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The full spaceZ[$Zj 51, . . . ,Nz
% of independent variables defining a stellarator configuration is large.

To find attractive design points in this space, or to understand operational flexibility about a given
design point, one needs insight into the topography inZ-space of the physics figures of meritPi

which characterize the machine performance, and means of determining those directions inZ-space
which give one independent control over thePi , as well as those which affect none of them, and
so are available for design flexibility. The control matrix~CM! approach described here provides a
mathematical means of obtaining these. In this work, the CM approach is described and used in
studying some candidate Quasi-Axisymmetric~QA! stellarator configurations the National Compact
Stellarator Experiment design group has been considering. In the process of the analysis, a first
exploration of the topography of the configuration space in the vicinity of these candidate systems
has been performed, whose character is discussed. ©2000 American Institute of Physics.
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I. INTRODUCTION

The full spaceZ[$Zj 51, . . . ,Nz
% of independent variable

defining the shape of a stellarator configuration is large.
example, the configuration boundary is often represented
a set of Fourier amplitudes, of which several tens are nee
for a typical design. To find attractive design points in th
space, or to understand operational flexibility about a giv
design point, one needs insight into the topography
Z-space of various physics figures of meritP5$Pi(Z)%( i
51, . . . ,M p) which characterize the machine performan
~e.g., transport, kink stability, etc.!.

An important new means for stellarator design ma
possible by advances in physics codes and computati
power is the use of automated optimizers. For example,
National Compact Stellarator Experiment~NCSX! design
group has made extensive use of an optimizer in develop
candidate configurations for an attractive Qua
Axisymmetric~QA! stellarator~QAS! design.1 The optimizer
conducts a search in aZ-space describing the stellarat
boundary, using an objective functionF(P) which is a func-
tion of thePi of the configuration. While a powerful tool, th
optimizer is searching a large space whose topography
been essentially unknown, and there is limited understand
of why the optimizer arrives at the design pointsZ0 it does.
Deeper insight into this would enhance our ability to loca
attractive design points@e.g., by reducing the dimensionalit
of the Z-space, or by recognizing topographical featu
which point to superior ‘‘valleys’’ ofF(P) in the Z-space#,
and to examine operational flexibility about those poin
Such insight can be used both to better focus the operatio
an optimizer, as well as to enhance human understandin
the configurations being studied.

The control matrix~CM! approach discussed here hel
provide this insight. The approach we discuss has both lo
and global aspects. As narrowly defined, the CM is sim
the matrixCi j []Pi /]Zj of first derivatives at any pointZ0

in Z-space, and so can give topographical information o
4961070-664X/2000/7(12)/4960/12/$17.00
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locally. One may provide more information by expanding
second and higher orders, and most globally, one may in
tigate the full nonlinear variation over ranges where a pow
series expansion is not practical. But even to compute
derivatives needed forCi j correctly, one needs to know th
characteristic scales on which thePi vary in Z, so more
global knowledge is important even for the local proble
And as already indicated, the more global information m
also be important in locating genuinely different stellara
optima. Thus, in this paper we address both the more lo
and more global sides of this topographical exploration.

It should be noted that the technique of ‘‘function p
rametrization’’ ~FP! has been used to provide an appro
mate global description of thePi(Z) for tokamak2 and
stellarator3 equilibria, for fast interpretation of equilibria
from experimental data. This useful method is distinct fro
and sometimes complementary to the CM analysis emplo
here, as discussed at the end of Sec. II A.

In Sec. II we describe the mathematical basics of the C
method, and discuss the means we use to reduce the di
sionality of Z-space. Implementing the CM procedure r
quires exploring the scales of variation of thePi in Z in the
vicinity of a design pointZ0 , for which we choose ‘‘C10,’’
a candidate NCSX configuration. This is done in Sec.
Our topographical study here finds that within an apprecia
domain~variations in theZj of order 1 cm! about C10, thePi

may be well approximated by simple quadratic expressio
and in addition, we are able to reduce the dimensionality
theZ-space we need to consider from an initialNz578 to 8.
As a result, in Sec. IV we apply the machinery of the loc
CM analysis to a greatly reduced parameter space,
within that space can compute quantities of interest us
analytically tractable quadratic expressions for thePi . We
then provide the ‘‘proof of principle’’ of the CM method
demonstrating that the CM mathematics correctly produ
perturbationsj i with which we can independently vary th
Pi , and ‘‘nullspace’’ perturbationsvi which produce differ-
0 © 2000 American Institute of Physics
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Dow
FIG. 1. Poloidal cross-sections of the boundaries of reference QAS con

rations C10, C82, and PG1, atz̃50,p/2, andp.
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ent configurations, but with unchanged values of thePi . We
discuss some of the features of these perturbations. In Se
we move to a more global exploration ofZ-space, applying
some of the same machinery used in earlier sections to s
the variation of thePi en route to candidate QAS configur
tions other than C10. In Sec. VI we summarize the findin
of the earlier sections, and discuss applications of the
approach now in progress or planned for the near future

II. FORMULATION

A single stellarator configuration may be described b
set of Fourier amplitudes,X5$Xj 51, . . . ,Nx

%[(Rn1
,Zn1

,
Rn2

, . . . ,ZnNx/2
) which define the plasma bounda

@R(u,z),Z(u,z)#. Here, n[(ñ5n/Np ,m) are toroidal and
poloidal mode numbers per period, withNp equal to the
number of field periods. For C10 and C82, two candid
NCSX configurations4 we shall consider in this paper, th
nloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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number of Fourier amplitudes isNx578 corresponding to

maximum mode numbers ofñmax53, andmmax55. PG1, a
third QAS configuration5 discussed in Sec. V, hasNx532.
Figure 1 shows poloidal cross sections of the plasma bou
ary for these three configurations.

Various measures of stellarator transport and stab
are used as figures of merit in the cost function of the f
configuration optimizer.1 QA stellarators are an approach
transport optimization based on making the magnetic fi
amplitudeB(x) look axisymmetric in Boozer coordinates, a
does that for a tokamak. Thus, the degree to which a de
has achieved transport optimization, closely related to its
gree of nonaxisymmetry, is an important measure of the p
formance of such machines. Because of the resemblanc
tokamaks, appreciable toroidal current is an intrinsic asp
of such stellarators, and, thus, stability to kink modes h
been found to be a major limiting factor on the achieva
beta of these configurations, with ballooning stability al
playing a significant role, and these figures of merit are
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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cordingly also important contributors to the optimizer obje
tive function. The evaluation of all figures of merit requi
the calculation of a magnetohydrodynamic~MHD! equilib-
rium, performed using theVMEC6 code. To evaluate the
transport, the magnetic fields output byVMEC in a non-
straight coordinate system are re-expressed in terms of
Boozer coordinate system using theJMC code.7 The various
measures of transport used by the optimizer are then e
expressed in terms of the Fourier components,Bmn , of the
magnitude of the magnetic field. For stability, both intern
ballooning and free-boundary kink modes are evaluated
ing theTERPSICHOREcode.8

In this paper, we use the same suite of codes emplo
by the optimizer, and computeM[M p55 figures of merit
P5(x1

2 ,x2
2 ,W1 ,W2 ,l). P124 are 4 measures of the rippl

strength, and hence the level of nonaxisymmetric trans
one may expect, andP5 is a measure of stability. More spe
cifically, x1,2

2 [x2(s1,2), wherex2(s)5(m,nÞ0Bmn
2 /B00

2 and
s1,2 label two magnetic surfaces within the plasma volu
containing a fixed amount of toroidal flux. The selected v
ues of s ~normalized to unity at the plasma edge! are s1

50.5, ands250.71.W1,2[W(s1,2) is the ‘‘water function’’9

at s1,2, measuring the average ripple-well depth along a fi
line. The fifth figure of merit isP5[l5v2, the most un-
stable kink eigenvalue computed byTERPSICHORE~negative
for unstable modes!. We consider four QA-associated figure
of merit for the purposes of comparison among them.
single one may be used for the purposes of configura
analysis, and we shall do so at appropriate points in the
per. Other figures of merit might be usefully added to t
present set, such as the ballooning growth rate, surface q
ity, or coil complexity, and the same formal machinery e
ployed to study any such set.

Nx578 is a large space to search, and one impor
objective here is to reduce this number to a more manage
value. That is, we seek a ‘‘reduced space’’Z contained inX,
with dimensionalityN[Nz<Nx which is as small as pos
sible while retaining the most important physics. We disc
means by which this can be done in Sec. II B. We think oZ
as the space of ‘‘control knobs’’ at our disposal, to which t
CM machinery is applied, and thus its exact relation to
concrete specification ofX already given may change, de
pending on the application. For example, in Sec. VI we ta
Z to be a set of amplitudes describing the coil currents,
considerations of coil design or operational flexibility. How
ever, for most of this paper,Z will be a linear subspace ofX,
given by amplitudes specifying the plasma boundary.

A. Control matrix basics

In the reduced space, expandingP(Z5Z01z)5P(Z0)
1p aboutZ5Z0 , one has~writing in component-form, with
the summation over repeated indices assumed, unless o
wise indicated!

pi~Z01z!5Ci j ~Z0!zj1
1
2 Hi jk~Z0!zjzk1~h.o.!, ~1!

with linear coefficients given by theM3N ‘‘control matrix’’
Ci j , quadratic coefficients given by the ‘‘Hessian’’Hi jk ,
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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and h.o.[higher-order terms. For small enoughz that only
linear terms are needed, one has the matrix equation

p5C0•z, ~2!

with C0[C(Z0) the control matrix at design pointZ0 . This
may be inverted, using the Singular Value Decomposit
~SVD! theorem,10

CM3N5UM3N•SN3N•VN3N
T , ~3!

with U,V unitary matrices, andS a diagonal matrix whose
diagonal elementss i are the ‘‘singular values’’ of the prob
lem. This theorem permits one to obtain a ‘‘pseudo-invers
C1 of the nonsquare matrixC, and provides bases spannin
its range and nullspace.

Taking the particular basis setpi 51,M in the target
P-space to be the set of unit vectors with 1 in theith position
and 0 elsewhere, one has the corresponding setj i of dis-
placements inZ-space

j i[C0
1
•pi , ~4!

where C0[C(Z0). The j i physically represent displace
ments which change a single physics parameterPi by unity,
leaving the others unchanged. These span the range oC.
The (N2M ) vectors vi( i 5M11, . . . ,N) spanning the
nullspace ofC ~which change the configuration withou
modifying any of thePi) are the orthonormal set formed b
those columns ofV with i such thats i50. These are also
important, permitting one to find different stellarator boun
aries which have the same physics performance, giving fl
ibility for other criteria, e.g., improved coil design. Togethe
j i 51, . . . ,M andvi 5M11, . . . ,N spanZ.

For somewhat largerz, but still small enough that only
up to Hi jk need be kept in Eq.~1!, one can compute the
control matrix forany Z in this region, via

Ci j ~Z![]pi~Z!/]zj5Ci j ~Z0!1Hi jkzk , ~5!

and from this, find the correctj i at anyZ, along with simple
linear expressions for the extremazi of the Pi , etc. We shall
find that this ‘‘quadratic model’’ is valid in an appreciab
neighborhood about C10, and shall explicitly compute a
make use ofCi j andHi jk in Sec. III.

The zi are easily solved for using Eq.~5!. For anyi, we
may writeHi jk in matrix notation asH i , which is a square,
symmetric,N3N matrix, invertible by standard means. The
from Eq. ~5!, one has

zi52H i
21

•c0
i , ~6!

where vectorc0
i is the ith row of matrixC0 , and no summa-

tion over i is implied. Similarly, taking our objective func
tion to be a linear combination of thePi with weightswi ,
F(P)5wi Pi ~summation implied!, one can readily solve for
the extremumzF of F(P):

zF52HF
21

•c0
F , ~7!

with HF[wiH i andc0
F[wic0

i . Expression~7! thus gives the
design point sought by an optimizer. However, as for Eq.~6!,
for it to be correct,zF must fall within the domain of validity
of the quadratic model for thePi(Z). An optimizer using a
steepest-descent method would step opposite the directio
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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4963Phys. Plasmas, Vol. 7, No. 12, December 2000 Control-matrix approach to stellarator design and control
theZ-space gradient]ZF[]F/]Zj . For the chosen form for
F, this is ]F/]Zj5(]F/]Pi)(]Pi /]Zj )5wiCi j [wi(c

i) j

[(cF) j . Using this with~5! gives

]ZF5cF5c0
F1HF•z. ~8!

From this and Eq.~7!, one sees that atz5zF one has]ZF
50, as one expects. Additionally, using Eqs.~4! and~8!, one
finds that the component ofji in the direction of this gradien
is ]ZF•j i5wi .

The Pi(Z) provide M coordinates of a special globa
coordinate system onZ-space, chosen to characterize t
physics performance of the stellarator. One may imag
supplementing these by a further set$Qi(Z)%,(i 5M
11, . . . ,N) of functionally independent quantities to full
parametrizeZ, also chosen on the basis of their physic
relevance or independence from stellarator performance.
taining the ~nonlinear! transformation between the contr
knobsZj and the performance parametersPi andQi lies at
the core of the stellarator design. At each pointZ, the basis
set$j i 51, . . . ,M,vi 5M11, . . . ,N% coming from the CM formulas
introduced here provides a local description of th
performance-based coordinate system, with thej i perform-
ing a role akin to that of the reciprocal basis vectorsei of the
contravariant representationAiei of any vectorA, pointing in
a direction normal to the gradients of allPi but that with the
specifiedi.

As noted in Sec. I, the FP method,2,3 which also is ap-
plied to describe thePi over Z-space, is a technique servin
a different purpose from the local CM analysis employ
here, which may sometimes be used in conjunction with
The method provides an approximate global description
the Pi(Z) ~the starting point for the CM method!, by taking
a randomly distributed ensemble of equilibria inZ-space,
and fitting thePi(Z) of these by some simple functiona
model, e.g., a polynomial in theZj . Thus, if desired, the
local CM analysis could be applied to thePi(Z) provided by
FP, which would then yield thej i andvi for the approximate
FP topography in the vicinity of some reference pointZ0 .
However, unless the approximate description is quite ac
rate locally, the directions of these CM vectors will be ve
different from those for the exactPi(Z), and therefore of
uncertain utility. Obtaining adequate accuracy with the
method requires a much larger ensemble of equilibria t
with the local method used here to computeCi j , if the do-
main aboutZ0 is large enough that the simpler method us
here is inadequate. The strength of the FP approach is
local accuracy, but representing thePi(Z) correctly in the
large, while the local CM method requires the correctPi(Z)
locally. On the other hand, regarding global analysis,
results presented here are only a preliminary exploration
Z-space. Here, the FP analysis may provide a good me
for a more detailed future study.

B. Reducing the dimensionality of Z

The CM framework just described may be applied to
full Nx578 dimension spaceX, or to any subspaceZ of that
space. Before applying the method in the vicinity of config
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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ration C10, it is useful to begin reducing the dimensional
Nz of Z. In this paper, we shall use two methods to acco
plish reductions.

~a! First, as pointed out by Hirshman and Breslau,11 there
is a redundancy in theX-specification, with many per-
turbationsx of X modifying therepresentationof the
boundary, rather than the boundary shape itself. T
equivalent nonredundant representation we presen
this section produces a reduction of a factor of 2, yie
ing a nonredundant subspaceY,X of dimensionNy

539 for the C10–C82 family.
~b! In Sec. III, we further reduceNz from 39 to 8, by

selecting only the perturbations most effective in va
ing the Pi of interest, resulting in an approximat
‘‘reduced-model’’ description of configuration space

Regarding reduction~a!, independent variations inRmn

and Zmn produce not just changes in the physical shape
the plasma boundary, but also changes in the poloidal a
variable, which is not uniquely defined. A nonredunda
boundary deformation is made by instead prescribing the
ear combinations of theRmn ,Zmn that definenormal dis-
placements~at eachf plane! to the plasma boundary. For
plasma boundary in real spaceXW defined by

XW ~u,f!5R~u,f!R̂~f!1Z~u,f!Ẑ, ~9!

a general displacement isYW 5dXW 5dRR̂1dZẐ, and a nor-
mal displacement is13

YW •]
XW

]
u3]

XW

]
f5RS ]R

]u
dZ2

]Z

]u
dRD . ~10!

Multiplying by cos(mu1nf) and integrating overu and f
yields a matrix equation in the form

Yi5(
j

Bi j Xj . ~11!

Here, as earlier,X[$Xj 51, . . . ,Nx
% is the set of Fourier expan

sion coefficients of both dR and dZ, while Y
[$Yi 51, . . . ,Ny

% is the set of Fourier coefficients of the no
mal displacement to the plasma boundary, andBi j is the
Ny3Nx rectangular influence matrix that relates the two.
compute theXj required byVMEC in terms of theYi , we
employ the same SVD decomposition as in Eq.~3! to invert
the matrixBi j .

Before we can apply the approximate reduction meth
~b! or take the numerical derivatives needed to carry out
CM prescription, we need to ascertain the scales of varia
of the Pi in theX- or Y-space. This is done in the following
section.

III. TOPOGRAPHY OF Z-SPACE NEAR C10

The validity of Eqs.~1! or ~2! depends on the typica
scales of variation inZ-space of thePi , which previously
have been largely unknown. In the vicinity of the C10 fam
of configurations, we have assessed this variation for thePi

presently being used for all 78Xj as well as for the nonre
dundant amplitudesYj .
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. Variation of figures of meritPi 5125 computed fromVMEC andTERPSICHORE, of equilibria with deformation amplitudezj ~in meters!, for representative
harmonicsnj5$(1,0),(23,1)% ~top! and$(1,3),(2,4)% ~bottom!. See Sec. II, paragraph 3 for definitions of thePi .
82
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Some typical results in the spaceZ5Y are shown in Fig.
2, showing the variation of thePi computed fromVMEC and
TERPSICHORE with deformation amplitudezj[dZj ~in
meters! of the givenZj5Yj . Four harmonicsnj are shown.
The top two are forn5$(1,0),(23,1)%, to which the QA
measureP1 is sensitive, and the bottom two are forn
5$(1,3),(2,4)%, to which the kink eigenvalueP5 is rela-
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
tively sensitive. The size of the domain shown (DZj

560.01 m! is appreciable, large enough to encompass C
as well as C10~see Sec. V A!.

Probably because of the symmetrizing action of the
timizer in creating C10, most directionsZj resemble the top
pair: the fractional variationP/P0 of P1(Zj ) is much larger
than that forP5 ~reflecting the near-optimal value of th
FIG. 3. Histograms of the fractional variationPi /Pi0

21 for i 5123 and 5 over the full (ñ,m)-plane for
C10, for a fixed variationdZ50.002 m in amplitudes
Zj .
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 4. Variation ofP15x1
2 andP55l with deformation amplitudezj for the same harmonics as in Fig. 2, but computed from the quadratic approxim

of Eq. ~1!.
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unperturbedP10 in the denominator!, and P1 is a parabolic
curve, with vertex often nearzj50. For allZj , the variation
of both Pi is smooth and rather unstructured, approxima
by the quadratic expansion~1! over all or most of this
domain.

Given this knowledge, in Fig. 3 are shown histograms
the fractional sensitivity (Pi /Pi021) over the (ñ,m)-plane
~hence showing allZj ), for i 5123 and 5, and for a fixed
valuedZ50.002 m for eachzj , a modest fraction of theZj

scale length just shown in the plots of Fig. 2.~The i 54
histogram is not shown simply to conserve space.! Though
the QA measuresPi 5124 are linearly independent, their his
tograms are quite similar, and these are markedly differ
from that for the kink measureP5 .

With the information in the sensitivity histograms, w
can apply reduction method~b! introduced in Sec. II. We
rank the harmonics, selecting the 4 to whichP1 is most
sensitive, and the 4 to whichP5 is most sensitive, resulting
in a final reduced model withNz58 harmonics. We have
chosen a single one of the 4 QA-associatedPi as represen-
tative of QA measures, confirmed from the similarity of t
curves forPi 5124 in Fig. 2. The choice of four harmonic
for each is somewhat arbitrary, chosen to produce a r
tively simple system on which to develop the CM mach
ery, yet rich enough to display the control flexibility we a
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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-FIG. 5. Contour plots ofP1 ~left! andP5 ~right! over the (z1 ,z2) plane~top!

and (z1 ,z8) plane~bottom!.
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FIG. 6. A comparison of the analytical~top row! versus numerical~bottom row! variation ofP1,5 for perturbationsaj1 ~left! andaj5 ~right!, confirming that
these displacements provide independent control overP1 andP5 .
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seeking. We have examined twoNz58 reduced models
whose difference comes from somewhat different rank
criteria. The models were found to possess similar prop
ties. The criterion for the model presented here is sim
taking the harmonics with the largest values ofuPi /Pi0

21u. The eight harmonics of this model are accordinglynj

5$(1,0),(2,0),(3,0),(23,1);(1,3),(1,4),(2,4),(1,5)%, with
the first four most affectingP1 , and the last four most af
fecting P5 . One notes that theP1 set ~affecting QA-ness!
have smallm and a range ofñ, while theP5 set haveñ;1 or
2 and a range ofm. The top two plots of Fig. 2 are seen
belong to theP1 set, and the bottom two to theP5 set.

IV. CM ANALYSIS OF THE REDUCED MODEL

Having now established the scales of variation
Y-space, and selected from sensitivity histograms theYj

comprising our reduced model, we are in a position to eva
ate the CM tensorsCi j andHi jk and from these the vector
zi , ji , andvi introduced in Sec. II, and to demonstrate th
these have the intended properties described in that sec
In addition to the base configurationZ0 , which we take to be
C10, 2Nz

2 perturbed pointsZ must be evaluated for compu
ing theHi jk , including 2Nz points also needed for theCi j .
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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For Nz58, this gives 2Nz
25128 points to whichVMEC, JMC,

and TERPSICHOREmust be applied, an appreciable but ma
ageable computational task.

A. Quadratic model

Performing the evaluation ofCi j andHi jk , in Fig. 4 we
provide a first check that the resultant quadratic model of
Pi(Z) is behaving as it should, plottingP1 andP5 versus the
same 4Zj as shown in the numerical results of Fig. 2. O
notes the good agreement. The increment for the requ
first and second derivatives wasdZ50.002 m, which pre-
dicts well the values of thePi for displacements over the
rangeDZ50.02 m shown in Fig. 2 or Fig. 4. Even forn
5(1,3), whereP5 in Fig. 2 cannot be approximated by
quadratic over the fullzj range shown, the quadratic mod
does well over about the half of the full range near C10zj

50).
Using Ci j and Hi jk , one readily computes thezi from

Eq. ~6!. One finds, for example,z15$0.15,20.38,20.20,
20.14,22.11,214.5,2.29,7.66%31023, and z55$25.35,
1.61,0.19,0.26,0.33,23.39,4.97,24.48%31023 ~meters!.

In Fig. 5 we visualize the topography in the vicinity o
C10, with contour plots ofP1 ~left! andP5 ~right! from the
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 7. A comparison of the analytical~top row! versus numerical~bottom row! variation ofP1,5 for perturbationsav3 ~left! andav8 ~right!, confirming that
these nullspace displacements have no effect onP1 or P5 .
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quadratic model over a plane of two chosenzj . The top plots
are for two QA-relatedzj , and the contours for these a
elliptical. The bottom plots are for one QA-related and o
kink-relatedzj , and one notes here thatP1 is almost inde-
pendent ofz8 , while P5 is almost independent ofz1 . It is
somewhat fortuitous that this property is nearly obeyed
individual zj ; it need be exactly obeyed only for variation
in the j1 andj5 directions.

Applying the SVD-algorithm to invertCi j , we use
Eq. ~4! to compute thej i andV from Eq.~3! in obtainingvi .
As opposed to thezi , the values of these depend on ho
many of thePi one chooses to keep inCi j . One may keep
only P1 and P5 , yielding an M p52 problem with a
nullspace of Nz2M p582256vi ’s, or solve the more-
constrained problem increasingM p ~up to 5, here!. Here,
we consider the M p52 problem, obtaining j 1

5$23.92,9.82,5.99,21.19,0.29,0.55,20.56,0.22%, and j 5

5$0.09,20.78,0.03,20.11,2.77,2.05,22.53,24.10%. One
notes that the first four components ofj1 ~the QA-relatedzj )
are dominant, while the last four components dominate
j 5. While this might be expected, it is not necessary:
independence of~for example! P1 from j5 could arise from a
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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n

cancellation of the effects of appreciable components inj5

of the QA-relatedzj .

B. ‘‘Proof of principle’’ of the CM method

Having obtained theji andvi , we can now test the cru
cial properties discussed in Sec. II of these directions
Z-space, viz., showing that the boundary perturbations thji

describe actually permit independent control of thePi , and
that those of thevi actually leave thePi unchanged. In this
section we provide this key demonstration, and exam
some of the features of the deformations these vectors
duce.

The demonstration needed is agreement between
analytically-expected variation of thePi obtained from the
quadratic model in the direction of aj i or vi , and the varia-
tion numerically-obtained from a sequence of equilibria p
turbed from C10 in that direction. This comparison is pr
vided in Fig. 6 for perturbationsaj 1 ~left! andaj 5 ~right!,
and in Fig. 7 for perturbationsav3 ~left! and av8 ~right!.
Here,a is a scaling parameter, with a value specified on
horizontal axis. The analytic expectations are on the top r
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 8. Contour and surface plots over the (u,z̃)-plane
of perpendicular displacementsj'

1 andj'
5 ~top!, andv'

3

andv'
8 ~bottom!.
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and the numerical results on the bottom row. One notes
the variations are as expected. Perturbations in thej 1 direc-
tion do in fact varyP1 while leaving P5 unchanged, and
similarly for j 5. For thej 5 perturbation, there is somewha
more wobble visible in theP1 curve than for theP5 curve
for the j 1 perturbation, because of the greater sensitivity
P1 to most zj . Keeping P1 constant therefore requires
more delicate balance of the harmonics contributing inj 5.

We visualize these perturbations in Figs. 8 and 9. Fig
8 shows contour and surface plots over the (u,z̃)-plane of
perpendicular displacementsj'

1 andj'
5 ~top!, andv'

3 andv'
8

~bottom!. j'
5 is seen to vary more rapidly withu and less

rapidly with z̃ thanj'
1 , consistent with the harmonic contr

butions in the sensitivity histograms in Fig. 3. The effect
these perturbations on the boundary are shown in the po
dal cross-section in Fig. 9. In particular, one notes thatj5 for
diminishing the kink produces an indentation of the outbo
side at the half-periodz̃5p, enhancing the~negative! trian-
gularity which that cross-section possesses. This is consis
with the earlier empirical observation1 that kink stability can
be helped by providing such an indentation. Here, this fi
ing emerges simply from the CM calculation forj 5. How-
ever, one also notes that indentation atz̃5p alone is not
enough to stabilize the kink:v'

8 also causes an indentatio
However, its variation withz̃ is markedly different from that
of j'

5 , having anñ51 character, in contrast to theñ50
character forj'

5 .

V. GLOBAL TOPOGRAPHY: OTHER QAS DESIGN
POINTS

C10 and C82~see Fig. 1! were arrived at along an in
volved path of human interaction with the optimizer, and it
unclear that other regions ofZ-space, which would have
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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been reached from different starting points, might not yie
superior configurations. Thus, in this section we initiate
exploration of regions ofZ-space farther from C10. As
guideposts to promising regions to explore, one can lo
near other proposed QAS configurations5,12 with the same
methods. Here, we consider the variation of thePi as one
moves from one such reference pointZ0 to another.

A. The path from C10 to C82

We begin by considering thePi along a straight-line
trajectory Z5ZC101a(ZC822ZC10) connecting C10 with
C82, asa runs from 0 to 1. These two configurations a
fairly close inZ-space. We may quantify this by introducin
the simple norm:uXu[(( jXj

2)1/2. With this definition,uXC82

2XC10u.0.041 m, in comparison with the much larger ‘‘dis
tance’’ to PG1~see below!, uXPG12XC10u.0.228 m

C82 was obtained from C10 in an effort to stabilize t
kink. The level of QA-ness was slightly degraded in com
pensation. This is borne out by thePi ’s along the straight-
line path in Z-space, shown in Fig. 10. While the kin
growth rate falls off to an acceptably low value (lC82/lC10

.0.05), P1 actually moves to a somewhat lower value~bet-
ter quasisymmetry! about midway along the trajectory, an
then rises at C82 to a value slightly larger than for C10. O
notes that the quadratic approximation would be adequat
describe the variation of thePi along this trajectory.

B. The path from C10 to PG1

Configuration PG1~see Fig. 1! is characterized by5

much better kink stability (l.0) than C10 or C82, but sub
stantially worse quasisymmetry, due mainly to a large mir
field Bm50,ñ51 present to assure ballooning stability. As i
dicated above, its separation from C10 inZ-space is far
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 9. Poloidal cross-sections of boundaries of C10~solid curve! and C10 perturbed by 0.002j1,5 and 0.01v3,8 at toroidal positionsz̃50, andp.
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greater than that of C82, and is generally considered to b
a quite different region ofZ. Nevertheless, as one sees
Figs. 11, even over this relatively large distance thePi do not
fluctuate greatly, but instead vary smoothly, and alm
monotonically, in a manner consistent with the qualitat
description of the physics differences given just above
tween the two stellarators.

Applying the same tools to PG1 as described above
C10, one finds sensitivity histograms for thej i which re-
semble those for C10. Again, those fori 5124 are similar
to each other~and to those for C10!, and differ from that for
i 55. j 5, which reduces the kink growth rate, is found
Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP l
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enhance thepositive triangularity which PG1 possesses
the half-periodz̃5p, consistent with tokamak-based intu
ition on kink stabilization, an effect opposite that found f
C10, which as noted earlier has negative triangularity az̃
5p.

VI. DISCUSSION AND SUMMARY

In the foregoing sections we have described and app
the CM approach, mostly in the vicinity of the C10–C8
family of stellarators to which an optimizer has led th
NCSX group. For the first time, we are getting a picture
icense or copyright, see http://pop.aip.org/pop/copyright.jsp
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the topography of the configuration spaceZ in which the
NCSX optimizer has been searching for good QA stella
tors. The local CM method would be applicable and use
even in aZ-space where thePi were highly involuted, but
instead we find that these are rather smooth and unstructu
even over distances inZ generally considered large. In a
appreciable neighborhood of C10 (DZj;1 cm! the Pi may
be modeled by a quadratic function ofz5Z2Z0 .

FIG. 10. Plot of the fractional variationPi /Pi0 for i 5125 along a straight-
line path in Z-space from C10 (a50) to C82 (a51). These have an
X-space distance between them of 0.041 m.

FIG. 11. ~a! Plot of the fractional variationPi /Pi0 for i 5125 along a
straight-line path inZ-space from C10 (a50) to PG1 (a51). These have
anX-space distance between them of 0.228 m.~b! The same as~a!, but with
blowup of vertical scale, to show more clearly the variation inP5 .
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From this topographical information, we have produc
a restricted configuration space which reduces the dim
sionality from Nz578 to 8 while retaining much of the in
teresting physics in the vicinity of C10, and within this spa
obtained the first- and second-order coefficientsCi j andHi jk

describing the simple quadratic variation of thePi . This
permits one to compute quantities of interest for the C
formalism using analytically tractable expressions. We ha
demonstrated that the CM method produces perturbationji

in Z with which one can independently vary thePi , and
perturbationsvi producing different configurations with un
changed values ofPi .

For both C10 and PG1, the sensitivity histograms foi
5124 resemble one another, and differ from that fori 55.
Correspondingly, thej i for the four different QA-associated
figures of merit (i 5124) are similar in appearance, an
these differ from that for the kink (i 55).

For C10,j 5 manifests the outboard indentation prev
ously empirically observed to stabilize the kink, enhanci
C10’s negative triangularity atNpz5p, while for PG1,j5

enhances its positive triangularity, consistent with tokam
intuition on kink stabilization.

The work discussed in this study has taken as its f
‘‘control knobs’’ Zj displacements of the plasma bounda
However, exactly the same procedures may be used to s
how a given set of coil currents described by amplitudeI
[$I j% could produce a range of physics behaviorP, with the
specializationZj→I j . Here, theI j may represent eitherKnj

,
the Fourier amplitudes of the current potentialK(u,z), for
coil design, orJj , the amount of current in thejth coil of a
given coil set, to study operational flexibility. Then th
Pi(Z) can be computed almost as done in the present st
but using free-boundary instead of fixed-boundaryVMEC.

It will also sometimes be useful to extend thePi andZj

beyond the sets specified thus far. For example, to st
startup scenarios, theZj5Jj could be supplemented to als
includeZb[^b&, and perhaps a parameter characterizing
peakedness of the pressure profile. Then, for example,
relative size ofZb to the otherZj in the vi would specify
how the coil currents should be raised as^b& is during
startup in order not to change the QA-ness or kink stabi
of the machine. For coil design, thePi could be supple-
mented to include a measure of coil complexity, e.
one already used by the NCSX group,13,14 P6

[(nm
p11Kn

2/(nm
pKn

2 , with p51 – 4. Then applying the
CM method just as in the present study,j6 would describe
perturbations which would reduce the coil complexity, wh
maintaining the same physics performance. These and o
such applications are planned for future work.
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