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A survey of the approaches which have been developed for mitigating transport in stellarators is
presented. A primary deficiency of stellarators has been elevated transport levels due to their
nonaxisymmetry. Since the early 1980s, stellarator research has addressed this difficulty, developing
a range of techniques for reducing transport, both neoclassical and, more recently, also anomalous.
Several of these approaches are now being implemented in a new generation of experiments in the
United States and abroad. This paper describes the fundamental physics of these methods for
transport reduction. © 2006 American Institute of Physics. �DOI: 10.1063/1.2177643�
I. INTRODUCTION

Stellarators have much in common with tokamaks, and
some attractive features relative to them—disruption-free
performance, and no requirement for current drive to pro-
duce a rotational transform. However, a major drawback has
been elevated levels of neoclassical transport due to their
nonaxisymmetry. Beginning in the early 1980s, stellarator
research has addressed this deficiency, developing a range of
approaches for stellarator “transport-optimization,” i.e., for
mitigating stellarator transport, both neoclassical and, more
recently, also anomalous transport. Several of these tech-
niques for transport optimization are now being implemented
in a new generation of experiments in the United States and
abroad.1–5 In this paper, we review the basic physics of these
transport optimization approaches.

In Sec. II we begin by introducing some useful notation,
and discuss the range of stellarators which exist, both in
theory, and increasingly, in experimental implementation.
These devices share features of their particle orbits and neo-
classical transport, and in Sec. III, we present an overview of
these, to clarify the mechanisms producing the undesirable
enhanced transport levels. In Sec. IV, we then address the
various approaches which have been developed to mitigate
this transport, and in Sec. V we discuss methods more re-
cently being uncovered to also reduce turbulent transport. A
summarizing discussion is given in Sec. VI.

II. PRELIMINARIES

Like a tokamak, a stellarator is a toroidal confinement
device, with nested flux surfaces and rotational transform �
�q−1. It is convenient to parametrize these toroidal devices
with a coordinate system natural to the magnetic geometry,
viz., with flux �or magnetic� coordinates �� , � , ��. Here,
2�� is the toroidal flux within a flux surface, and with the
pair of poloidal and toroidal angles �� ,�� chosen so that the
magnetic field can be written in the Clebsch �contravariant�
form B=�����+�����p=�����p, with 2��p the po-
loidal flux, Clebsch angle �p��− ��, constant along a field
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line, and ��d�p /d�. It is also useful to define an average

minor radius r��� with units of length by �� B̄xr
2 /2, with

Bx��� the magnetic field strength on axis �denoted by the

subscript x�, and B̄x its average.
An important property of the guiding-center equations of

motion in flux coordinates is that they depend only on the
magnitude B��B� of the magnetic field, and not on its indi-
vidual components,6 giving it a central role in determining
the particle orbits in these coordinates. B may be written as a
Fourier decomposition B�x�=�m,nBmn�r�cos�n�−m��, and
for purposes of analysis modeled by

B�x� = B̄�r��1 − �t�r,�� − �h�x�cos 	� , �1�

with B̄�r���B�x�	=B00�r� the flux-surface average of B. The
axisymmetric �n=0� portion of this is given by the 1−�t

terms, with �t�
t�r�c���=�m�0�Bm0 / B̄�cos m�, toroidal am-
plitude 
t�r�, and c��� generalizing the cos��� dependence in
a circular tokamak, in which case 
t is the inverse aspect
ratio r /R0. One notes from this that ��t	=0= �c���	. Further
requiring that, as for cos �, c��=0�=1 fully specifies these

quantities, with 
t=�m�0�Bm0 / B̄�. The nonaxisymmetric por-
tion is represented by the term �h cos 	, with ripple ampli-
tude �h�
h�r�k�x� having flux-surface average 
h�r�, and
modulating factor k�x�, allowed to vary slowly over a flux
surface. 	�n�−m� is the single ripple phase. While this
nonaxisymmetric term is not fully general, it captures the
features of most stellarators of interest, including those dis-
cussed here. In fact, most of analytic stellarator neoclassical
�nc� theory was developed using the more specialized case
k�x�=1 of no ripple modulation, i.e., �h= ��h	=
h�r�.

Because of their 3D character, there are many more dif-
ferent types of stellarators than tokamaks. The essential fea-
tures of the shape of existing tokamaks may be described by
a handful �
5� of shape parameters, including the aspect
ratio A�R0 /a0, the ellipticity, and triangularity. �Here, R0 is
the major radius of the magnetic axis, and a0 the minor ra-
dius on the midplane.� For stellarators, numerical optimizers
which have been used to design recent experiments have
typically used several tens of shape parameters. In Fig. 1 a

small illustrative sample of six configurations of interest is
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shown, plotting field strength B��� along a field line for one
poloidal transit. These are shown in order of increasing value
of p�
h /
t, a measure of the distance of the configuration
from the two symmetric limits 
h=0 �axisymmetry� and 
t

=0 �helical symmetry�. Thus, in Fig. 1�a� is shown a toka-
mak, having p=0. Figure 1�b� shows the B��� profile for the
National Compact Stellarator Experiment �NCSX�,4 a quasi-
axisymmetric �QA� stellarator now under construction,

FIG. 1. Profiles of B��� along a field line for one poloidal transit, for six
toroidal configurations of interest: �a� tokamak, �b� NCSX, a quasi-
axisymmetric stellarator, �c� LHD in “standard” configuation �R0=3.75 m�,
�d� CNT, �e� LHD in an “inward-shifted” configuation �R0=3.53 m�, �f�
HSX, a quasihelical stellarator.
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which has p�1. Removing from this all Bmn for n�0 results
in the “equivalent tokamak” for NCSX shown in Fig. 1�a�. In
Fig. 1�c� is B��� for the large helical device �LHD� �Ref. 1�
in its “standard” configuration �R0=3.75 m�, having 
h

t

and �h nearly constant on a flux surface. Most of the stellar-
ator nc theory was developed assuming a B��� profile of this
“conventional stellarator” form. In Fig. 1�d� is the profile for
the Columbia Non-neutral Torus �CNT� experiment.7 This
configuration is not transport optimized, but is the first in this
sequence manifesting an appreciable modulation of �h with
�. Still greater modulation is apparent in Fig. 1�e�, the profile
for LHD in an inward-shifted configuration8 �R0=3.53 m�,
an example of a “quasi-omnigenous” �QO� or “quasi-
isodynamic” �QI� configuration, where �as will be discussed�
the modulation is central to its good confinement character-
istics. The Wendelstein-7X �W7X� experiment,2 now under
construction, and the Quasi-Poloidal Experiment �QPS�,5

now in its final design phase, will be two additional repre-
sentatives of this class of stellarators. Finally, in Fig. 1�f� is a
profile approximating that in the quasihelical �QH� Helically
Symmetric Experiment �HSX�,3 which has p�1.

III. NEOCLASSICAL TRANSPORT

While there is a wide spectrum of stellarator types, they
have in common many features of their particle motion, and
of the resultant nc transport. There is a large literature devel-
oping the theory of nc transport in toroidal systems. The
reader interested in the detailed analytic development of this
theory is referred to reviews9–13 of the subject. Our purpose
here is to provide a summary of those results relevant to the
issues in the optimization of stellarator transport.

In Fig. 2 is an overview of stellarator nc theory, showing
the four basic “branches” which contribute to the transport in
a stellarator. There are two symmetric branches �blue and
green curves�, and two nonsymmetric branches �red and

FIG. 2. �Color� Overview of stellar-
ator neoclassical theory, showing the
four basic branches contributing to
stellarator transport. The superscripts
on the transport coefficients D desig-
nate the branch �as=axisymmetric, hs
=helically symmetric, sb
=superbanana, bd=banana drift�, sub-
scripts denote the collisionality regime
within that branch.
IP license or copyright, see http://pop.aip.org/pop/copyright.jsp
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black curves�. Plotted is the radial diffusion coefficient D
versus central electron density ne0, proportional to collision
frequency . The branch to which the coefficient belongs is
indicated by a superscript, and the particular collisionality
regime within that branch is indicated by a subscript.

For an axisymmetric �AS� system �
h=0�, such as that in
Fig. 1�a�, only the blue curve �superscript as� is nonvanish-
ing. This is the familiar profile for a tokamak,9,10 with the
banana regime �Dbn

as � at its lowest collisionality, turning over
into the plateau regime �Dpl

as�, and the Pfirsch-Schlüter re-
gime �Das

ps� at still higher . At low , the dominant contribu-
tors to transport here are toroidally trapped “bananas,” which
make a radial drift excursion �“banana-width”� �bt in the
course of a bounce.

The green curve �superscript hs� is the only nonvanish-
ing branch for helically symmetric �HS� systems �
t=0�,
such as that approximated by Fig. 1�f�. The dominant low-
contributors to transport here are ripple-trapped bananas,
making drift excursion �bh. One notes it has the same form as
that for the AS branch, with its own banana, plateau, and
Pfirsch-Schlüter regimes.14 A difference between the two
curves, however, is that the HS branch is typically much
smaller than the AS one, essentially because �bt in a tokamak
is large compared to �bh in a HS system. This has the notable
consequence that transport-optimized stellarators can have
nc transport levels much lower than those for a tokamak of
the same aspect ratio and rotational transform.

The red curve, dominant at low , is the “superbanana”
branch �superscript sb�. This branch is due to ripple-trapped
particles which acquire nonzero bounce-averaged radial

drifts r̄̇ when 
t is turned on from a HS system, e.g, when a
“straight” stellarator is bent into a torus. �The superbananas
are the trajectories traced out by particles which are ripple-
trapped over at least some portion of their orbits.�

Finally, the black curve is the “banana-drift” branch �su-
perscript bd�.15–17 In a manner complementary to the sb
branch, the principal contributors to this branch are toroi-
dally trapped particles which acquire nonzero bounce-

averaged radial drifts r̄̇ when an AS system is perturbed, i.e.,
when 
h is turned on.

The dominance of the sb branch at low  is typical for
most stellarator parameters, and is thus the principal mecha-
nism which has been addressed by efforts at transport opti-
mization. The bd branch is typically smaller, as in Fig. 2, but
can be significant for energetic particles. The sb branch is
comprised of two main collisionality regimes, one at very
low collisionality �h /���1�, in which D increases as a
positive power of ,18,19 and the other valid for h /���1, in
which D declines as 1/ �the well-known “1/
regime”20–23�, the two meeting at the peak seen in Fig. 2.
Here h� / �2
h� is the frequency �inverse time� for a par-

ticle to collisionally detrap from a ripple well, and ��= �̇
¯

is
the poloidal precession frequency, produced by the E�B and

grad B drifts, ��=��E+��B, in which ��E�−cEr / B̄r typi-
cally dominates for thermal particles. In order of increasing
, the sb regimes in Fig. 2 are given by D1

sb

=�1p�2
h�−1/2vBt
2 /��

2, D1/2
sb =�1/21/2vBt

2 /��
3/2, and D−1

sb

3/2 2
=�−1�2
h� vBt /. with �q numerical coefficients obtained
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from a full kinetic treatment, and q=1,1 /2 ,−1 the power of
 appearing in the specified Dq

sb.

A superbanana’s radial drift has the form r̄̇�vBt sin �,

and its poloidal precession �̇
¯ ���E is roughly constant. This

results in a collisionless superbanana orbit which is circular
in flux coordinates, displaced from a flux surface r=const by
a “superbanana width” �0=vBt /��. Here vBt=
tvB0, with

vB0=�B̄ / �M�gr�, magnetic moment �, particle mass M, and
gyrofrequency �g.

For h /���1, the rough form of the collisionless super-
banana persists, but collisions perturb the orbit, causing its
radial position to wander, analogous to the wandering of ba-
nanas for the banana regime. At higher  �h /���1�, a par-
ticle collisionally detraps after tracing out only a fraction of
a full poloidal drift period, making a radial step �=vBt /h,
resulting in the 1/ regime.

As described more fully elsewhere,12,24 the transport co-
efficients for the Dq

sb given above may be obtained by mak-
ing use of the heuristic formula D�F̃�2 for diffusion co-
efficient D, where F is the fraction of particles participating
in the random walk process in question, the particles taking
radial steps � at stepping frequency ̃. For example, for the
1/ regime, F is the fraction Fh��2
h�1/2 of ripple-trapped
particles, ���, and ̃�h. Putting these in the heuristic
expression for D yields D−1

sb , up to a numerical factor.
The Dq

sb above hold for velocity-space shells of particles
with constant kinetic energy W�E−e�, with � the electro-
static potential. To compute the radial particle �heat� flux
�s�Qs� for species s, one integrates over W,

��s

Qs
 = −

2ns

��
� dxx1/2e−x� 1

Tsx
Dq�x�

��ns�

ns
−

esEr

Ts
+ �x −

3

2

Ts�

Ts
� , �2�

where x�W /Ts. We shall have use for these expressions in
Sec. IV B.

IV. OPTIMIZATION OF NEOCLASSICAL TRANSPORT

A list of the approaches which have been developed is
given in Table I. Experimental realizations of the concept,
either operating or planned, are noted in the right column, in
parentheses when the realization was not a fundamental part
of the machine design. In this section, we discuss the nc
methods, and the turbulent methods in Sec. V. The former list
is much more developed, largely because the nc issue has
been addressed for far longer than the turbulent one.

The basic objective of nc optimization is to reduce the
radial excursion of problematic particles, of which the most
troublesome are superbananas, as discussed. Since sb width

�0 scales as r̄̇ /��, one may hope to reduce �0 either by

decreasing r̄̇, or by increasing ��. All of the nc optimization
approaches listed in Table I fall into one of these two catego-

ries.

IP license or copyright, see http://pop.aip.org/pop/copyright.jsp



058102-4 H. E. Mynick Phys. Plasmas 13, 058102 �2006�
The grad B and E�B drifts producing r̄̇ and �� may be

written vD=vB+vE= �B̂ /M�g���V, with V�x���B+e�.
From these, one finds

�̇ = �� · vD = �c/e���p
V, �̇p = ��p · vD = − �c/e���V ,

�3�

which manifest a canonically conjugate structure. Making
use of the bounce action J�� ,�p �� ,E���2��−1�dsMv��s�
�with s the arc length along a field line�, one obtains bounce-
averaged expressions for these:

�̇
¯

= − �c/e���p
J/�EJ = �c/e���p

H ,

�4�
�̄̇p = �c/e���J/�EJ = − �c/e���H ,

which also display the conjugate structure. �H is the Hamil-
tonian.� From these one may compute

r̄̇ = �dr/d���̇¯ � �dr/d���c/e���V̄ ,

�5�

�̇
¯ � �̄̇p � − �dr/d���c/e��rV̄ .

A. Optimization by reduction of r̄̇

In 1968 Palumbo pointed out25 that if one could create a
configuration having B a function of � only, B=B���, then

�neglecting � in Eqs. �3�� �̇=0. Such configurations are
termed “isodynamic.” However, toroidal isodynamic con-
figurations do not exist, since these must have nonzero cur-
vature ����=��̂ at some points along their magnetic axes,
and at those places, B must have a cosinusoidal �
dependence,26 B�Bx�1−�x cos����, with x=�1/2x1��� the
distance from the axis to a point x on the flux surface � in

the local major radial direction R̂=−�̂.
A weaker version of this notion was advanced by Hall

27

TABLE I. Transport optimization methods.

Optimization method Realization

Neoclassical optimization:

Reduction of r̄̇

Quasihelical �QH� HSX

Quasi-axisymmetric �QA� NCSX

Quasi-poloidal �QP� QPS

Quasi-omnigenous �QO�/ W7X, �inward-

Quasi-isodynamic �QI� shifted LHD, CHS�
Isometric/Approx. Omnigenous ¯

Pseudosymmetric �PS� ¯

Enhancement of ��, via ambipolar roots �CHS, W7AS, LHD, TJ-II�
Enhancement of ��, magnetic �W7X at �
0.04, heliotrons�

Turbulent optimization:

ITBs via root-jumping �W7AS, LHD, CHS�
Turbulence modification from shaping ¯
and McNamara, investigating mirror equilibria. They found
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configurations for which J=J���, so that from Eq. �4�, �̇
¯

=0. Such configurations are termed “omnigenous.” In con-
trast to isodynamic configurations, examples of toroidal om-
nigenous configurations do exist. Indeed, for any symmetric
system, where B depends on only one of the two angles
parametrizing a flux surface, J will be a function of � alone,

and thus have �̇
¯

=0. Thus, tokamaks and straight stellarators
are omnigenous.

In 1983 Boozer noted28 that if a system has a symmetry
in flux coordinates, its particle orbits and transport are “iso-
morphic to” those of any other symmetric system, regardless
of their appearance in real space. That is, the orbits and
transport coefficients in one system may be gotten from
those of the other by a simple parameter mapping between
the two. This general observation set the stage for the dis-
covery by Nührenberg and Zille29 of the first QH configura-
tion, a toroidal configuration approximately possessing the
symmetry B=B�� ,	� in flux coordinates of a genuinely
straight stellarator. This was followed some years later by the
discovery by Nührenberg, et al.30 and Garabedian31 of QA
configurations, approximately possessing the symmetry B
=B�� ,�� of a tokamak, while being fully 3D in real space.

We sketch the means by which shaping can produce QA
symmetry in a 3D stellarator. Consider an m=2 stellarator.
At lowest order in an expansion about the magnetic axis,
such a device has an elliptical cross section, which deforms
as one moves in � �while keeping the same area, for flux
conservation and � independence of Bx�, and thus, the minor
radial scale factor x1 has a � dependence. If ���� is varied so
that ����x1���=const, the above expression for B will also be
independent of �, as desired. The maintenance of this � in-
dependence at higher order is complicated, but can be ap-
proximately achieved numerically in the automated optimi-
zation codes used to develop modern stellarator designs.

Another quasisymmetric �QS� system one might seek is
one with QP symmetry, for which B=B�� ,��, and with this
as a goal, the QPS design has achieved excellent neoclassical
confinement properties. However, due to the same cos � de-
pendence noted above for B in regions of nonzero ����, con-
figurations having QP symmetry everywhere do not exist.
Instead, in common with the W7X QO/QI design, the QPS
device achieves good QP symmetry in low-field straight seg-
ments ��=0�, connected by higher-field, large-� bends,
where the � dependence is appreciable. Thus, QPs are actu-
ally members of the QO/QI family of stellarators, to which
we now turn.

In contrast to the concepts discussed to this point, a
quasi-omnigenous �QO� or quasi-isodynamic �QI� device is
non-symmetric, even in flux coordinates. �The terms QO and
QI are equivalent, though the terms omnigenous and isody-

namic are not, as discussed earlier.� Instead, it reduces r̄̇ by
the near-cancellation of the usual �t term in Eq. �1� which

yields r̄̇ by a second term, arising from the modulation k�x�
over a flux surface of ripple strength �h. The original QOs
�Ref. 32� were members of the “� configuration” family of
model fields, for which k was approximately given by

k�� ���= �1−� cos ��, and c���=cos �. For �=0, �h=
h has
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the unmodulated form of a conventional stellarator �Fig.
1�c��, while for ��0, the ripple is localized toward the in-
board side of the torus, characteristic of QOs, such as in Fig.
1�e�, and of “Meyer-Schmidt” �MS� configurations.33 Those
earlier nontransport-optimized configurations sought to mini-
mize the equilibrium shift at higher � by reducing the
Pfirsch-Schlüter currents. This was achieved by localizing �h

toward �=� in such a way that the �t term in Eq. �1� was
approximately eliminated. For QOs, the �t term must not be
eliminated; it is the balance between it and the �h contribu-

tion which reduces r̄̇. A first concrete realization of the
QO/QI approach was given in the first “helias”
configuration,34 a forerunner of the W7X design.

Using Eq. �1� in �5�, one finds r̄̇�−vB0����t

+ ����h�cos 	�=vB0 sin ��
t−�
h cos 	�, where the second
form specializes the first to the � model. Here, cos 	 is the
bounce average of cos 	, and we have used the fact that
sin 	�0. The two terms contributing are apparent in both
forms. For �p cos 	=1, one sees that the new, second term
in the second form cancels the conventional first term ��
t�.
However, cos 	 depends upon the well-depth parameter y

��W /�B̄−1+
tc���+�h� / �2�h�, equal to 0 for particles
most deeply ripple trapped and 1 for those marginally
trapped. Thus, this cancellation will only hold for particles
with a single y. This is the “quasi” aspect of “quasi-

omnigenous.” One chooses �p so that r̄̇=0 for particles with
y in the most troublesome range, namely deeply trapped par-
ticles, for which cos 	�y�=2E�y1/2� /K�y1/2�−1�1. �Here, K
and E are the complete elliptic integrals.� Near that y, while

not precisely 0, r̄̇ is still small, which is adequate to reduce

the overall D
�r̄̇2	 by a factor of 10–30.32

We note that QO configurations can continuously ap-
proach QH ones, which are genuinely omnigenous, by hav-
ing �→0 while p→� in such a way that �p=const. Thus,
the QO subspace extends the QH subspace of transport-
optimized configurations, by relaxing the requirement of full
omnigenity.

Other interesting extensions of the transport optimized
concepts discussed thus far have also been discovered. One
is the “isometric,”35 or “approximately omnigenous”36 con-
cept. For these, requiring that J�J��� for almost all particles
results in the “isometry condition,” that the length along B
between any two contours with constant B= �B� is a constant
�i.e., independent of �p�. This is trivially satisfied for sym-
metric configurations, but remarkably, nonsymmetric con-
figurations exist which also approximately satisfy it. Interest-

ingly, while particles accordingly have �̇
¯

=0, their banana
widths and shapes vary with �p. Another extension is the
“pseudosymmetric” family of configurations.37 For these,
only sufficient closeness to a quasisymmetry is required that
the ripple wells along field lines are eliminated. In achieving
this, the sb mechanism, usually dominant, is eliminated,
leaving only the less problematic bd mechanism. To our
knowledge, no experimental implementations of these exten-
sions have yet been designed, presumably because the trans-
port reductions achieved with the other concepts already ap-

pears adequate.
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B. Optimization by enhancement of ��

In steady-state, a toroidal magnetic confinement system
must satisfy the “ambipolarity constraint”

0 = �
s

es�s, �6�

so that the system does not continue to charge, changing
Er�r�. The symmetric-branch contributions to these fluxes are
“intrinsically ambipolar,” i.e., satisy Eq. �6� independent of
Er�r�, a property stemming from conservation under colli-
sions of the momentum conjugate to the symmetry direction.
The nonsymmetric transport channels derive instead from
momentum exchange between particles and the magnetic
field of the system itself, and so are not intrinsically ambi-
polar. Thus, if the ion and electron fluxes initially differ, Er

will change until condition �6� is satisfied. Neglecting in ad-
dition to the bd contribution, the full fluxes in Eq. �6� may be
replaced by the sb fluxes, expressions for which were given
in Sec. III. One notes that Er enters Eq. �2� in two places,
through the thermal-force term �ns� /ns+ . . . �, and through the
diffusion coefficients Dq.

If the plasma initially has Er=0, both ions and electrons
will be in the 1/ regime, so that, since D−1i /D−1e


Mi
1/2 /Me

1/2�1 for Ti
Te, the ions will leave the system
more quickly, producing a negative Er, increasing in size
until �6� is satisfied, with the ions in the 1 or 1/2 regime.
This root, called the “ion root” Eri, was the first solution of
Eq. �6� discovered.18 Subsequently, it was recognized that
multiple roots of this condition exist.38 Keeping only the sb
branch contributions, it was found that there are two addi-
tional roots to Eq. �6�. �See Ref. 38 for a diagrammatic
means of understanding this.� When parameters are such that
all three roots are real, the two new roots are an intermediate
one, Er0, unstable to fluctuations in Er, and a second stable
root, called the “electron root” Ere, positive and typically
large compared with �Eri�, in which the ions hold in the elec-
trons. For Ti
Te, both �s and Qs are typically much smaller
than at Eri, thereby reducing transport via electrostatically
enhancing ��.

The electron root has been observed experimentally on
several machines39–41 using electron cyclotron heating
�ECH�, and on LHD �Ref. 42� using neutral beam injection
NBI heating. The ECH experiments achieved Ere by produc-
ing elevated electron transport, thereby removing the poten-
tial advantage of the root. The NBI experiment accessed Ere

with Te
Ti, and improved confinement of both species was
observed.

The values of the roots Er,a=i,0,e of �6� depend upon
plasma profiles such as density and temperature, which vary
with radius r and time t. These profiles in 3D systems thus
provide extra “knobs” not present in AS systems, giving one
control over the Er�r� profile, and the resultant plasma flows.
Note that controlling Er in this way does not require strong
ripple; the nonsymmetric fluxes may be small compared with
the symmetric nc or the turbulent ones.

Condition �6� is radially local, providing a set of roots
Era at each r and time t, but is insufficient to describe what

happens when there is a jump between roots at two neigh-
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boring radii, or when Er is not at one of the roots, so that the
system is evolving in time. A partial differential equation for
E�r , t� is required for this. Such a partial differential equation
was developed in Refs. 43 and 44, of the form

�t�CEEr� = �V��−1�r�V�DE�rEr� + �
s

es�s,

with CE a constant, and DE the “electric diffusion coeffi-
cient,” which determines the scale over which root jumps
take place. In steady state and away from radii where root-
jumping occurs, only the final term survives, recovering Eq.
�6�. We return to root-jumping in Sec. V.

The discussion thus far has been concerned mainly with
the transport of thermal particles, but the confinement of en-
ergetic ions, such as neutral beam or � particles, is of course
another important confinement constraint. Some design fea-
tures which improve thermal confinement, notably the reduc-

tion of r̄̇, will also tend to improve energetic particle confine-
ment. However, there are some important differences
between thermal and energetic confinement so that, for ex-
ample, NCSX has much lower 1/ transport than W7X, but
a reactor-size W7X has much better � confinement than
NCSX. �This is not a generic difference between QAs and
QOs. For example, in the ARIES-CS QA reactor design, a
descendant of NCSX, the � confinement approaches that of
W7X.45 The properties of these systems are still evolving.�
One difference is that energetic particles are highly insensi-
tive to the electrostatic potential �. Thus, the form of their
orbits is determined entirely by the structure of B�x�. Also,
energetic ions are almost collisionless, so the full form of
their collisionless trajectories is essential to their confine-
ment characteristics. Thus, enhancement of ��E is of no use
for energetic confinement, and devices must be designed to
provide a magnetic counterpart ��B��rB in its place. Thus,
for example, the alpha loss fraction in a reactor-size W7X
improves dramatically46 as � is raised from 0 to 4%, as the
plasma digs a magnetic well, enhancing ��B.

V. OPTIMIZATION OF TURBULENT TRANSPORT

The approaches discussed up to now can reduce nc
transport to levels below that of turbulent transport, so in
recent years, reducing turbulent transport has also become of
interest.

In tokamaks, internal transport barriers �ITBs� have been
produced, in which a strong flow shear47 suppresses the mi-
croturbulence, and stellarators with adequate quasisymmetry
may be able to induce ITBs in similar fashion. Additionally,
however, the nonsymmetric transport channels in stellarators
provide a means for producing the requisite shear in Er and
resultant flow-shear not available to tokamaks, e.g., from
jumps between the ion and electron roots. Such root-jump-
induced ITBs have been experimentally observed on
W7AS,48 LHD,49 and on CHS.50

A second, more general strategy for mitigating turbulent
transport is by controlling the shaping of the device. While
tokamaks and stellarators conform to quite similar empirical
transport scaling laws,51 the normalization factor multiplying

52
the energy confinement time �E is device-dependent. This
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may be expected, since a stellarator’s shape determines fac-
tors which strongly influence the microstability of the device,
such as global and local shear, locations of good and bad
curvature, locations of trapped particles, as well as its equi-
librium flows, and these will affect the character of the tur-
bulence the device supports. Interestingly, those devices
which have some neoclassical optimization, such as W7AS
and the inward-shifted LHD, also tend to have lower anoma-
lous transport.52 Recent work on this53,54 suggests this corre-
lation is not coincidental, arguing that lower nc transport
implies smaller in-surface viscosities, implying less damping
of zonal flows, and thus stronger suppression by them of the
turbulence.

Another mechanism by which shaping may be able to
reduce anomalous transport is described in Ref. 55. There, it
is shown that a turbulent spectrum can provide an anomalous
increment an to the collisional particle pitch-angle scatter-
ing, ef =+an. As confirmed by guiding-center simulations,
for particles in a neoclassical regime �such the 1/ regime�
where diffusion falls with increasing , this increment can
reduce, rather than enhance, overall radial transport, contrary
to our usual tokamak-based intuitions. The size of this effect
depends upon the structure of the modes comprising the
spectrum, which in turn depends upon the plasma shape.

VI. DISCUSSION

The evolution of many of the nc concepts described here
may be seen as an effort to enlarge the space of earlier opti-
mized configurations, by relaxing an optimization principle
while not sacrificing too much in transport. For example, the
space of toroidal isodynamic configurations is null, properly
contained within the non-null space of toroidal omnigenous
configurations. Weakening the real-space symmetry required
for omnigenous configurations to only approximate symme-
try in flux coordinates further enlarges the space to QS con-

figurations. And requiring r̄̇=0 for only the most trouble-
some particles further extends the QS space to that of QOs.
For each of the three general nc mitigation approaches, viz.,
QS, QO/QI, and �� enhancement, experiment already indi-
cates that the technique is helpful—for the QS approach, on
the HSX stellarator, for the QO approach, on LHD and CHS
in their inward-shifted configurations, and for �� enhance-
ment, on a range of stellarators, both optimized and not.
Further test and refinement of these methods will be possible
as new experiments implementing them become operational.
The set of nc mitigation approaches which have been dis-
cussed permit reducing stellarator thermal nc transport to
levels where it is subdominant to turbulent transport over the
full plasma column for typical operating temperatures. At the
same time, the nonintrinsic ambipolarity of the nonsymmet-
ric fluxes, even when small compared with the turbulent
ones, gives stellarators added control over the Er profile,
helpful for control of the plasma flow and turbulent trans-
port.

The development of turbulent mitigation methods is now
in its early stages, perhaps analogous to the situation for nc
mitigation in the early 1980s. As then, the numerical tools

needed to effectively study the effects on transport of differ-
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ent stellarator designs are now becoming available, currently
including linear stability, nonlinear simulation, and optimizer
codes valid for stellarators. Explorations using these tools
should provide a growing list of techniques for turbulent
optimization.
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