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The generalization of the Balescu—Lenard collision operator to its fully
electromagnetic counterpart in Kaufman’s action-angle formalism is derived
and its properties investigated. The general form may be specialized to any
particular geometry where the unperturbed particle motion is integrable, and
thus includes cylindrical plasmas, inhomogeneous slabs with non-uniform
magnetic fields, tokamaks and the particularly simple geometry of the standard
operator as special cases. The general form points to the commonality between
axisymmetric, turbulent and ripple transport, and implies properties (e.g.
intrinsic ambipolarity) that should be shared by them, under appropriate
conditions. Along with a turbulent ‘anomalous diffusion coefficient’ calculated
for tokamaks in previous work, an ‘anomalous pinch’ term of closely related
structure and scaling is also implied by the generalized operator.

1. Introduction

The principal objective of this paper is the generalization of the Balescu—
Lenard (BL) collision operator (Balescu 1960; Lenard 1960) from the
uniform unmagnetized electrostatic context, in which the standard BL operator
is derived, to its electromagnetic counterpart in the action-angle formalism
initially developed by Kaufman (1971, 1972). By specializing this one general
(though explicit) form, one can obtain the appropriate BL operator in the
uniform unmagnetized case, or the uniform but magnetized case for which
Montgomery & Turner (1974) obtained the Landau operator, or the cases of a
nonuniform magnetized slab, a cylindrical plasma or a tokamak, basically by
choosing the appropriate triplet of canonical invariants J = (J,,J,,J;).

The resultant collision operator in J space permits one to view the effects on
transport due to binary Coulomb collisions on the same formal footing as the
effects due to longer-wavelength electromagnetic perturbations, either from
internally generated fluctuations (producing ‘turbulent’ transport), or from
externally applied and/or coherent perturbations (for ‘ripple’ transport). Thus
these three types of tokamak transport, normally considered separately,
emerge as arising from the same process of diffusion (and drag) in action space.
The manifest commonality encourages one to look for the counterparts of
significant properties of one transport mechanism in the other two. For
example, it is well known that axisymmetric (‘neoclassical ’) tokamak transport
(Hinton & Hazeltine 1976) is ‘intrinsically ambipolar’, i.e. that the electron and
ion particle fluxes are equal, independent of the strength of the radial electric
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field, and that like-particle collisions produce no net particle transport, a
consequence of the fact that the binary Coulomb collision operator C,(p)
conserves angular momentum p,. Here it will be shown that the generalized BL
operator C'(J) also conserves p,, with the same implications for the longer-
wavelength fluctuations whose effect it includes; turbulent or ripple tokamak
transport due to a steady-state self-consistent spectrum should be intrinsically
ambipolar. Further discussion of this and other implications for transport
which may be drawn from general considerations of the structure of C'(J) will be
given in §5.

This work may be regarded as an additional step in the development of a
more unified transport theory from the action-angle viewpoint, in which a
number of steps have already been taken. Kaufman’s original quasi-linear
diffusion tensor D(J) is adequate to study any collisionless diffusive tokamak
transport problem where the perturbing fields are not self-consistent. Thus it
has been fruitfully applied to problems in collisionless ripple transport (Mynick
& Krommes 1980), and to transport in the presence of a background of non-self-
consistent microturbulence (Mynick & Krommes 1980; Hazeltine, Mahajan &
Hitchcock 1981).

More recently, the action-angle framework has been extended (Bernstein &
Molvig 1983; Cohen et al. 1984), to incorporate collisional effects. There the
binary collision operator C,(J) in action space is obtained simply by
transforming the usual Landau form C,(p) to J space. This formulation
permitted the treatment of neoclassical transport in the action-angle formalism.

In Mynick (1986) the basic commonality between the transport induced by
external ripple and internally generated modes was stressed. This work shares
with Bernstein & Molvig (1983) and Cohen et al. (1984) a somewhat hybrid
character: the action-angle representation is used to deal with the unperturbed
motion efficiently, while collisions are included by transforming the binary
operator C,(p) into J space. The operator C(J) derived in this work provides a
basis for eliminating this hybrid feature, and for extending the range of
transport mechanisms that may be viewed in a unified manner.

The remainder of the paper is organized as follows. In §2 we introduce some
notation, and review the features of the action-angle formalism that are
necessary for the work of the remaining sections. The interested reader is
referred to Kaufman (1971, 1972) for further development of this formalism.
The derivation of C(J) is given in §3, with the final result given in (43),
supplemented by the definitions in (35), (36) and (42). The derivation is quite
analogous to the standard one, and the result (43) only slightly more
complicated than the standard result, though it is a great deal more general. As
explained in §3, the key to making this generalization is using ‘natural’ basis
sets to represent the particle distribution functions and the fields that mediate
the particle interactions. In §3.3 the general form is specialized to the uniform
unmagnetized electrostatic case, and the standard BL operator is recovered.
Section 4 explores the properties one expects of a collision operator, including
conservation laws and an H theorem. In §5 we indicate some of the ways in
which C(J) permits a unification of elements in transport theory normally
regarded separately, and a number of additional implications for transport.
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2. Review of notation and the action-angle formalism

We denote the set of variables specifying the position of a particle in its 6-
dimensional phase space by z = {2} (i = 1,...,6). Following Kaufman (1971,
1972), we make the particular choice z = (0,J), where J = (J,,J,,J,;) are the
action invariants of the unperturbed motion and 6 = (6,,0,,0,) are their
conjugate angles. Because the Js are constants of the unperturbed motion, the
unperturbed Hamiltonian H, is independent of 8:

H(z) =H,J)+h(06,],¢), (1)
where A is the perturbing Hamiltonian. Thus, from Hamilton’s equations,

0=0,H=QJ)+0;h 2)
and J=—0,H =—0,h(z,1)

= —Xilh(l,J,¢) e (3)
1

Here 0, = 0/0x denotes a partial derivative with respect to any variable x, and
if x is a vector (e.g. x =J), a gradient in the space of that vector is denoted.
Q = 0; H, is the unperturbed time-rate of change of 8, usually large compared
with 0; 4 in (2). In the final form in (3), &(z, t) has been written as a Fourier series
in 0, with Fourier coefficients

h(1,J,t) = 2m)® jé d0 =%z, ¢), (4)

and with 1 a three-component vector index. This is an advantageous
representation, because for any function ¢(J), g(J) ¢-® is an eigenfunction of the
unperturbed Liouville operator (Lewis & Symon 1979) L, ={ ,H,} = 0;H,.0,—
0pH,.0;:

Lyg(d) &% = (i1.9) g(J) e, (5)

This property permits one to deal with unperturbed particle motion for
complex geometries essentially as easily as for the unmagnetized case.
For non-relativistic particle motion the Hamiltonian is

1 e, \?
H(r,p) =ﬂ(p_EA) +ed (6)
=H,+h+h,,

with r the particle position, p = Mv+ (e/c) A the canonical momentum, v =t
the particle velocity, A(r,?) the vector potential and ®(r,¢) the electrostatic
potential. Writing A = A,(r)+A,(r,!),® = Oy (r) +D,(r,¢), with (A, @,) the
unperturbed and (A,, ®,) the perturbing potentials in (6), one arrives at the
expansion in (A, ®,) given on the second line there, with

1

Hy(2) = oM

e 2
(p—EAO) +6‘D0, (7)

h(z, 1) =—ZV.A1+e<DIE—Zv.A1, (8)
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and h, = (1/2M)(e/c)*|A,|?, which is neglected as being of higher order in the
perturbing potentials. In the final form for 4 in (8), we adopt 4-vector notation
for compactness and for ease of making gauge transformations: we write
= (r,r =ct), v =dr*/dt = (v,c), A* = (A, ®), with metric (1,1,1, —1), so
that 4, = (A, —®)and v.4 =v'4,=v.A—cO.

The expressions given are all that are needed for the derivation of C(J).
However, it is useful to be able to attach some physical significance to the
variables (0,J). For a uniform unmagnetized plasma,J = p = mvand 6 =r. For
a plasma slab, with magnetic field B(x) = ZB(x) =20,4,(x) and plasma
variation in the X direction alone (this includes a uniform magnetized plasma as
a particularly simple special case), the invariants are J = (J,, p,, p,) and their
conjugate co-ordinates 8 = (6,, Y, 2). Here J, = Mv? /2Qis Mc / e times the usual
magnetic moment x, with Q = eB/Mc the partlcle gyrofrequency (species label
suppressed), and e and M the particle charge and mass respectively. 6, is the
gyrophase. p, = Mv,+(e/c) A,(x) = (e/c) A,(X) is the canonical y momentum,
conjugate to the guiding-centre y co-ordinate Y, and defining the guiding-
centre x co-ordinate X. The pair (2, p, = Mv,) have their usual meaning.

As a last example, for a tokamak one may choose (Kaufman 1972)
J=(,J,,p) and 8 = (6,,6,,§,), where J, is the longitudinal invariant (the
‘bounce action’), 8, the bounce phase and {, the bounce-averaged value of the
toroidal azimuth {. The other variables have meanings already introduced.
Forming the scalar product of Hamilton’s equation p = Mv+(e/c) A with the
covariant basis vector €, = R§ one has

=Mv€+gA§(r) = zAg(rb), 9)

where v, = €,.V = R2*{. In the last form in (9) we define a minor radial variable,
the banana centre’ r,(p,) of a particle, in analogy to the definition for the
guiding-centre position X(p,) made above for the slab example. As there, the
definition serves to emphasize the predominantly spatial character of diffusion
in p, (or p,); change in p, corresponds to change in the bounce-averaged minor
radius of a particle, related by the conversion factor

; (10)

b

e
~ —ERBZJ

with B, the poloidal field.

3. Derivation of C(J)

We follow the Fokker-Planck approach (see e.g. Ichimaru 1973) in deriving
C. As usual, the first two Fokker—Planck coefficients may be manipulated so
that the Fokker—Planck equation (truncated after the second coefficient)
reads

0.foJ) = Cf,(3), (11)

where f, is the 0 average (I = 0 component) of f, and

Cfod) = 6;.[DJ). 0,f,—F(J) fol- (12)
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The diffusion tensor D is defined as

D(J). fm dr{J@)Jt—r)>, (13)

where ( ) denotes an ensemble average and J(f) means J(z(t),t). The friction
term F is given by ,
FQJ) = AJ7@t)), (14)

where J?(t) = J?(2(t), t) means that portlon of J due to the ‘polarization fields’
induced by the test particle, moving along its unperturbed trajectory at
2(t) = (0(¢),J). J? is negligible in D.

3.1. Calculation of D
We first evaluate D. We use (3) in (13), writing A(l,J,t) as the Fourier integral
(2m) ! [dwh(1,J, w) e, and using 8(t—7) &~ 6(t) — Q7. The 7 integration can then
be done and, using Plemelj’s formula, we obtain

DJ,) = leJ‘dwldw3 (01, Q,)

X Ch*(1, T, w,) b(ly, I, ) €@ edT g=ih=l) . 6:®% - (15)

Here , = £(J,), and in general the subscript 1 refers to the particle or phase
point being scattered.

The ensemble average includes an average over 0,(t), yielding a 8(1, —1,) in
(15). (Here &(1) denotes a Dirac & for those components I, of 1 whose 6, has an
infinite domain (e.g. 6; -z for a slab), and a Kronecker § when 6; has domain
[0,27] (e.g. 6,—6,).) Thus

do, d
D) =21111f o S i m(w, =1 )
Y

x Ch¥(1y, 3y, @) (1, Ty, 05) €49ty (16)
Assuming in addition that the fluctuation levels A(w,;) and h(w;) in (15) have

randomly correlated phases unless w, = w,, the ensemble average includes an
additional 276(w, —w;), resulting in

DU, = S11, [ Gt matw, —1,. 2 ath Jy 0. a7)
In the quasilinear calculation of Kaufman (1972), where this standard random-
phase assumption is made for a discrete set of normal modes a, the integral
(2m) ! fdw in (17) is replaced by a discrete sum X,. For the present BL
calculation, this random-phase assumption must be justified from computing
the fluctuation spectrum, which we now undertake.

3.1.1. Fluctuations

The fluctuation level A(1,t) = h(z,,¢) at phase point 2, = (8,,J,) is the sum of
the contributions A(1,¢|7) from each particle 7 in the plasma:

h(1,0) = Sh(L,¢]4). (18)
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By the linearity of Fourier transforms, an analogous relation holds for A(1, w)
and for A(l,,J,, w).

From the definition (8) of A4, it can be seen that we need the contribution
4,,(r,,0]7) to the 4-potential 4,,(r,,w) arising from particle ¢. This requires
inversion of the Maxwell equations to obtain the fields 4,, from the sources
7" = (j, cp). To make maximum use of existing results, we choose a gauge in which
@, =0,s04,, = (A,,0). After performing the inversion, we shall then transform
back to arbitrary gauge. Alternatively, it is not difficult to generalize the
existing 3-vector expressions needed for the derivation given here to be valid for
arbitrary gauge, arriving at the same result (29) or (32) for 4(1, w|¢). However,
doing this brings in a significant amount of extra notation associated with a
relativistic formulation, extraneous to the main issues considered here, and so
we shall follow the present 3-vector, special-gauge route.

With this choice of gauge, the Maxwell equations may be written (Kaufman
1972) as

c\t4m,
A(X, 0). A, (X, 0) = —(5) %Jm(x,w), (19)
where A is defined by
2
A(x,w).A(X) = A(X) +jdx’x(x,x’, w).Ax) —%V xVxA. (20)

The susceptibility x = 2, x, in (20) (s is the species label) is derived within the
action-angle framework in Kaufman (1972). However, the result given there is
missing a term (Kaufman, private communication) arising from calculating the
contribution v,f; to the current density, but overlooking the (‘adiabatic’)
contribution v, f, = —(e/Mc) A, f,.- With this missing term restored, the result
is

, L wiX) 4w . L-O0sfo0 .
Xs(X, X', 0) = —= 5= 16(x —x )—3(27’)3?3 szJ*(xllz,Jz)mJ(x 11,3,),

(21)

where w,(X) = (47n,,(X)e2/M,)} is the local plasma frequency of species s,
j(x|2) = j(x|z,) = e, v(2) d(x—r1,) is the current density at observation point x
due to a particle at phase point z, = (r,, p,) = (8,,J,), and j(x|1,,J,) is its Fourier
transform with respect to 6,. The adiabatic contribution is the first term on the
right-hand side of (21).

The inversion of (19) to obtain A,(x,w|¢) in terms of the external current
Jext (X, 0) = j(X,w|?) due to particle ¢ may be achieved by Green’s function
methods. We seek the tensor Green’s function G satisfying

A(X,0). G(x,X,0) = 13(x—X), (22)
i.e. G is the operator inverse of A. Then

2
A (x,0i) = —%47" dx’ G(x,X'w).j(x’, 0 |4). (23)

2

We write i, w0]i) = f d2j(x' |2 /@, 0 |i), (24)
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where again 2 denotes phase point z, and f(2, w|%) is the contribution to f(2, )
from particle ¢ (cf. (31)). Putting (24) into (23), we find

M1, w6 = —%vu).Al(rl,w]i)

4mc?
2

f d2%2v(1). G(r,, 1y 0). 2v(2) (2, 0] i), (25)

(0]

Kaufman & Nakayama (1970) have given an explicit solution of (22) for the
case of a one-dimensional, purely electrostatic, inhomogeneous plasma.
Assuming, as there, that G(w) is analytic except at simple poles at the
eigenfrequencies w, of the plasma, the generalization of their result to the
present three-dimensional case may be written

G(x,x",w) = T E,(X)[G4(w)/N,]EZ(x'). (26)

Here E,(x) is the electric field of the plasma normal modes, which have
eigenfrequencies w,, and are mutually orthogonal (Kaufman & Nakayama
1970). N, = [dx|E,(x)|* is a normalizing factor, defined so that the G,(w),
proportional to (w—w,)™!, are the eigenvalues of G:

G.E,(x) = de’G(x,x’,w).Ea(x’) = G,(w) E (x). (27)

The crucial structural feature of expression (26) is that, by representing any
E(x,w) = (iw/c) A(X, w) in terms of the basis set E (x) of normal modes, G and
its inverse A are brought into ‘diagonal’ form, making the inversion of A
simple. Thus, in this representation, A may be written in a form analogous to
(26), with eigenvalues G,(w) in (26) replaced by

Ay(w) = G54 (w). (28)

This choice of a natural basis set E,(x) for the fields, taken in order to permit
inversion of the Maxwell operator A, is conceptually analogous to the use of the
phase-space eigenfunctions g¢(J)e™-?, already discussed, which permit the
inversion of the operator 0, + L, arising in the Vlasov equation. In the uniform
unmagnetized context in which the usual BL operator is derived, translational
invariance implies that the spatial dependence of the basis functions for the
fields and the distribution function are the same, A(x) oc f(x) oc exp ik .x. This
‘degenerate’ situation is no longer true for the much more general case
considered here, and the resultant expression for C(J) is accordingly a bit
(though not much) more complicated, as will be seen.

Using (26) and (28) in (25), we find

Ml,w|t) =47 X Jth(l, w|a) [N A (w)]'h*(2, w|a)f(2,w|i), (29)

where A(1,w|a) = —(e,/c) v(1).A,(r,,w) is the perturbing Hamiltonian due to
vector potential A, = (¢/iw)E,. At this point we may transform back to
arbitrary gauge, leaving (29) unchanged.

Fourier transforming

J(2,t]4) = 0]z, —2,(t)] = 6(J, —J;) 616, —6,(0) — L, ¢] (30)

11 PLA 39
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in time, and Fourier decomposing in 8,, we have
f2,w]t) = 8J,—1T,) (2m) 3 T e OO 278(0 — 1,. Q,). (31)
Inserting this into (29), we find "
MlL,w|i)=4rY ¥ a(1,,3,,1,,3;, 0,a) eh® e %O 278w —1,.Q,), (32)

a lj,l,

where
rl, 3, w|a)h*(1,, T, w|a)
aly, I, 1,3, 0,0) = —2-L NaAa() 2

measures the effectiveness of mode a in coupling particles 1 and 2. From (32),
the Fourier coefficients i(1,,J,, w|?) of e™-* required by (16) may be read off.

Paralleling the usual argument, summing k(l,J, w|¢) from (32) over particle
index ¢ (or j) and using this in (16), the expression in angular brackets there

invol . .
mvolves Z 2 z <e"2'°i(°) e‘ll‘i‘ej(o) 3(&)1 _12 . 91) 8((1)3—14 . 9}))

@byl 4,5

The & functions may be taken outside the ensemble average: {eedd) = {ee) 89.
The average over 0, ;(0) yields zero result unless 7 = j and, since the particles
determine the wave phases, unless mode indices a and b are equal, i.e. {ee) =
0;j0,5,0(1;—1;). This leaves &0 = d(w,—1,.Q;)8w;—1,.R;) = d(w, —w;) (v,
—1,.9,). Thus the same factor d(w, — ;) provided in quasi-linear theory by the
random-phase assumption, necessary for the step from (16) to (17), holds here
as well. Finally, the remaining single sum over particles ¢ is replaced by an
integral over phase space, 2; > [dz, f,(2,) = (2m)® [dJ, f,(J,), resulting in

Ch*(1, 3y, @) h(1y, Ty, wg) et
= 27 (w, — w,) (4m)2(2mr ) Y, fo(X,) 2md(w, —1,. R,) Zla(ly, 3,15, T, 0, @)2.
(33)

Inserting this expression for the spectrum into (16), we obtain, finally,
DU, = [ 45, @00, Tfudy) 34)

Here Q,J,.3,) = £ 1,1,0(1,,3,,1,,3,), (35)

111]2

where Q(,,3,,1,,3,) = (4m)?2m)’no(l,. R, —1,. ;) Zlal?, - - (36)

a

3.2. Calculation of F

We now generalize the expression for the dynamic friction F in similar fashion.
From (3) and (14), we have

F(J)) =<{—iZL ehOOrP (1, J,,0)). (37)
ll

Here 2® is the ‘polarization’ portion of %, i.e. that part of & generated by the
particle 1 being acted on. Thus, in the notation of (25) or (32), A®(1,,J,,t) =
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h(l;,J,,t|i = 1). Reading off the Fourier transform A(l,,J,,w,|7 = 1) of this
from (32), (37) becomes

FJ,) = <—z§]l 4nzz %2 78w, —1,. Q)

x el =)t gill—15).8,(0)

h(l,,J,, 0,]0) h*(,,J,, 0, | a)
'Na/ Aa(wl)

= —4m3 31 2y, 3y, 0y | @)

a | ! Na Aa(wl) (38)

w,=1,.Q,

This may be compared with the corresponding expression for the unmagnetized
electrostatic case:

dk e
2m)3 " kPe(k, w,)

b
w,=k.v,

Fip,) = —di

to which (38) reduces with the appropriate specializations (cf. §3.3).
In (38) we divide A, into its real and imaginary parts, A, = A, +4A;. As usual,
only the imaginary part contributes to F:

2

My dyonla) [F oy ari )
a~—a 1

F(J,) = —4r2 3L |3+ o)
a“a\™1

a |

(39)

w;=1,.Q,°

As outlined in Kaufman (1971, 1972), we correspondingly divide A into its
Hermitian (reactive) and anti-Hermitian (dissipative) parts, A = A’ +{A”, and
assume that A” may be treated as a perturbation on A’. Then the
eigenfrequencies w, are nearly real, and A” comes from the dissipative part y”
of % in (20). Thus

N, A (w) = fdxdx E}X(x).A"(w).E,(X")
fdxdx EXx)."(x,x",w).E, (X')

—(4m) (2m)* % fsz 1. aJ2 Somd(w—1,.8,) A1y, J,, 0 a)l?,  (40)
lZ
where (21) has been used in obtaining the final, explicit, form in (40). Using this
n (39), we find, finally,
FJ,) = fdJ Qr(J,,J,). 95, fo(Js (41)
where Q;J,.J,)= X 1,,Q1,,73,,1,,7,), (42)

1,1,
and ¢ is given by (36). Using (34) and (41) in (12) yields the principal result of
this paper:
CI0) = 8. [ 40,(05.0,~ 0, 0,) KIS, 43)

with Q, and Q; given by (35) and (42). Species indices s, and s, of the scattered
and scattering distributions may be restored in the obvious manner.

11-2
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3.3. Recovery of the standard BL operator

Insight into the physical content of the generalized operator in (43) is obtained
by specializing it to specific physical situations. The standard BL operator C(p)
is derived in a uniform unmagnetized plasma, considering electrostatic
fluctuations only. Thus we set 4,, = (0, ®,) in (8), yielding A(z,?) = e®,(r, ), and
make the replacements z = (8,J)— (r, p) already noted in §2 for the unmag-
netized case. The normal-mode label a is replaced by a corresponding wave
vector Kk, ®,(x)—>®(x) = @, expik.x, with amplitude ®, having arbitrary
normalization. Correspondingly, 2, is replaced by [dk. Then we easily find

N = fdx |E, (x)]2 = £2|®,|2(27)28(0), (44)
Aw) = e(k,0) = k. [1+x(k, )].k, (45)
h(ly, Py 0, 1K) = ¢, (T)k o(l, —k). (46)

In (44), 6(0) = §(k)|—, and in (45), e(k,w) is the usual longitudinal plasma
dielectric. Thus the |a|? term in (36) becomes

€18

ke(k, w,)

|a* = (2m)~*d(k —1,) 6(k —1,) (47)

2[5(1(—11)3(1(—12)]
6%(0) '

The term in square brackets here is zero unless k =1, = 1,, in which case it is
unity. Thus the value of the expression (47) is the same in both cases if the term
in brackets is omitted. (These manipulations with ¢ functions may be more
rigorously performed using the familiar limiting arguments in which a finite
plasma volume is allowed to approach infinity.) Putting (47) into (36) for ¢, and
using this in (35) and (42), replacing the sums over 1, and 1, there by integrals,
we obtain

Q‘D(pl’ p;) = QF(pv p.)

2

: (48)

€18

dk
= (477)2 - 12
(4m) f kkmdk.v,—k.v,) Pe(k, k. v,)

(2m)?

the standard result. One notes the degenerate nature, already mentioned, of the
natural basis sets for the modes and particles in the homogeneous unmagnetized
case, through the ¢ function in expression (46) for the wave—particle coupling
coefficients. These d functions eliminate the extra sums over 1, and 1, that exist
in the general form, and cause Q, to equal Q, a relation that is not true in
general.

4. Properties of C(J)

We now consider some of the standard properties that one expects collision
operators to possess, namely the appropriate set of conservation laws and an H
theorem.

As usual, particle conservation for € holds simply because C in (12) or (43) is
a divergence in action space.
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The proof of energy conservation is a bit more involved. We have

<H0>J = atfdJIHO(Jl)fo(l) = fdleo(JﬂOfo(l)
- [ar,9,.10.6,~Fisun)

= _J‘dJ1 d), ¥ Q(1,2)L,.[1, 11.3,1—11 lz.ajz]fo(l)fo(Q), (49)
L1,

where for the moment we abbreviate Q(1,,7J,,1,,J,) by Q(1, 2) and f,(J,) by f,(1

and we have used the Hamilton equation 0y H,(J,) = Q(J )= Q,. We now
interchange the dummy variables 1 and 2 in the second term (arising from F)
in (49), and use the symmetry, evident from (36), that Q(1,2) = Q(2,1),
finding
oy == [ @0,01, 5 QLD @4 L= R0 )-8, DA

Iy, 1y
= 0. (50)
The final equality holds because &(1,.2,—1,.8,) in @(1,2) is non-zero only
where the factor 1,. 2, —1,. R, explicitly appearing in (50) is zero.
We defer treatment of conservation of the canonical momenta J to the end

of this section, as it is less standard, and take up the H theorem now. The
entropy is defined in the usual manner as

—JdJl £, Inf,. (51)

Following standard manipulations, involving the interchange of indices 1 and
2 (this time for both the F and D terms), we find the following positive-definite
form for §:

= %deld‘IZ Z Q1 2) /() fo2){(1,.0 ,=1,.05) In [ (1) f,)]}*.  (52)

l17l2
For the special case of a Maxwellian f,, f, oc e #/" we have
(ll'aJl_l2'5J2) In[fo(1) fo(2)] = (1,.R,—1,.R,)/T.

As in the proof of H, conservation, in conjunction with the & function in
Q(1,2), this factor yields S = 0 for Maxwellian distributions.

Finally, we turn to considering the conservation of J. With manipulations
similar to those used for computing <H,», and S, we find

<j1>.1 = atdelJlfO(l)

= —fdJIdJZ 2 Q(L,2)(1,—-1,) 11-6J1f0(1)f0(2)

L1,

= ~%deldJ2 2 Q(1,2) (1, —L)(1,.05,—1,.05) fo(1) fo(2). (53)

Il
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While this vanishes for Maxwellians f,(1) and f(2) of the same temperature, for
the same reason that S = 0 under these circumstances, the expression (53) does
not vanish, in general. The reason is that the interaction Hamiltonian A(1|2) =
h(2|1) between two particles at 2, and z, in general depends on 6, and 6,
separately, and not only on their difference 8, —8,. Unless this is the case, there
is no momentum-conservation law for the two-particle system governed by the

Hamiltonian H(1,2) = Hy(J,)+Hy(J,) +h(1]2). (54)

This microscopic origin of the non-conservation of J becomes apparent in
deriving C(J) from the alternate BBGKY hierarchy method (Ichimaru 1973). C
involves the two-point correlation function G(1,2), whose evolution equation

involves
[0, h(112).05 + 04 h(1]2).05]f(1)f(2), (55)

where the first operator in brackets gives rise to D and the second to F. The
operator in brackets is just the perturbed portion of the Liouville operator
{ ,H} for the two-particle system described by (54).

While C(J) does not conserve J in general, it does conserve those momenta
J, conjugate to coordinates 6, for which there is translational symmetry, since
then h(1|2) does depend only on #,,—6,,. For tokamaks, such a coordinate is the
(bounce-averaged) toroidal azimuth ,. The coupling coefficients %(l,J,w|a)
appropriate for a tokamak are given in Mynick & Krommes (1980) and in
Mynick (1986), for both toroidally trapped and passing particles, and for
fluctuations of both turbulent and ripple-like character. For present purposes,
the essential feature of all these particular limits is that, analogous to the d
function appearing in the coupling coefficient in (46), the axisymmetry in a
tokamak implies that R, 0a) o 8(,—ny),

where n, is the toroidal mode number of mode a, and p, is the third component
of 1 = (l,,1,,1,), corresponding to {,. Thus, from (36),

Q o T 8(ly —ny) 8lye—ng) = Sl —lyp) T (i —ny).

Therefore the {, component of (53) contains (I,,—1,,) Q(1,2) o (L— 1) (L —
ly) =0, and p, is accordingly conserved.

5. Discussion

The goal of this paper has been the derivation of the generalization C(J) of the
standard BL operator, and the demonstration of some of its important
properties. The application of C(J) to a range of tokamak transport problems
seems indicated, but is outside the scope of this work. In this final section we
discuss some of the general features of C(J) that have significant implications
for transport, and sketch some of the directions in which the theory developed
here might be usefully applied.

An obvious but advantageous feature of using C(J) is that it may be trivially
decomposed into a sum of ‘binary’ and ‘turbulent’ collision terms:

Q) = C,(N)+C.QJ), (56)

a decomposition achieved simply by dividing the full spectrum of contributing
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modes a into those with short wavelength (A < Ap) for C,, and longer
wavelength (A > A,) for C,. Both terms individually possess all the properties
proved for the full C in §4.

The diffusion in p, induced by C, alone is what produces axisymmetric
collisional transport, while that induced by C, (sometimes in concert with C,)
produces turbulent and ripple transport. The identical structure of C, and C,
provides a useful concéptual bridge between the different physical notions used
to think about the transport arising from them. For example, it is usual to think
of ripple transport as being due to the axisymmetry-breaking effect of
perturbations of strength %, each causing p, to vary in accordance with (3):

Py =—inh(1,,J, 0,) exp (i, .0 —iw, t). (57)

From this follows the 3-3 or p,-p, component of the quasi-linear diffusion tensor.
From (17), this tensor is (Kaufman 1972)

D%(J,) = S, 1,1, mé(w, —1,.R,)|AI%, (58)
where Su=xX%

al

is the summation operator appropriate for quasi-linear theory. If the
perturbations are internally generated, yielding transport from either self-
consistent ripple, turbulence or collisions, then from (32) one sees that A in (57)
and (58) is replaced by a sum over contributions 47a from scatterers at (1,,J,).
From (34)—(36), the BL diffusion tensor may be written in a form analogous to

(58): D) = S5, L1, 78(L,. R, — 1, Q) ldmal?, (59)

where Spg,=22 (277) dJ, foJ,)

a l

is the summation operator appropriate to DB". Thus collisional transport may
be regarded as a particular ripple-transport problem, with a superposition S BL
of electrostatic ripple components, each of strength 4ma oc 4me, e,/k*, breaking
the axisymmetry.

Following this structural correspondence in the opposite direction, just as
performing the sum Sy, for short-wavelength perturbations yields the binary
collision frequency v, oc 7y, €3 €2 In A, performing the sum indicated by (58) or
(59) for a turbulent or ripple spectrum will yield a turbulent collision frequency
v,, where the particular form of v, depends upon the set of contributing modes
considered.

One example where making explicit this connection between the ‘ripple’
versus the ‘collisional ’ pictures should aid in unifying (and thereby simplifying)
theory lies in the banana-drift ‘branch’ of ripple transport. It is well known
that the diffusion coeflicients of the collisionless (D,,) and highest-collisionality
(D,,) regimes (the ‘stochastic’ regime (Goldston, White & Boozer 1981) and the
‘ripple-plateau’ regime (Boozer 1980) respectively) are equal, up to a numerical
constant of order unity. Moreover, the intuitive physical arguments used to
describe the two transport mechanisms are similar, except that the decor-
relation frequency in the random-walk process, approximately equal to the
bounce frequency €2, in both cases, has a collisionless origin for D,,, but a
collisional one for D,,,. Though the derivation methods in Goldston et al. (1981)
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and Boozer (1980) are very different, it seems likely from this underlying
physical commonality that, using the decomposition (56) of C(J), these two
regimes may be derived as a single result, with C, providing the effective
collisionality for D, that C, does for D,,,.

It has already been noted in §1 that a consequence of the fact that C(J)
conserves p, is that turbulent transport in an axisymmetric tokamak with a
steady-state self-consistent spectrum should be intrinsically ambipolar; an
electron can change its ‘banana centre’ 7,(p,) by an amount dr, only if an ion
changes its r, by Z7'dr, (Z is the atomic number of the ion). As a result, as for
collisional axisymmetric (‘neoclassical’) transport, calculations of turbulent
transport in non-self-consistent fields (i.e. where only D is kept, and F dropped)
may grossly overestimate the expected particle flux (but not the energy flux) of
the species that would escape faster in the non-self-consistent theory. Thus, for
example, the expression for the diffusive flux given by Rechester & Rosenbluth
(1978), which has come to be a standard in discussions of turbulent transport,
must be supplemented by the corresponding dynamic frictional term in
considering particle transport, in order not to lead to erroneous conclusions.

Unlike the special case of collisional transport, however, it should be noted
that the p, conservation property proved in §4 is radially non-local; non-local
turbulent fluctuations mediating the exchange of an increment dp, of p, can
transfer dp, from a particle on one flux surface to a second on a different
surface.

The conservation of p,, and the self-consistent character of the BL operator,
depend critically on the presence of the dynamic-friction term F in C. As for
axisymmetric transport, conservation of p, holds because of the intimate
structural relation between F and D, resulting in an exact balance between the
pg component F,f of Ff and the diffusive flux (D.0;f), = Dy;0,, f (summation
over ¢ implied). In the action-angle formulation F represents a drag (i.e. a
‘pinch’) in action space, and in particular F, is a pinch in the predominantly
minor radial variable p, or 7,. Since the turbulent portion of D is what is usually
expected to produce anomalous diffusion in 7,, the turbulent portion of F,
represents an ‘anomalous pinch’ in r,, with size and scalings closely related to
those of the anomalous diffusive term. The relationship between this
theoretically indicated anomalous pinch, and the anomalous pinch experi-
mentally observed (Strachan et al. 1982; Gentle, Richards & Waelbroeck
1986) on a number of tokamaks awaits investigation.

As for the standard BL operator, the derivation given here for the generalized
operator is limited by the assumption of a stable background plasma. As a
result, the fluctuation spectrum (cf. (33)), driven solely by shielded test
particles, will not correctly model the turbulent spectrum of realistic tokamaks.
However, the validity of many of the properties of the operator C(J) derived
here are considerably more robust than the precise form of C(J). For example,
the conservation of p,, and its implications for transport, should hold purely by
virtue of the axisymmetry of the wave—plasma system, and the presence of the
‘anomalous pinch’ term F to make the wave—plasma interaction self-consistent
should also be independent of the details of the spectrum. Moreover, as the work
of this paper indicates, generalization of the present C(J) to one valid for a fully
turbulent spectrum should be achievable, with only slightly more difficulty
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than that accompanying previous turbulent generalizations (Dupree 1970) of
the standard BL operator in the unmagnetized electrostatic context.

I am grateful to C. F. F. Karney and J. A. Krommes for useful discussions.
This work was supported by U.S. Department of Energy Contract DE-ACO2-
76-CHO3073.
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