that thek‖ flip of the MCIBW,

which is important forα-channelling, occurs. Our analysis of the diffusion coefficient

suggests a large discrepancy between experimental deductions and simple applications

of the theory. An obvious area of future work is to resolve this discrepancy. More refined

calculations might point to the existence within the TFTR data of important and new

phenomena, such as internal modes or correlated kicks.

An area of future work certainly relates to establishing similar levels of confi-

dence in the relevant physics of the TAE. Heeter (1998) is exploring experiments inves-

tigating this mode on JET and its implications forα-channelling.

One experimental observation which would significantly enhance our confidence

in the two wave scenarios would be the observation of cooling of energetic particles by

the MCIBW. This was not observed on TFTR, instead beam deuterons were heated and

ejected, although this is consistent with the predictions of the simulation. The basic idea

behindα-channelling is that a correctly chosen wave can diffuse particles along a path

such that the particles are cooled on average and the wave is amplified. In general, it is

very difficult to construct the circumstances under which the MCIBW alone would lead

to cooled particles hitting the wall in a large tokamak, as discussed in Sec. 5.1. However,

simulations suggest that in a reverse shear discharge on TFTR, 3.5 MeVα-particles

might be cooled with the correct phasing of the RF.

The simulation results of such a scenario are shown in Fig. 8.1. Although an

experiment was proposed for the observation of cooling ofα-particles in a reverse shear

plasma on TFTR, unfortunately, it was not possible to perform this experiment in the lim-
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ited run time available to TFTR in its final year of operation. The prospects of observing
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Figure 8.1: Energy lost to the wave (MeV) and poloidal exit angle ofα-particles in sim-
ulated reverse shear TFTR discharge with B = 5.3 T, I = 1.85 MA (scaled shot #84011).
1000 particles are simulated. Particles exiting with zero energy lost correspond to first
orbit losses (11%). 13.7% of theα-particles are cooled, exiting near the outer midplane.
3.8% are heated, exiting between the inner midplane and the bottom.

α-particles cooled by MCIBW in the near future vanished with the shutdown of TFTR.

However, recently a proposal has been made to investigate fast particle interactions with

MCIBW on a modification of the Current Drive Experiment-Upgrade (CDX-U), a low

aspect ratio tokamak at Princeton, to be named the Channelling Physics Experiment

(CPX) [MAJESKI 1998]. One of the goals of this experiment will be to diagnose the

interaction of the MCIBW with fast ions injected via a neutral beam.

8.3 Applications to Alternate Concepts

This thesis has focused onα-channelling in tokamaks. It is likely that alternate concepts

will also benefit fromα-channelling, although the degree to which they benefit, and the

ease of implementingα-channelling will surely vary from device to device. Many of

the ideas and approaches here will be useful in alternate concepts. Below, we outline
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how these ideas might be transferred to other devices, and suggest some ways in which

α-channelling might take advantage of some devices’ unique capabilities.

Both the benefits that accrue fromα-channelling, and the challenges of imple-

menting it, shift when moving from the tokamak to other devices. For example, the large

losses of energeticα-particles from devices which lack symmetry (such as conventional

stellarators), suggest that the win fromα-channelling might even be greater in these de-

vices. On the other hand, the higher density associated with devices which have highβ

means that theα-particles will slow down rapidly, possibly increasing the power required

in the waves to accomplishα-channelling.

For the purposes of this consideration, we separate alternate concepts into two

different categories, those which have a symmetry or quasisymmetry (and therefore have

three constants of the guiding center motion, like the tokamak), and those that do not

(like a conventional stellarator).

For devices with a symmetry or quasisymmetry, such as the reversed field pinch

or the quasisymmetric stellarator, the framework of theα-channelling problem outlined

in this thesis can be mapped over straightforwardly. For instance, for these devices there

exist three dimensional constants-of-motion spaces similar to theε, µ, andPφ space used

here. Presumably this space can be separated into different regions of various orbit

topologies as done in Appendix A. Waves will diffuse particles along diffusion paths

in this constants-of-motion space in much the same way as was the case for the tokamak.

Significant differences from the approach taken here may arise due to the different orbit

topologies, orbit width to system size ratios, or different wave physics.

For devices which lack a symmetry, there may exist an opportunity for signif-

icantly simplifiedα-channelling. As an example, consider a conventional stellarator

which has a significant loss cone forα-particles. As pointed out by Ho and Kulsrud

(1986), if an energeticα-particle is born in or scattered into the loss cone it will be im-

mediately lost from the plasma, while lower energy particles will remain confined due to

the effect of the radial electric field. Pitch angle scattering will try to fill in this hole in

phase space. However, energeticα-particles are much faster than thermal ions and will

tend not to pitch angle scatter until they slow down to a few times the thermal velocity of

the background. This means that most of the energy of the energeticα-particles will be
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deposited in the plasma (being transferred to the electrons through slowing down), but

there will not be significant ash accumulation becauseα-particles at intermediate ener-

gies will be scattered into the loss cone and leave the plasma. The neoclassical transport

of the thermal plasma will not be prohibitive due to the confining influence of the radial

electric field.

The loss cone, which has usually been considered a serious drawback in stellara-

tors, may allow for simplified implementations ofα-channelling relative to tokamaks. In

a tokamak, it was necessary to move the cooled particles to the periphery to find a sink;

in a stellarator, the loss cone provides the sink. Rather than relying on collisions with

electrons to slow down theα-particles, one would look for a wave-particle interaction

which moves particles in energy and either radius or pitch angle so that if theα-particle

takes a step toward lower energy it also takes a step closer to the loss cone and if the

particle is heated, it becomes better confined. On average this wave would extract energy

from theα-particle-distribution, and cause theα-particles to leave the device. If this

same wave were then to damp on ions it would be able to accomplishα-channelling in

stellarators in a significantly easier way than is possible in tokamaks.

If a scenario like the one described above appeared promising, it would be de-

sirable to choose a stellarator equilibrium which has been optimized forα-channelling.

One way this might be done would be by taking advantage of a code being developed by

Reiman (1997) which searches for stellarator equilibria which maximize a given objec-

tive function.

8.4 Summary

The substantial benefit inα-channelling (Chapter 2) exhibited by the zero dimensional

reactor simulations, motivated the search for ways in whichα-channelling might be im-

plemented. The maximum increase in fusion power was found to occur when the ion and

electron heat confinement times were not equal. In particular, it was found that in the

presence ofα-channelling, it was desirable to have good ion heat confinement but poor

electron heat confinement.
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To gain insight into this effect,α-channelling was considered in a two dimen-

sional phase space associated with a simple slab geometry (Chapter 3). The diffusion

path ofα-particles interacting with waves in this space is a straight line. Unfortunately,

it appears that waves with the optimal slope for energy extraction are difficult to excite.

However, we showed that using two waves, with very different slopes, it was possible to

diffuseα-particles to the edge while cooling them. The three dimensional constants of

the motion space associated with particle orbits in tokamaks was found to be extremely

useful for consideringα-channelling in tokamaks. In particular, the diffusion paths due

to waves in this space are also straight lines, and much of the insight developed in the

simple geometry was found to apply to the more complicated situation ofα-particles in

a tokamak.

A rapid particle simulation was developed inε, µ, andPφ space. The full particle

dynamics are calculated from the particle’s constants of the motion (see Appendix A)

and the details of the orbits are used to calculate the increments to each particle’sε, µ,

andPφ due to waves and collisions (See Chapter 4). This approach is equivalent to a

Monte Carlo solution of the orbit-averaged Fokker Planck equation. For the problems

where this approach is applicable, a significant speed up is attained over guiding center

codes.

The wave characteristics necessary to significantly cool anα-particle in a toka-

mak were found to be available in a combination of the MCIBW, which is high frequency

and can break theµ invariant, and the TAE, which is low frequency and accomplishes

the transport of theα-particles (Chapter 5). Remarkably, configurations of these two

waves were found which did a very good job of cooling an entire birth distribution of

α-particles. By examining how particles at various points inε, µ, andPφ space were

responding to different combinations of waves, we were able to iterate on these cooling

scenarios to eventually obtain one which demonstrated how two waves can be combined

in a reverse shear tokamak reactor to absorb 2/3 of the energy from the 93% of theα-

particles ejected!

By testing the simulations against TFTR experiments, which showed large losses

of fast ions when the MCIBW was present (Chapter 6), we were able to gain confidence

in the simulation and therefore the two waveα-channelling scenarios. We were also
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able to use the simulations in conjunction with the experiments to infer two aspects of

the MCIBW which are critical to the implementation ofα-channelling: the existence

of the k‖-flip of the MCIBW and the diffusion coefficient of particles interacting with

the MCIBW (Chapter 7). The MCIBW diffusion coefficient was found to significantly

exceed that which is predicted by geometrical-optics estimates. While possible mecha-

nisms for this discrepancy were suggested, the precise reason is an open question, with

possibly important ramifications for a reactor implementation ofα-channelling.

Taken together, the advances in this thesis show how experiments to date give

us a measure of confidence in both the simulations themselves, the underlying physi-

cal assumptions, and ultimately the reasonableness of the application of these ideas to

α-channelling in a tokamak reactor. In the process of focusing on the problem ofα-

channelling we built a useful numerical tool and used it to determine certain fundamental

characteristics of MCIBW, such as thek‖ flip and the effective diffusion coefficient.



Appendix A

Energetic Particle Orbits in Tokamaks

Following the detailed motion of an energetic charged particle orbit in the complicated

magnetic field of a tokamak, interacting with various perturbations, represents a daunting

computational problem. Ideally one would like to follow the particles for their slowing

down time (∼ 0.1 second), however, the particle orbits have spatial variations of order

ρ ∼ a few cm, and vary on a time scale of1/Ω0 ∼ 10−9 seconds. Simulations following

hundreds of thousands of particles for a slowing down time are beyond present compu-

tational capabilities. Fortunately one can usually follow, to a very good approximation

of the actual orbit, the guiding center of the particle, eliminating the short time scales

associated with the gyromotion.

Starting from the particle Hamiltonian, Littlejohn (1981) derived the guiding cen-

ter Hamiltonian, which has the conservation properties one desires (energy, phase vol-

ume, angular momentum), by averaging over the gyromotion. This Hamiltonian formula-

tion can be used to write down guiding center equations of motion, which are particularly

convenient if represented in terms of magnetic coordinates [WHITE, BOOZER, and HAY

1982; WHITE and CHANCE 1984]. In the absence of perturbations, and assuming axi-

symmetry of the tokamak, the guiding center equations of motion are integrable. Thus

there exist three constants of the motion (COM) which will completely characterize the

motion. Following Rome and Peng (1979) we use three constants of the unperturbed

motion to solve for the particle’s guiding center orbit. The three constants we choose
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are:

ε = µB +
1

2
mv2

‖ (A.1)

µ =
mv2

⊥
2B

+ εf(r,v,B) (A.2)

Pφ =
mRBφv‖

B
− e

c
ψ, (A.3)

whereψ is the poloidal flux enclosed by the flux surface the particle is on divided by

2 π. These expressions are shown to first order inε which is the ratio of gyroradius

to the scale length of variations in the magnetic field. As shown by Littlejohn (1983)

these constants of the guiding center motion are equivalent to the constants for the actual

motion to all orders inε, ensuring that forε small the guiding center approximation is

quite good. Since the COM approach conserves the same quantities as the guiding center

Hamiltonian the orbits found are equivalent to integrating the guiding center equations

of motion, such as those put forth by White and Chance (1984).

A.1 Constants of Motion Approach

Throughout the thesis we normalize length, time, and mass to R0, 1/Ω0, andm. It is

useful to get a sense of the terms which appear here, and with this choice of normalization

ε, µ ∼ O(ρ2/R2
0), (Pφ + ψ) = F (ψ)v‖/B ∼ O(ρ/R0), F (ψ), B ∼ O(1).

Now substitutingv‖ = σ
√

2(ε− µB) gives,

Pφ =
F (ψ)σ

√
2(ε− µB)

B
− ψ, (A.4)

whereF = RBφ andσ is the sign ofv‖. This equation can be solved forB to give:

Borb(ψ) =
−µF (ψ)2 +

√
(µF (ψ)2)2 + 2F (ψ)2ε(Pφ + ψ)2

(Pφ + ψ)2
. (A.5)

Eq. (A.5) gives us the value ofBorb, as a function ofψ, which the particle must be at in

order to conserve all three quantitiesε, µ, andPφ. In the equilibria we consider, there is
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a one to one mapping from a pair (ψ,B) to a (R,Z) in the upper half plane (this is violated

in bean shaped equilibria and in some low aspect ratio equilibria at extremely highβ).

Thus if we know how a particle orbit is mapped out in (ψ,B) (from Eq. (A.5)), then we

can draw the real space orbit of that particle. Figure A.1 illustrates the correspondence

between the two spaces.

Equation (A.5) can be rewritten as

Borb(ψ) =
ε
(
−1 +

√
1 + 2y(ψ)2

)
µy(ψ)2

(A.6)

y(ψ) =

√
ε(Pφ + ψ)

µF (ψ)
=

√
2λ

(1− λ2)
, (A.7)

whereλ ≡ v‖/v. We can gain some insight from expanding Eq. (A.6) for large and small

values ofy.

Borb(ψ) =
ε

µ

(
1− y2

2
+
y4

2
+O(y6)

)
y � 1 (A.8)

Borb(ψ) =
ε

µ

√
2

|y| |y| � 1 (A.9)

We see thatB(ψ), for small y, is an inverted parabola which peaks at a value ofε/µ

wheny = 0. Note that wheny = 0 ψ = -Pφ, and, from Eq. (A.4),λ = 0. For large

|y|, Borb(ψ) falls off like 1/|y|. Also note thaty > 0 (ψ > −Pφ) ⇒ λ > 0 and

y < 0 (ψ < −Pφ)⇒ λ < 0.

Thus for anyε, µ, andPφ, each curveBorb(ψ) satisfying Eq. (A.5) has the generic

properties shown in Fig A.2. Note, however, that each point on the curve does not nec-

essarily correspond to a point along a particle’s orbit. Only the sections of the curve

which lie within the physically realizable portion ofψ,B space, as in Fig. A.1(b) are

meaningful.

As an example consider, Figure A.3 which shows someBorb(ψ) curves and their

orbits vs. R,Z for two values ofε, µ, andPφ, at relatively low energies (the width of

the orbit inψ is small compared to the change in poloidal flux from the center to the

wall). One curve has a peak (which is wherev‖ = 0,ψ = Pφ) inside the realizable region,
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Figure A.1: Alternate representations of a poloidal cross section. Note from (a) that all R,
Z (within the walls) correspond to a value ofψ,B, however, allψ,B do not correspond
to a R,Z. The limiting curves are the inner,B(ψ,θ =π) (outer,B(ψ,θ =0)) midplane
corresponding to the maximum (minimum) value ofB for a givenψ.

and this corresponds to a trapped particle. The other curve has its peak outside of the

realizable region, and corresponds to two distinct passing orbits with the sameε, µ, and

Pφ, but different signs ofv‖.
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Figure A.2: A generic plot ofBorb versusψ along a particles orbit.

Note from Figure A.2 that the full width at half maximum is about4
√
εµ/ε. As

this width becomes comparable to the total poloidal flux in the plasma new types of orbits

appear, created by the different ways in which the generic curve of Fig. A.2 intersects

the realizable region. This is discussed in Section A.3.

A.2 General Geometry

Before discussing the orbit topology at high energy we divert for a moment to discuss the

magnetic geometries used for the calculations carried out in this thesis. Throughout the

thesis we use the formulation of magnetic coordinates used by White (1989). These coor-

dinates are straight-field line coordinates, with the added requirement that the Jacobian,
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Figure A.3: Low energy orbits in both R,Z space andB, ψ space. Trapped and the two
branches of passing particles are depicted.

J(ψ, θ) ∝ f(ψ)/B2. Then the definitions ofB andJ are [WHITE 1989]:

B = F (ψ)∇ζ + I(ψ)∇θ + δ(ψ, θ)∇ψ (A.10)

= ∇ζ ×∇ψ + q(ψ)∇ψ ×∇θ (A.11)

J(ψ, θ) =
1

∇ψ · (∇θ ×∇ζ)
(A.12)

=
I(ψ) + F (ψ)q(ψ)

B(ψ, θ)2
(A.13)

For all these discussion we consider only magnetic equilibrium which satisfy the follow-

ing:

∂B

∂θ
|ψ=constant > 0 0 < θ < π (A.14)

, that is the value of|B| is monotonically increasing from the outer midplane to the

inner one. While one can redefineθ in many different ways, if Eq. (A.14) is true for an

equilibria in one coordinated system it will be true in all coordinates systems which have

θ = 0 on the outer midplane andθ = π on the inner midplane. When this is true there
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is a one to one mapping between (ψ,B) to (R,Z) as discussed earlier. For simplicity we

consider equilibria which are up down symmetric, although, in principle this would not

have to be the case. For these equilibria,∂B/∂θ at fixedψ vanishes atθ = 0 andπ.

The actual equilibria used are obtained in a series of steps. First an magnetic

equilibria is created usingJ-Solver [DELUCIA, JARDIN, and TODD 1980], which

solves the Grad-Shafranov equation. If it is to be based on a TFTR experiment the

parameters for this equilibrium come from the output of aTRANSPrun. Otherwise they

are specified directly toJ-Solver . The output fromJ-Solver is mapped to a straight

field coordinate system using themapmccode. Finally, the equilibrium is represented in

terms of a biquadratic spline using thespline code the basis of which is described in

White and Boozer (1995). Figure A.4 show contours of|B| andψ vs. R and Z, and the

converse for a reverse shear aspect ratio 3, reactor with nominal parameters ofA = 3,

R0 = 5.4 m,B0 = 6 T, andIp = 16.3 MA. Note that there is a minimum in|B| on the

outer midplane, however, on any flux surface,|B| is monotonically increasing from the

outside to the inside and so Eq. (A.14) is satisfied.
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Figure A.4: Alternate representations of a poloidal cross section, as in Fig A.1
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A.3 Solving for Orbits

We now discuss, in detail, how one gets from Eq. (A.5) to the poloidal projection of

the orbits in a computationally efficient way. Much of the work here has already been

discussed by Rome and Peng (1979) and Hsu and Sigmar (1992), for completeness, and

to discuss the detailed implementation we expand on these works here.

To begin with, it is useful to consider how the particle moves inB,ψ as it traverses

its orbit. Starting with the guiding center velocity

vg.c. = v‖b̂ + vd (A.15)

vd = KB×∇B + LB×∇p (A.16)

K =
2ε− µB

B3
(A.17)

L =
β0(ε− µB)

B4
(A.18)

β0 = 8πp0/B
2
0 , p is normalized top0, and all other quantities have been made dimen-

sionless as above. Using the definitions ofB andJ Eq. (A.13), we can calculate:

dψ

dt
= vd ·∇ψ = K∇B · (∇ψ ×B) (A.19)

= K

(
∂B

∂θ
∇θ

)
· (∇ψ ×B) (A.20)

=
−KF (ψ)

J(ψ, θ)

∂B

∂θ
(A.21)

where several terms vanish because(∇ψ × B) · ∇ψ = 0 andb̂ · ∇ψ = 0. The net

result is that along the orbit (in the upper half midplane (UHP))ψ̇ < 0 except atθ = 0

andπ, whereψ̇ vanishes. Thus the orbits maximum and minimum values ofψ occur on

the midplane, and further in the UHP the particle travels from its maximumψmax value

to the minimumψmin as it traces out its orbit (sincėψ is negative). When Eq. (A.14)

is violatedψ̇ can change signs in the UHP and it is possible for particles to have orbits

which are stuck above or below the midplane, bouncing between the points where∂B/∂θ

is changing sign, for an example see Mikkelsen et al. (1997).
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For reference we also list the equations forθ̇ andζ̇ :

dθ

dt
=

v‖
JB

+

(
K
∂B

∂ψ
+ L

dp

dψ

)
F

J
(A.22)

dζ

dt
=
v‖q
JB

−
(
K
∂B

∂ψ
+ L

dp

dψ

)
I

J
(A.23)

A term of orderδ in ζ̇ has been neglected. Note that in many cases, especially for

particles withε ≈ µB or in plasmas with lowβ0, Ldp/dψ � KdB/dψ and this term

can be neglected. Unless specifically mentioned later we will neglect this term.

A.3.1 Orbit types

Returning to the COM approach, there are 8 different ways in which the realizable region

can be intersected by theBorb(ψ) curves. For the sake of completeness, examples of

each possible intersections ofB(ψ)is shown below along with a real space orbit. This

categorization is quite useful, as it will be used extensively in the COM simulation which

we have developed. Furthermore, there is a correspondence between these orbit types and

ε, µ, andPφ space which will be discussed in the next section. Finally, understanding

each of these orbit types is extremely helpful when searching for the intersections of

Borb(ψ) with the boundaries of the realizable space.

Some definitions will be useful in the following discussion. An orbit is passing

if |v‖| > 0 everywhere on its orbit. A particle is cogoing (countergoing) if its parallel

velocity is in the same (opposite) direction as the plasma current. Conversely, a particle is

trapped ifv‖ = 0 somewhere on its orbit. An orbit is consider encircling if it encircles the

magnetic axis, or equivalently,θ̇ is nowhere equal to zero. These two concepts can also be

defined in terms ofBorb curves, a particle is trapped ifB(-Pφ,0)<Borb(-Pφ) = ε/µ < B(-

Pφ,π), (hereafter we refer toB(ψ,0) andB(ψ,π) asBout andBin). An orbit is encircling

if it intersects bothBout andBin). At low energies, almost all particles are either trapped

and non-encircling or passing and encircling.

Type 1 (Fig. A.5) orbits are passing particles which are non-encircling. These

orbits exists near the outer midplane and at low energy (with the same pitch, and position)
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they would be trapped. However, as seen from Eq. (A.22), there is a competition between

the drift term and the parallel motion. For these orbits the parallel motion is insufficient

to overcome the drifts anḋθ goes to zero before the orbit can reach large enoughB to

mirror. From Eq. (A.22) this competition can only occur whenv‖ has the opposite sign

as∂Bout/∂ψ. Note, from the B,ψ figure that both intersections are on the outer midplane

(the lower curve) and lie to the right ofψ = -Pφ for this example since∂Bout/∂ψ < 0 ⇒
v‖ > 0 ⇒ ψ > −Pφ .
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Figure A.5: Orbit type 1. The graph on the left is a plot ofBorb(ψ) with Bin(ψ)(upper)
andBout(ψ)(lower) providing the boundaries of the realizable space for the reactor de-
scribed in Sec. A.2. On the right is a poloidal cross section of the upper half plane, with
the orbit and the location of the wall shown. The magnetic axis is represented by the dot.

Type 2 (Fig. A.6) orbits are trapped. For these orbitsθ̇ is dominated by the parallel

motion and thus changes sign near the turning point, wherev‖ changes sign. Thus these

orbits are non encircling.Borb(ψ) has two roots on the outer midplane, one on each side

of -Pφ.

Type 3 (Fig. A.7) orbits are trapped but encircling. They have been dubbed potato

orbits. These orbits have their turning point (wherev‖ = 0) near the inner midplane,

where, typically, the sign of the∂Bout/∂ψ has changed from it value on the outer mid-

plane. For these orbits the drifts are sufficient to over come the reversed parallel velocity

and pull the orbit across the inner midplane. These orbits intersectBout with ψ > -Pφ
andBin for ψ > -Pφ.

Type 4 (Fig. A.8) orbits are cogoing passing orbits which are encircling. These
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Figure A.6: Orbit type 2.
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Figure A.7: Orbit type 3.

are similar to cogoing type 7 orbits, however the values ofε, µ, andPφ are such that there

is no countergoing complement to these orbits, unlike for type 7. These orbits intersect

bothBin andBout with ψ > -Pφ.

For orbit types 1 through 4 there was only one possible orbit for eachε, µ, and

Pφ, however for orbit types 5 through 8, there exists two possible orbits for each value

of ε, µ, andPφ. One orbit is always a countergoing passing orbit, though it may be

encircling or nonencircling, while the other curve is encircling but it may be trapped or

cogoing passing.

Type 5Borb curves (Fig. A.9) have two possible orbits. One is a cogoing passing

orbit which is encircling, just like type 4 in terms of intersections withBin andBout.
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Figure A.8: Orbit type 4.

The other orbit however is quite different, it is a countergoing passing, non encircling

orbit, which exists on the inner midplane. In fact, it is the equivalent of a type 1 orbit,

on the inner midplane, i.e. it arises from a balancing of drifts and parallel motion. The

countergoing portion of this orbit intersectsBin, twice, withψ < -Pφ.
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Figure A.9: Orbit type 5. Two orbits are shown(right), representing the two possible
tokamak orbits with the specified values ofε, µ, andPφ and the two separate intersections
of Borb with the realizable region (left).

Type 6Borb curves (Fig. A.10) also have two possible orbits. One is an encircling

trapped orbit, like type 3, while the other is a countergoing, encircling, passing orbit,

describe in type 7 below.

Type 7Borb curves (Fig. A.11) correspond to one countergoing encircling passing
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Figure A.10: Orbit type 6.

orbit and a cogoing encircling passing orbit. Each orbit intersectsBin andBout.
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Figure A.11: Orbit type 7.

Type 8Borb curves (Fig. A.11) correspond to one countergoing non encircling

passing orbit (equivalent to the type 5 countergoing orbit) and a trapped encircling orbit

(like type 3).

A.3.2 Bounds on orbits

When simulating the energeticα-particles interacting with waves, or colliding with the

background plasma (see Chapter 4)it is not necessary to solve for whole poloidal pro-
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Figure A.12: Orbit type 8.

jection of the orbit for each particle at each time step. However, it is useful to know the

extent of the orbit in real space, or to be able quickly determine points on the orbit, if

necessary.

Each of these different orbit types occupies a distinct region inε, µ, andPφ space

which is discussed in Section A.4. Thus givenε, µ, andPφ for the particle, we will be

able to determine the orbit type, and which branch the particle is on. It is then important

to be able to determineψmax andψmin. For instance, onceψmax andψmin are known,

the real space orbit can be traced out as in Alg. 1.

Algorithm 1 Calculate poloidal projection of orbit from COM

for ψ in (ψmin,ψmax) do
computeBorb(ψ)
compute R(ψ,B),Z(ψ,B)

end for

If ψ were taken to be outside the boundaries, the computation of R,Z would

fail, or worse yet, two branches of theBorb curve might be lumped as one producing

real space orbits with discontinuities because of jumps between branches. Furthermore

ψmin,ψmax are used in computation of the bounce averages (Sec.A.5) which are used

when considering collisions.
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Depending on the orbit type and branch,ψmax andψmin are roots of the functions:

Bin(ψ)− Borb(ψ) or Borb(ψ)− Bout(ψ) (A.24)

There can be as many as three and as few as no roots to either of these equations in

typical equilibria. Given an orbit type and a branch, we are only interested in the roots

which are appropriate for that branch. The root search is most efficiently done with a

detailed knowledge of the orbit types. Below, assuming the orbit type is known, as well

as, for those types with two orbits, which branch, we detail how the roots are found. The

computational approach to the root finding adopted, as advocated by Press et al. (1995a),

is to always bracket the roots, that is find two values ofψ such that the functions above

change sign in the interval.

For example orbit type 2 is easy. It has two roots withBout, ψmin between

(0,−Pφ) andψmax between(−Pφ,∞). Of course the particle will hit the wall when

ψ = ψwall and in the simulation when the orbit type and branch are determined, it is also

determined if the particle hits the wall, if so a flag is set andψmax is taken to beψwall.

For the rest of this discussionψmax is assumed to be lessψwall and the issue of particles

hitting the wall is returned to in Sec. A.4.

Some orbit types prove to be more difficult than orbit type 2 in that the roots are

not easily bracketed. In particular, orbit types 1, 5, 6, and 8 are challenging. Our first

approach valid for orbit type 6,8 is to try to analytically determine find the minimum

of the curveBin-Borb. Knowing this point will give another point to use for bracketing

the roots. We know that this minimum must occur some place where the derivative with

respect toψ of this is equal to zero, i.e.B ′
in(ψ)−B ′

orb(ψ) = 0. From looking at Fig A.10

and A.12 we see that this point is near the maximum ofBorb, i.e. ψ = -Pφ. Thus we

expand bothB ′
in andB ′

orb in a Taylor series near this point and solve for theψ which sets

the derivative to zero. The result is

ψxi = −Pφ − µ3F (−Pφ)2B ′
in(−Pφ)

ε2 + µ3F (−Pφ)2B ′′
in(−Pφ)

(A.25)

We can do the exact same thing for otype 1, the only difference being that we find the
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maximum ofB ′
orb(ψ)− Bout(ψ) near -Pφ, giving

ψxo = −Pφ − µ3F (−Pφ)2B ′
out(−Pφ)

ε2 + µ3F (−Pφ)2B ′′
out(−Pφ)

(A.26)
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Figure A.13: (a) Expanded view of Fig. A.12. (b) Graph ofBin-Borb versusψ. This
function is positive whenBorb is inside the realizable region.ψ = ψorb,ψxi and -Pφ are
labeled.

Finally for the case of the countergoing portion of otype 5 and 8 it is necessary to

actually search for a point on the orbit, that is a point whereBin(ψ)−Borb(ψ) > 0. This

is implemented by searching for a maximum ofBin(ψ)−Borb(ψ) between the pointsψ =

0,ψ = ψxi where the function is negative. We label theψ associated with this maximum

ψorb. An example, which illustrates these concepts for orbit type is given Fig. A.13,

which is based on Fig. A.12.

In Table A.1 the types of orbits, their properties and brackets forψmin,ψmax are

given.
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Orbit Type
Trapped/
Passing

Encircling
ψmin Brackets &
Borb intersect

ψmax Brackets &
Borb intersect

1 co N (0, ψxo),Bout (ψxo, ψwall),Bout

2 trapped N (0,−Pφ),Bout (−Pφ, ψwall),Bout

3 trapped Y (0,−Pφ),Bin (−Pφ, ψwall),Bout

4 co Y (0, ψwall),Bin (0, ψwall),Bout

5
counter N (0, ψorb), Bin (ψorb,−Pφ), Bin

co Y (−Pφ, ψwall),Bin (−Pφ, ψwall),Bout

6
counter Y (0,−Pφ),Bout (0, ψxi),Bin

trapped Y (ψxi,−Pφ),Bin (−Pφ, ψwall),Bout

7
counter Y (0,−Pφ),Bout (0,−Pφ),Bin

co Y (−Pφ, ψwall),Bin (−Pφ, ψwall),Bout

8
counter N (0, ψorb), Bin (ψorb, ψxi), Bin

trapped Y (ψxi,−Pφ),Bin (−Pφ, ψwall),Bout

Table A.1: Description of all the orbit types and their branches. Values ofψ which
bracket each of the roots (ψmin,ψmax) of Eq. (A.24) are given.ψorb, ψxi, ψxo are defined
in the text.

A.3.3 Comparison with ORBIT code

The simulation which we have developed implements the preceding discussion, allowing

ψmin,ψmax to be rapidly found, and then for example using Alg. 1, we can compute the

real space orbits. To benchmark that this is working we also computed the orbits using

the ORBIT guiding center code [WHITE and CHANCE 1984]. The results are presented

in Fig. A.14 showing excellent agreement.
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Figure A.14: Comparison of the COM approach(line) and the ORBIT code(points) for
determining the poloidal projection of an energetic particle’s orbit. The equilibrium used
is described in Sec. A.2.

A.4 ε, µ, andPφ space

We have seen that, given the orbit type, a branch choice and three constants of the motion

we can determine the orbit of a particle. For the COM simulation, though, we do not

want to carry around all the information about the orbit. By understanding the structure

of ε, µ, andPφ space we can determine relevant information about the particles orbit

without resorting to actually computing the orbit.
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A.4.1 Basics

Thus given a particle’s initial position, pitch and energy we would like to determine

its orbit type. Furthermore, we would like to know if the particle is confined or lost.

Understandingε, µ, andPφ space helps with these determinations. In particular, slices

of ε, µ, andPφ space at fixed energy are instructive. In these cross sections we can use

Equations (A.1)-(A.4) to solve forµ in terms ofPφ, ε, ψ, andB.

µ =
ε

B
− B

2F 2
(Pφ + ψ)2 (A.27)

Pφ is expressed in terms ofµ, ε, ψ, B, andσ in Eq. (A.4). Then an orbit which passes

through position, (ψ,B), with energy,ε, must haveµ andPφ somewhere on the curve

traced out by Eq. (A.27). This curve has the shape of an inverted parabola, when plotted

in aPφ, µ coordinate system. In fact the orbit of a particle could be determined by finding

(ψ,B) for all of the parabolas which intersect its value ofµ andPφ. In Figure A.15 we

plot a constant energy slice ofε, µ, andPφ space, withµ/ε plotted vs.Pφ/ψwall. We use

Eq. (A.27) to plotµ versusPφ curves for the magnetic axis (which is labeled A in the

figure), and the outer(C) and inner(B) midplane at the wall. Also plotted, representing

a curve opening to the left, is1/Bin(−Pφ) (E) and1/Bout(−Pφ) (D). Particles with

orbits which pass through the magnetic axis lie on the curve marked by A1, A2 and

A3. A1 is an orbit withλ = −1 at the axis. A2 and A3 are orbits withλ = 0 and

λ = 1 respectively. Orbits passing through the outer (inner) midplane at the wall, would

lie on curve C (B). Trapped particles must lie between curves D and E, i.e. they must

have highµ /ε between1/Bin(−Pφ) and1/Bout(−Pφ). A cogoing or trapped orbit will

become lost (hit the wall) if it moves across the right half of curve C from right to left.

A countergoing orbit is lost when it crosses the left half of curve B, or if it crosses the

curve connecting B and C (i.e., if it crosses the passing trapped boundary). The curves

for different energies can be obtained by scaling the width of curves A,B,C in proportion

to
√
ε/ε0 and, at the same time, scaling the height of all of the curves byε/ε0.

With the addition of two more curvesε, µ, andPφ space can be broken up into

8 region which correspond to the 8 orbit types discussed in Sec. A.3. This is shown in

Fig. A.16, note that curves B and C from the Fig A.15 are missing, as these just provide

a reference for the location of the wall, and do not affect the orbit classifications. The
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Figure A.15: A constant energy slice ofε, µ, andPφ space. The various curves are
described in the text.

added two curves are labeled F and G, and they play an important role in the makeup

of ε, µ, andPφ space. Both curves are curves of stagnation point orbits, that is guiding

center orbits which are just a point in the poloidal cross section. Above curve F no orbits

exist, that is no particle with energyε could have values ofPφ andµ above curve F.

Between curve F and curve G, each point corresponds to exactly one orbit. Inside the

region outlined by curve G two orbits exist for every point. Note that Fig A.16 has 9

distinct regions. One of these corresponds to unphysical orbits, leaving eight regions.

The details of the stagnation points and how to draw curves F and G is discussed below.
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Figure A.16: Boundaries inε, µ, andPφ space. Curves F and G denote stagnation point
orbits.

A.4.2 Stagnation point orbits

These orbits represent a boundary between various regions inε, µ, andPφ space and the

limiting extension of orbit types 1,5,6,8. Stagnation point orbits are guiding center orbits

which are just a point. They arise from the exact balancing of the parallel motion and the

drifts on the midplane. The two requirements for stagnation orbit areψ̇ = 0 andθ̇ = 0.

Recall,ψ̇ is zero atθ = 0 andπ. Setting Eq. (A.22) to zero, one can find the stagnation

points, in particular we would like to know the pitch, at a given energy and location, of
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the orbit which is stagnated. BelowBmid refers to eitherBin orBout.

√
2ελ

Bmid
= −

(
ε (1 + λ2)F

B3
mid

∂Bmid

∂ψ
+
β0ελ

2F

B4
mid

dp

dψ

)
(A.28)

2λ = −
(√

2εF

B2
mid

∂Bmid

∂ψ

(
1 + λ2

)
+
β0

√
2εF

B3
mid

dp

dψ
λ2

)
(A.29)

, definingα andη as ,

α =

√
2εF

B2
mid

∂Bmid

∂ψ
(A.30)

η =
β0

√
2εF

B3
mid

dp

dψ
(A.31)

we see that

λstag =
−1 +

√
1− α2 − αη

α − η
(A.32)

where we have chosen the root which is physical in theα → 0, η → 0 limit. Thus in

order to draw curves F and G from Fig. A.16, one would plot parametrically plot

µstag =
ε(1− λstag(ψ)2)

Bmid(ψ)
(A.33)

Pφstag =

√
2εF (ψ)λstag(ψ)

Bmid(ψ)
− ψ (A.34)

overψ from 0 toψwall, for Bmid = Bin, corresponding to curve G andBmid = Bout,

corresponding to curve F. In the next subsection these results will be used to determine

how to classify an orbit given itsε, µ, andPφ values.

A.4.3 Classifying orbits

In Fig. A.17 we show a close up of Fig. A.16, focusing on the area nearµ /ε = 1,Pφ
=0. Each region has been labeled according to the orbit type which occupies that re-

gion, and a point has been placed on the figure corresponding to the orbits shown in
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Figures A.5 through A.12. Once the overall structure of this space is known the graph-
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Figure A.17:ε, µ, andPφ blowup

ical determination of an orbit type from justε, µ, andPφ is quite easy, and for most

orbit types the rapid numerical determination is equally simple, However for some or-

bit types it is more difficult. For example it is quite easy to tell if aε, µ, andPφ cor-

respond to a type 7 orbit. The two requirements are just 1)µ/ε < 1/Bin(−Pφ) and

Pφ < −F (0)
√

2(ε− µB(0, 0))/B(0, 0). These requirements can be determined from

the behavior ofBorb outlined in Sec. A.3.

However to determine if aε, µ, andPφ correspond to a type 1 orbit is more

complicated. Type 1 orbits are points which lie above curve A ifPφ > 0 or above curve

D if Pφ < 0. They also must lie below curve F. The first condition is easily determined, as
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there are simple analytic expressions for curves A and D, but the latter is more involved,

since we do not have a closed form expression for curve F, we only have a parametric

expression for it in terms ofψ (Eq. (A.34)). The approach we take is to find theψ which

satisfiesPφstag (ψ)=Pφ, then calculateµstag from thisψ, then ifµ < µstag the point lies

below curve F, and therefore, assuming the first condition is satisfied, this corresponds

to a type 1 orbit. The only difficulty of this approach is that a root finding routine is

necessary to find theψ.

A.5 Averages Along the Particle Motion

In many instances it is necessary to integrate a quantity over the orbit of the particle,

for example when considering the effect of collisions on the particle orbits, or when

computing bounce or precession frequencies. In this section, the method used in the

COM simulation is explained.

As an example let us consider the computation of the bounce frequency,ωb, which

is the frequency with which a particle completes its poloidal orbit. Typically this is done

by

ωb = 2

∫ θmax

0

dθ

θ̇
(A.35)

whereθmax isπ for encircling particles and the point whereθ̇ vanishes for non-encircling

particles. For our formulation this approach is not convenient, since the orbits are not

naturally expressed in terms ofθ, rather they are expressed in terms ofψ. Thus an

especially convenient way of doing this integral would be

ωb = 2

∫ ψmin

ψmax

dψ

ψ̇
(A.36)

However,ψ̇ vanishes atψmin andψmax, and thus the integral is singular. This singularity

is integrable, though, since the equivalent calculation in terms ofθ has no singularity at

the end points.
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How can we quickly evaluate this integral while avoiding problems caused by the

endpoint singularities? Consider rewriting the integral in the following way:

u = 2
ψ − (ψmax + ψmin)/2

ψmax − ψmin
(A.37)

ωb = (ψmax − ψmin)

∫ 1

−1

√
1− u2

√
1− u2

du

ψ̇(u)
(A.38)

= (ψmax − ψmin)

∫ 1

−1

f(u)du√
1− u2

(A.39)

wheref(u) =
√

1− u2/ψ̇(u). The integral of Eq. (A.39) can be done with the Gauss-

Chebyshev quadrature:

∫ 1

−1

f(u)√
1− u2

du ≈ π

n

n∑
k=1

f

(
cos

(
2k − 1

2n
π

))
(A.40)

Gaussian quadratures have well known advantages [PRESS et al. 1995b], e.g. their

order is twice that of other routines for the same number of function calls. In fact, the

answer will be exact for a functionf(u) which is a polynomial of degree less than2n.

In Fig A.18 we plot1/ψ̇ versus u as well asf(u) for the orbit shown in Fig. A.6. We

see thatf(u) is a smooth, slowly varying function, and thus expect the Gauss-Chebyshev

quadrature would work quite well.
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Figure A.18: (a)1/ψ̇ along a particle’s orbit.(b)f(u) =
√

1− u2/ψ̇ along a particle’s
orbit. Both are in arbitrary units.
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There is one problem in using Gaussian quadrature, however. For our problem

it is necessary to do adaptive integration because there are many different orbit types,

which converge to the answer at very different rates. To set the number of points high

enough so that all integrals were done to within 1% would be expensive computationally.

An adaptive iteration scheme allows one to get around this problem, by increasing the

number of points until the answer stops changing within the desired tolerance. In using

a Gaussian quadrature, however, the freedom to pick the abscissas where desired is for-

feited. Furthermore, the abscissas for then point integration, do not include, as a subset,

the abscissas for them point integration for any value ofm < n. Thus the problem

with the Gaussian quadrature approach is that when one wants to increase the number of

points, the previous function calls must be thrown out.

There do exist, however so called extended Gaussian quadratures rules for certain

weights and certainn’s which allow the overlap of the old abscissas with the new ones.

Such an extension exists for the Gauss-Chebyshev quadrature [MONEGATO 1982]. It is

∫ 1

−1

f(u)√
1− u2

du ≈ π

2n

(
1

2
f(−1) +

2n−1∑
k=1

f

(
cos

(
πk

2n

))
+

1

2
f(1)

)
(A.41)

This is the method which is used in the simulation to carry out all of the orbit averages.

Sincef cannot be evaluated exactly at the end points(0/0) we take it very close (we use

u = ±.999 which works fine). In Fig. A.19, A.20 we show a comparison between the

(COM) calculation ofωb and the value determined by ORBIT.
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Figure A.19:ωb vs. λ at high energy. The points are from ORBIT, the solid line from the
COM simulation.
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