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The full spaceZ={Z;_, | Nz} of independent variables defining a stellarator configuration is large.
To find attractive design points in this space, or to understand operational flexibility about a given
design point, one needs insight into the topograph¥ispace of the physics figures of mefit

which characterize the machine performance, and means of determining those direciespmire

which give one independent control over tRg, as well as those which affect none of them, and

so are available for design flexibility. The control matt@M) approach described here provides a
mathematical means of obtaining these. In this work, the CM approach is described and used in
studying some candidate Quasi-Axisymmetf@A) stellarator configurations the National Compact
Stellarator Experiment design group has been considering. In the process of the analysis, a first
exploration of the topography of the configuration space in the vicinity of these candidate systems
has been performed, whose character is discussed?0@ American Institute of Physics.
[S1070-664X00)00912-5

I. INTRODUCTION locally. One may provide more information by expanding to
. . second and higher orders, and most globally, one may inves-

The full spac&Z={Z;—, _ y} of independent variables oaie the full nonlinear variation over ranges where a power-
defining the shape of a stellarator configuration is large. FOggries expansion is not practical. But even to compute the
example, the configuration boundary is often represented byerivatives needed foE;; correctly, one needs to know the
a set of Fourier amplitudes, of which several tens are needgg5racteristic scales on which t vary in Z, so more
for a typical design. To find attractive design points in thisglobal knowledge is important even for the local problem.
space, or to understand operational flexibility about a giverhnq a5 already indicated, the more global information may
design point, one needs insight into the topography iny 54 e important in locating genuinely different stellarator
Z-space of various physics f_|gures of mem:{P‘(z)}(' optima. Thus, in this paper we address both the more local
=1... My Wh'(.:h chara_u_:terlze the machine performanceand more global sides of this topographical exploration.
(e.g., transport, kink stability, eic. It should be noted that the technique of “function pa-

'A.‘n Important new means -for stellarator design mader metrization” (FP) has been used to provide an approxi-
possible by advances in physics codes and computationa o

. o mate global description of thé;(Z) for tokamaK and
power is the use of automated optimizers. For example, the

National Compact Stellarator ExperimefNICSX) design Stellarato? equilibria, for fast interpretation of equilibria
group has made extensive use of an optimizer in developinfrom experimental data. This useful method is distinct from

candidate configurations for an attractive Quasi-gnd sometimes complementary to the CM analysis employed

Axisymmetric(QA) stellarator(QAS) design® The optimizer here, as d|scu333d at _ttr:e End of :ec. ”'A.I basi fth
conducts a search in Z-space describing the stellarator In Sec. |l we describe the mathematical basics of the CM

boundary, using an objective functi®(P) which is a func- method, and discuss the means we use to reduce the dimen-

tion of theP; of the configuration. While a powerful tool, the Sionality of Z-space. Implementing the CM procedure re-
optimizer is searching a large space whose topography h&&/Ires explorlng_ the st_:ales of varla_mon of tRein Z in the
been essentially unknown, and there is limited understandingicinity of a design poin,, for which we choose "C10,”
of why the optimizer arrives at the design poiflig it does. @ candidate NCSX configuration. This is done in Sec. lIl.
Deeper insight into this would enhance our ability to locateOur topographical study here finds that within an appreciable
attractive design point.g., by reducing the dimensionality domain(variations in theZ; of order 1 cm about C10, thé;
of the Z-space, or by recognizing topographical featuresmay be well approximated by simple quadratic expressions,
which point to superior “valleys” ofF(P) in the Z-spacé, ~ and in addition, we are able to reduce the dimensionality of
and to examine operational flexibility about those pointstheZ-space we need to consider from an inifigl="78 to 8.
Such insight can be used both to better focus the operation dfs a result, in Sec. IV we apply the machinery of the local
an optimizer, as well as to enhance human understanding &M analysis to a greatly reduced parameter space, and
the configurations being studied. within that space can compute quantities of interest using
The control matrix'CM) approach discussed here helpsanalytically tractable quadratic expressions for the We
provide this insight. The approach we discuss has both locdhen provide the “proof of principle” of the CM method,
and global aspects. As narrowly defined, the CM is simplydemonstrating that the CM mathematics correctly produces
the matrixC;;=dP; /9Z; of first derivatives at any poir perturbationst' with which we can independently vary the
in Z-space, and so can give topographical information onlyP;, and “nullspace” perturbations' which produce differ-
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FIG. 1. Poloidal cross-sections of the boundaries of reference QAS configu-
rations C10, C82, and PG1, &t 0,7/2, and.
Z of .
05} 4
PG1
4 ) . .
05 1 15 2 25

ent configurations, but with unchanged values ofheWe  number of Fourier amplitudes i,=78 corresponding to
discuss some of the features of these perturbations. In Sec. Maximum mode numbers of.,,,=3, andm,,.,=5. PG1, a

we move to a more global exploration &tspace, applying third QAS configuration discussed in Sec. V, hds,=32.
some of the same machinery used in earlier sections to studsigure 1 shows poloidal cross sections of the plasma bound-
the variation of theP; en route to candidate QAS configura- ary for these three configurations.
tions other than C10. In Sec. VI we summarize the findings  various measures of stellarator transport and stability
of the earlier sections, and discuss applications of the CMyre used as figures of merit in the cost function of the full
approach now in progress or planned for the near future. configuration optimizet.QA stellarators are an approach to
transport optimization based on making the magnetic field
amplitudeB(x) look axisymmetric in Boozer coordinates, as
does that for a tokamak. Thus, the degree to which a design
A single stellarator configuration may be described by ahas achieved _transport optimizz_ation, closely related to its de-
set of Fourier amplitudesX={X;_y _n}=(Ry Zn, gree of nonaxisymmetry, is an important measure of the per-
. i X formance of such machines. Because of the resemblance to
Rn.,....Z, ) which define the plasma boundary . : . L
2 N, /2 tokamaks, appreciable toroidal current is an intrinsic aspect
[R(6,0),2(6,0)]. Here,nz(ﬁ=n/Np,m) are toroidal and of such stellarators, and, thus, stability to kink modes has
poloidal mode numbers per period, witl, equal to the been found to be a major limiting factor on the achievable
number of field periods. For C10 and C82, two candidateébeta of these configurations, with ballooning stability also
NCSX configuration5we shall consider in this paper, the playing a significant role, and these figures of merit are ac-

Il. FORMULATION
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cordingly also important contributors to the optimizer objec-and h.o=higher-order terms. For small enougtthat only

tive function. The evaluation of all figures of merit require |inear terms are needed, one has the matrix equation

the calculation of a magnetohydrodynanildHD) equilib-

rium, performed using the/MEC® code. To evaluate the P=Co-z, 2

transport, the magnetic fields output IEC in a non-  with Cu=C(Z,) the control matrix at design poit,. This

straight coordinate system are re-expressed in terms of th@ay be inverted, using the Singular Value Decomposition

Boozer coordinate system using thec code’ The various  (SVD) theorem'®

measures of transport used by the optimizer are then easily

expressed in terms of the Fourier componeBs,, of the Crien=Untsenr o Vien ©)

magnitude of the magnetic field. For stability, both internalwith U,V unitary matrices, an& a diagonal matrix whose

ballooning and free-boundary kink modes are evaluated usdiagonal elements; are the “singular values” of the prob-

ing the TERPSICHORECOde® lem. This theorem permits one to obtain a “pseudo-inverse”
In this paper, we use the same suite of codes employe@™ of the nonsquare matri€, and provides bases spanning

by the optimizer and computé=M,=5 figures of merit its range and nullspace.

P= (Xl,XZ,Wl,WZ,)\) P, ,are 4 measures of the ripple Taking the particular basis se# ~*M in the target

strength, and hence the level of nonaxisymmetric transpo-space to be the set of unit vectors with 1 in itreposition

one may expect anBs is a measure of stability More spe- and O elsewhere, one has the correspondingé5eif dis-

cifically, X1 =X (slz) where y%(s) = 2, n¢oB n/B00 and  placements irZ-space

S;» label two magnetic surfaces within the plasma volume fi=Ct. @

containing a fixed amount of toroidal flux. The selected val- o

ues ofs (normalized to unity at the plasma edgares;  where Cy=C(Z,). The &' physically represent displace-

=0.5, ands,=0.71.W; ,=W(s, ,) is the “water function’®  ments which change a single physics paramBtey unity,

ats; ,, measuring the average ripple-well depth along a fieldeaving the others unchanged. These span the range of

line. The fifth figure of merit iSPs=\=w?, the most un- The (N—M) vectors V/(i=M+1,...N) spanning the

stable kink eigenvalue computed higRPSiCHORE(negative nullspace of C (which change the configuration without

for unstable modgsWe consider four QA-associated figures modifying any of theP;) are the orthonormal set formed by

of merit for the purposes of comparison among them. Athose columns o¥ with i such thato;=0. These are also

single one may be used for the purposes of configuratioimportant, permitting one to find different stellarator bound-

analysis, and we shall do so at appropriate points in the paaries which have the same physics performance, giving flex-

per. Other figures of merit might be usefully added to theibility for other criteria, e.g., improved coil design. Together,

present set, such as the ballooning growth rate, surface quag=%---M andv'=M*%---N gpanz.
ity, or coil complexity, and the same formal machinery em-  For somewhat largez, but still small enough that only
ployed to study any such set. up to Hjj;x need be kept in Eq(l), one can compute the

N,=78 is a large space to search, and one importantontrol matrix forany Z in this region, via
objective here is to reduce this number to a more manageable _
value. That is, we seek a “reduced spacg'tontained inX, Cij(2)=0pi(2)192;= Cij(Zo) T Hijezi, ®)
with dimensionalityN=N,<N, which is as small as pos- and from this, find the correéf' at anyZ, along with simple
sible while retaining the most important physics. We discussinear expressions for the extrerdaof the P; , etc. We shall
means by which this can be done in Sec. 11 B. We thinZof find that this “quadratic model” is valid in an appreciable
as the space of “control knobs” at our disposal, to which theneighborhood about C10, and shall explicitly compute and
CM machinery is applied, and thus its exact relation to themake use ofC;; andH;, in Sec. Ill.
concrete specification ok already given may change, de- TheZ are easily solved for using E¢). For anyi, we
pending on the application. For example, in Sec. VI we takemay write H;;c in matrix notation add;, which is a square,
Z to be a set of amplitudes describing the coil currents, fosymmetric,N>X N matrix, invertible by standard means. Then
considerations of coil design or operational flexibility. How- from Eg. (5), one has
ever, for most of this papeZ will be a linear subspace o, J—_y-1.d ©)
given by amplitudes specifying the plasma boundary. b Co

where vectorg, is theith row of matrixCqy, and no summa-

tion overi is implied. Similarly, taking our objective func-

tion to be a linear combination of the;, with weightsw; ,

F(P)=w;P; (summation implied§ one can readily solve for
In the reduced space, expandiR§Z=2,+z)=P(Z,) the extremunz™ of F(P):

+p aboutZ=Z,, one hagwriting in component-form, with

A. Control matrix basics

_ A ZF=—Ht b (7)
the summation over repeated indices assumed, unless other- F "~
wise indicatel with He=w;H; andc=w;c},. Expressior(7) thus gives the
‘ . 1y A design point sought by an optimizer. However, as for &Y.
Pi(20+2)=Cij(Z0)Zj+ 2Hij(Z0)Zi2+ (h-0), D foritto be correctz” must fall within the domain of validity
with linear coefficients given by thigl X N “control matrix” of the quadratic model for thB;(Z). An optimizer using a
Cij, quadratic coefficients given by the “Hessiar;;, steepest-descent method would step opposite the direction of
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the Z-space gradient;F=dF/3Z; . For the chosen form for ration C10, it is useful to begin reducing the dimensionality
F, this is dF/dZ;=(dF/dP;)(dP; /aZj):wiCijEWi(d)j N, of Z. In this paper, we shall use two methods to accom-

=(c");. Using this with(5) gives plish reductions.

JF=F=cE+He z. (8 (a) First, as pointed out by Hirshman and Bresfathere

is a redundancy in th&-specification, with many per-
turbationsx of X modifying therepresentatiorof the
boundary, rather than the boundary shape itself. The
equivalent nonredundant representation we present in

From this and Eq(7), one sees that at=z" one hasd,F
=0, as one expects. Additionally, using E¢$. and(8), one
finds that the component &f in the direction of this gradient

is 9zF - &'=w;. ) _ . this section produces a reduction of a factor of 2, yield-
The P;(Z) provide M coordinates of a special global ing a nonredundant subspa¥e_ X of dimensionN
coordinate system oZ-space, chosen to characterize the —39 for the C10-C82 family. Y
physics per.formance of the stellarator. One may imagin?b) In Sec. lll, we further reduceN, from 39 to 8, by
supplementing these by a further s¢Qi(2)}.(i=M selecting only the perturbations most effective in vary-
+1,... N) of functionally independent quantities to fully ing the P, of interest, resulting in an approximate

parametrizeZ, also chosen on the basis of their physical
relevance or independence from stellarator performance. Ob-
taining the (nonlineaj transformation between the control Regarding reductiorta), independent variations iR,
knobsZ; and the performance parametésandQ; lies at  andz,,, produce not just changes in the physical shape of
the core of the stellarator design. At each palntthe basis  the plasma boundary, but also changes in the poloidal angle
set{¢' " - My=M*L- N} coming from the CM formulas  variable, which is not uniquely defined. A nonredundant
introduced here provides a local description of thishoundary deformation is made by instead prescribing the lin-
performance-based coordinate system, withgh@erform-  ear combinations of th&®,,,Zn, that definenormal dis-

ing a role akin to that of the reciprocal basis vectgrsf the  placementgat eache plane to the plasma boundary. For a

con_travariant representati@dqof any vectorA, point_ing in plasma boundary in real spab?edefined by
a direction normal to the gradients of &| but that with the

specifiedi. X(6,6)=R(0,$)R(p)+Z(6,$)Z, 9)
As noted in Sec. |, the FP methéd,which also is ap-

plied to describe th®; overZ-space, is a technique serving

a different purpose from the local CM analysis employe

here, which may sometimes be used in conjunction with it. X X (ﬁR 9z )

“reduced-model” description of configuration space.

a general displacement %= 8X= SRR+ 8ZZ, and a nor-
4mal displacement g

The method provides an approximate global description of \7-(95 X agq,’):R &—052— &—05R (10
the P;(Z) (the starting point for the CM methgdby taking

a randomly distributed ensemble of equilibria Znspace, Multiplying by cosfmé+n¢) and integrating ove® and ¢
and fitting theP;(Z) of these by some simple functional Yyields a matrix equation in the form

model, e.g., a polynomial in th&;. Thus, if desired, the

local CM analysis could be applied to tRg(Z) provided by Yi=2 Bij X . (12)
FP, which would then yield th&' andv' for the approximate !

FP topography in the vicinity of some reference paft — Here, as earliexX={X;_y . } is the set of Fourier expan-
However, unless the approximate description is quite acCusion coefficients of both SR and 6Z, while Y
ratelocally, the directions of these CM vectors will be very —ry, | v,} is the set of Fourier coefficients of the nor-

different from those for the exad®;(Z), and therefore of mal displacement to the plasma boundary, @dis the

uncertain ut|I_|ty. Obtaining adequate accuracy W'.th the FPNyx N, rectangular influence matrix that relates the two. To
method requires a much larger ensemble of equilibria tha

Qompute theX; required byvmec in terms of theY;, we

. . _ J 1

W'th the local 'method used here to CO”?F"‘I@’ if the do employ the same SVD decomposition as in B).to invert
main aboutZ, is large enough that the simpler method us:edthe matrixB.

here is inadequate. The strer_lgth of the FP appr(_)ach is not Before \;\J/e can apply the approximate reduction method
local accuracy, but representing the(Z) correctly in the (b) or take the numerical derivatives needed to carry out the

large, while the local CM method requires the corré‘q(;) CM prescription, we need to ascertain the scales of variation
locally. On the other hand, regarding global analysis, the fthe P, in the X- or Y-space. This is done in the following
results presented here are only a preliminary exploration o ectionl

Z-space. Here, the FP analysis may provide a good means
for a more detailed future study. lll. TOPOGRAPHY OF Z-SPACE NEAR C10

.....

The validity of Egs.(1) or (2) depends on the typical
scales of variation irZ-space of theP;, which previously
have been largely unknown. In the vicinity of the C10 family

The CM framework just described may be applied to theof configurations, we have assessed this variation folPthe
full N,= 78 dimension spack, or to any subspacg of that  presently being used for all 78; as well as for the nonre-
space. Before applying the method in the vicinity of configu-dundant amplitudey; .

B. Reducing the dimensionality of Z
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FIG. 2. Variation of figures of mer#®;_,_5 computed fromymec andTerpsicHoRE of equilibria with deformation amplitudg (in meters, for representative
harmonicsn;={(1,0),(- 3,1)} (top) and{(1,3),(2,4} (bottom. See Sec. I, paragraph 3 for definitions of the

Some typical results in the spage=Y are shown in Fig.
2, showing the variation of thB; computed fromvmec and
TERPSICHORE with deformation amplitudez;=45Z; (in
meter$ of the givenZ;=Y;. Four harmonic®); are shown.
The top two are fom={(1,0),(—3,1)}, to which the QA
measureP; is sensitive, and the bottom two are for
={(1,3),(2,4}, to which the kink eigenvalué; is rela-

(i=1) {(1.0) 2,0) (i=2)

tively sensitive. The size of the domain showrZ
==+0.01 m is appreciable, large enough to encompass C82
as well as C1Qsee Sec. VA

Probably because of the symmetrizing action of the op-
timizer in creating C10, most directioiZ§ resemble the top
pair: the fractional variatio?/ P, of P,(Z;) is much larger
than that forPs (reflecting the near-optimal value of the

FIG. 3. Histograms of the fractional variatid® /P;,
—1 fori=1-3 and 5 over the full i§,m)-plane for
C10, for a fixed variatiordZ=0.002 m in amplitudes

Zj.
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FIG. 4. Variation ofP;= x? andPg=\ with deformation amplitude; for the same harmonics as in Fig. 2, but computed from the quadratic approximation

of Eq. (1).

unperturbedP,, in the denominatgr and P, is a parabolic
curve, with vertex often near,=0. For allZ;, the variation

of both P; is smooth and rather unstructured, approximable
by the quadratic expansiofil) over all or most of this
domain.

Given this knowledge, in Fig. 3 are shown histograms of ™

the fractional sensitivity R;/P;,—1) over the f,m)-plane
(hence showing alz;), fori=1-3 and 5, and for a fixed
valuedZ=0.002 m for eactz;, a modest fraction of th&;
scale length just shown in the plots of Fig. @he i=4
histogram is not shown simply to conserve spadéough
the QA measureR;_,_, are linearly independent, their his-
tograms are quite similar, and these are markedly different
from that for the kink measurBs.

With the information in the sensitivity histograms, we
can apply reduction methob) introduced in Sec. Il. We

rank the harmonics, selecting the 4 to whiBh is most

sensitive, and the 4 to whicRg is most sensitive, resulting

in a final reduced model witiN,=8 harmonics. We have
chosen a single one of the 4 QA-associaids represen-
tative of QA measures, confirmed from the similarity of the
curves forPi_4_4 in Fig. 2. The choice of four harmonics
for each is somewhat arbitrary, chosen to produce a rela-
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tively simple system on which to develop the CM machin-gig, 5. contour plots oP; (left) andPs (right) over the ¢, ,2,) plane(top)

ery, yet rich enough to display the control flexibility we are and (z,,z5) plane(bottom.
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FIG. 6. A comparison of the analyticéop row) versus numericalbottom row variation of P, 5 for perturbationsy&* (left) anda&® (right), confirming that
these displacements provide independent control Byeand P .

seeking. We have examined twd,=8 reduced models, ForN,=8, this gives NZ=128 points to which/mMEC, JMc,
whose difference comes from somewhat different rankingg,qrerpsicHoreEmust be applied, an appreciable but man-
criteria. The models were found to possess similar Properzgeable computational task.

ties. The criterion for the model presented here is simply

taking the harmonics with the largest values |&%/P; _

—1[. The eight harmonics of this model are accordingly ~A. Quadratic model

={(1,0),(2,0),(3,0).£ 3,1);(1,3),(1,4),(2,4),(1,8) with Performing the evaluation &;; andH;, in Fig. 4 we

the first four most affecting®;, and the last four most af-  proyide a first check that the resultant quadratic model of the
fecting Ps. One notes that the, set (affecting QA-ness  p,(z) is behaving as it should, plottir@, andPs versus the
have smalmand a range afi, while thePs sethaven~1 or  same 4Z; as shown in the numerical results of Fig. 2. One
2 and a range ofn. The top two plots of Fig. 2 are seen to notes the good agreement. The increment for the required

belong to theP; set, and the bottom two to tHes set. first and second derivatives wa=0.002 m, which pre-
dicts well the values of thé; for displacements over the
IV. CM ANALYSIS OF THE REDUCED MODEL rangeAZ=0.02 m shown in Fig. 2 or Fig. 4. Even far

_ . o - =(1,3), wherePs in Fig. 2 cannot be approximated by a
Having now established the scales of variation inquadratic over the fuly; range shown, the quadratic model

Y-space, and selected from sensitivity histograms Yhe does well over about the half of the full range near C20 (
comprising our reduced model, we are in a position to evalu=0).

ate the CM tensor€;; andH;; and from these the vectors Using C;; and H;j, one readily computes th2 from
Z, &, andV' introduced in Sec. I, and to demonstrate thateq. (6). One finds, for examplez'={0.15-0.38,—0.20,
these have the intended properties described in that section.0.14—2.11~ 14.5,2.29,7.6p<10 %, and z°={-5.35,
In addition to the base configurati@y, which we take to be 1.61,0.19,0.26,0.33,3.39,4.97- 4.48 X 10 3 (meters.

C10, 2N? perturbed pointZ must be evaluated for comput- In Fig. 5 we visualize the topography in the vicinity of
ing theHjj,, including 2N, points also needed for th@;;.  C10, with contour plots oP; (left) and P5 (right) from the
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FIG. 7. A comparison of the analyticélop row) versus numericalbottom row) variation of P, 5 for perturbationsxv? (left) andav® (right), confirming that

these nullspace displacements have no effed®pwor Ps.

quadratic model over a plane of two chosgn The top plots

cancellation of the effects of appreciable componentg®in

are for two QA-relatedz;, and the contours for these are of the QA-relatedz; .
elliptical. The bottom plots are for one QA-related and one

kink-relatedz;, and one notes here thRY is almost inde-
pendent ofzg, while Py is almost independent of; . It is

somewhat fortuitous that this property is nearly obeyed for

B. “Proof of principle” of the CM method

Having obtained th& andVv', we can now test the cru-

individual z; ; it need be exactly obeyed only for variations cial properties discussed in Sec. Il of these directions in

in the & and & directions.

Applying the SVD-algorithm to invertC”, we use
Eq. (4) to compute th%' andV from Eq.(3) in obtainingv'.
As opposed to the,
many of theP; one chooses to keep @;; . One may keep
only P, and Ps, yielding an M,=2 problem with a
nullspace of N,—M,=8-2= 6v"s or solve the more-
constrained problem increasing, (up to 5, herg Here,
we consider the M,=2 problem obtaining &?!
={- 39298259&119029055056022 and £°
={0.09,-0.78,0.03,-0.11,2.77,2.05; 2.53-4.10. One
notes that the first four components#f(the QA-related; i)

Z-space, viz., showing that the boundary perturbations'the
describe actuaIIyA permit independent control of Bhe and
that those of the/' actually leave theP; unchanged. In this

the values of these depend on how section we provide this key demonstration, and examine

some of the features of the deformations these vectors pro-
duce.

The demonstration needed is agreement between the
analytically-expected variation of thie; obtained from the
quadratic model in the direction of& or v', and the varia-
tion numerically-obtained from a sequence of equilibria per-
turbed from C10 in that direction. This comparison is pro-
vided in Fig. 6 for perturbationag (left) and a§5 (right),

are dominant, while the last four components dommate irand in Fig. 7 for perturbationsv® (left) and av® (right).
£5. While this might be expected, it is not necessary: arHere,« is a scaling parameter, with a value specified on the
independence dfor examplé P, from £° could arise from a  horizontal axis. The analytic expectations are on the top row,
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FIG. 8. Contour and surface plots over th{)-plane
of perpendicular displacemergs and£° (top), andv®
andv® (bottom).

- 0
0/”

and the numerical results on the bottom row. One notes thdieen reached from different starting points, might not yield
the variations are as expected. Perturbations iréthdirec-  superior configurations. Thus, in this section we initiate an
tion do in fact varyP; while leaving P5 unchanged, and exploration of regions ofZ-space farther from C10. As
similarly for £°. For the&® perturbation, there is somewhat guideposts to promising regions to explore, one can look
more wobble visible in thé®; curve than for thePs curve  near other proposed QAS configuratidiswith the same
for the £€* perturbation, because of the greater sensitivity ofmethods. Here, we consider the variation of ®eas one
P, to mostz;. Keeping P, constant therefore requires a moves from one such reference paiy to another.
more delicate balance of the harmonics contributing Tn

We visualize these perturbations in Figs. 8 and 9. FlgureA_ The path from C10 to C82

8 shows contour and surface plots over tief-plane of ) o ) .
perpendicular displacemeng$ and&? (top), andv? andv? ~We begin by considering th®; along a straight-line
(bottom. &5 is seen to vary more rapidly witd and less ~trajectory Z=Zcigt a(Zcgz—Zc1d connecting C10 with

rapidly with7 than¢! , consistent with the harmonic contri- f08|2 aISa rgnzs from Ovt\? 1. These ty\f/o ﬁpnggqratm;ns are
butions in the sensitivity histograms in Fig. 3. The effect of airly close inZ-space. We may quantify this by introducing

. — . 2 1/2 . . . g
these perturbations on the boundary are shown in the poloH“)a( smglg SE{MXL—(E]XJ) o W'thhth'hs defmg'?ancﬁé.
dal cross-section in Fig. 9. In particular, one notes #dbr ~Xc1d =0 m, In comparison with the much larger “dis-

diminishing the kink produces an indentation of the outboard@nce’ to PGl(seg below |xPGl_.XC10|:O'228 mo
side at the half-period =, enhancing thénegative trian- C82 was obtained from C10 in an effort to stabilize the

gularity which that cross-section possesses. This is consistekigk' The level of QA-ness was slightly degraded in com-
: ) ) - - nsation. This is born 's along the straight-
with the earlier empirical observatibthat kink stability can B satio S s borne out by tfi's along the straight

be helped by providing such an indentation. Here, this find-lme path in Z-space, shown in Fig. 10. While the kink

: . : growth rate falls off to an acceptably low valugdgs/Nc1g
ing emerges simply from the CM calculation f§P. How- ~0.05), P, actually moves to a somewhat lower valibet-

ever, one also notes that indentation{at = alone is not 4, quasisymmetiyabout midway along the trajectory, and
enough to stabilize the kinki} also causes an indentation. then rises at C82 to a value slightly larger than for C10. One
However, its variation witl{ is markedly different from that notes that the quadratic approximation would be adequate to
of £, having ann=1 character, in contrast to the=0  describe the variation of the; along this trajectory.

character fors .

B. The path from C10 to PG1
V. GLOBAL TOPOGRAPHY: OTHER QAS DESIGN

POINTS Configuration PGl(see Fig. 1 is characterized by

much better kink stability X>0) than C10 or C82, but sub-
C10 and C82see Fig. 1 were arrived at along an in- stantially worse quasisymmetry, due mainly to a large mirror
volved path of human interaction with the optimizer, and it isfield B,,_o7-; present to assure ballooning stability. As in-
unclear that other regions af-space, which would have dicated above, its separation from C10 Znspace is far
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FIG. 9. Poloidal cross-sections of boundaries of C4dlid curve and C10 perturbed by 0.082° and 0.0132 at toroidal positiong =0, and.

greater than that of C82, and is generally considered to be ianhance thepositive triangularity which PG1 possesses in
a quite different region of. Nevertheless, as one sees inthe half-period{=, consistent with tokamak-based intu-
Figs. 11, even over this relatively large distanceRhelo not  ition on kink stabilization, an effect opposite that found for

fluctuate greatly, but instead vary smoothly, and almosg1g which as noted earlier has negative triangularity at
monotonically, in a manner consistent with the qualitative_
description of the physics differences given just above be-
tween the two stellarators.

Applying the same tools to PG1 as described above foyl' DISCUSSION AND SUMMARY
C10, one finds sensitivity histograms for t§é which re- In the foregoing sections we have described and applied
semble those for C10. Again, those for1—4 are similar the CM approach, mostly in the vicinity of the C10-C82
to each othefand to those for C1Qand differ from that for family of stellarators to which an optimizer has led the
i=5. &% which reduces the kink growth rate, is found to NCSX group. For the first time, we are getting a picture of
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FIG. 10. Plot of the fractional variatioR; / P;, for i =1—5 along a straight-
line path inZ-space from C10 4=0) to C82 (@=1). These have an
X-space distance between them of 0.041 m.
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the topography of the configuration spagein which the

NCSX optimizer has been searching for good QA stellara

H. E. Mynick and N. Pomphrey

From this topographical information, we have produced
a restricted configuration space which reduces the dimen-
sionality fromN,=78 to 8 while retaining much of the in-
teresting physics in the vicinity of C10, and within this space
obtained the first- and second-order coefficiedsandH;j,
describing the simple quadratic variation of tRe. This
permits one to compute quantities of interest for the CM
formalism using analytically tractable expressions. We have
demonstrated that the CM method produces perturbagons
in Z with which one can independently vary ti®, and
perturbations/' producing different configurations with un-
changed values d®; .

For both C10 and PG1, the sensitivity histogramsifor
=1-4 resemble one another, and differ from that ifer5.
Correspondingly, thé&' for the four different QA-associated
figures of merit (=1—4) are similar in appearance, and
these differ from that for the kinki &5).

For C10, £° manifests the outboard indentation previ-
ously empirically observed to stabilize the kink, enhancing
C10’s negative triangularity a¥l,{=m, while for PG1,&
enhances its positive triangularity, consistent with tokamak

tors. The local CM method would be applicable and usefulintUition on kink stabilization.

even in aZ-space where th®; were highly involuted, but

instead we find that these are rather smooth and unstructure‘ ;

even over distances i@ generally considered large. In an
appreciable neighborhood of C18Z;~1 cm) the P; may
be modeled by a quadratic function o Z—2Z,.

T S e e L A s S

(1] i e el dlhedll sl e Lt Kl il - L= P BRI .

0.0 0.2 0.4 0.6 08
o —

@

-2 1 1 L 1

T o —m
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FIG. 11. (a) Plot of the fractional variatiorP; /P;, for i=1—5 along a
straight-line path irZ-space from C104=0) to PG1 @=1). These have

an X-space distance between them of 0.228m The same a&), but with
blowup of vertical scale, to show more clearly the variatiorPin

The work discussed in this study has taken as its free
f£ontrol knobs” Z; displacements of the plasma boundary.
However, exactly the same procedures may be used to study
how a given set of coil currents described by amplitutles
={l;} could produce a range of physics behaRpwith the
specializationz;—1; . Here, thel; may represent eithe(nj,
the Fourier amplitudes of the current potent&(6,¢), for
coil design, orJ;, the amount of current in thgh coil of a
given coil set, to study operational flexibility. Then the
P;(Z) can be computed almost as done in the present study,
but using free-boundary instead of fixed-boundemec.

It will also sometimes be useful to extend tReandZ;
beyond the sets specified thus far. For example, to study
startup scenarios, thg;=J; could be supplemented to also
includeZ;=(B), and perhaps a parameter characterizing the
peakedness of the pressure profile. Then, for example, the
relative size ofZ; to the otherZ; in the v\ would specify
how the coil currents should be raised 8) is during
startup in order not to change the QA-ness or kink stability
of the machine. For coil design, th, could be supple-
mented to include a measure of coil complexity, e.g.,
one already used by the NCSX groti* Pg
=3 mPTK2/3 mPK2, with p=1-4. Then applying the
CM method just as in the present stud§, would describe
perturbations which would reduce the coil complexity, while
maintaining the same physics performance. These and other
such applications are planned for future work.

ACKNOWLEDGMENTS

We would like to thank Allen Boozer and Long-Poe Ku
for useful discussions, and Steve Hirshman and Tony Cooper
for use ofvMEC and TERPSICHORE Dr. Boozer was particu-
larly helpful with the analysis in Sec. 11 B.

This work was supported by the U.S. Department of En-
ergy Contract No. DE-AC02-76-CHO3073.

Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 7, No. 12, December 2000 Control-matrix approach to stellarator design and control 4971

IA. Reiman, G. Fu, S. Hirshmaat al, European Physical Society Meeting  8D. V. Anderson, A. Cooper, U. Schwenn, and R. GruberRinceedings
on Controlled Fusion and Plasma Physics Researttaastricht, the of the Joint VarennalLausanne International Workshop on Theory of
Netherlands, 14-18 June 199Buropean Physical Society, Petit-Lancy,  Fusion PlasmagEditrice Compositori, Bologna, 1988p. 93.

Switzerland, 1999 M. Yu. Isaev, M. I. Mikhailov, D. A. Monticello, H. E. Mynick,

2 .
3B. J. Braams, W. Jilge, and K. Lackner, NucI._FusRﬁJ 699(1986. A. A. Subbotin, L. P. Ku, and A. H. Reiman, Phys. Plasnas3174
H. P. Callaghan, P. J. McCarthy, and J. Geiger, Nucl. Fus8n509

(1999.
1999. .
4(G H9Neilson A H. Reiman, M. C. Zamstorfét al, Phys. Plasmag 0w, H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
15111(2000 T B ? ' ' Numerical Recipes irFORTRAN 77(Cambridge University Press, Cam-
5P. Garabedian and L. P. Ku, Phys. Plasi8a45 (1999. llbrldge, 1996, pp. 51ff.
6S. P. Hirshman, W. I. van Rij, and P. Merkel, Comput. Phys. Commgn. > P- Hirshman and J. Breslau, Phys. PlasB)a2664(1998.
143(1986. 12N. Nakajima, M. Yokoyama, M. Okamoto, and J. INanberg, Plasma

7J. Nuehrenberg and R. Zill®roceedings of the 5th International Work- ~ Phys. Rep23, 460(1997).
shop on Stellarators, Schloss Rinberg, 1984mmission of the European **A. H. Boozer(private communications, 1989
Communities, Brussels, 1984 UR 9618EN 339. 143, P. Hirshmar(private communications, 1999

Downloaded 10 Feb 2005 to 198.35.4.95. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



