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A unified basis from which to study the transport of tokamaks at low collisionality is provided
by specializing the “generalized Balescu-Lenard” collision operator to toroidal geometry.
Explicitly evaluating this operator, ripple, turbulent, and neoclassical transport coeflicients are
obtained, simply by further specializing the single operator to different particular classes of
fluctuation wavelength and mode structure. For each class of fluctuations, the operator
possesses a diffusive, test-particle contribution D, and in addition a dynamic drag term F,
which makes the operator self-consistent, and whose presence is accordingly essential for the
resultant fluxes to possess the appropriate conservation laws and symmetries. These properties,
well known for axisymmetric transport, are demonstrated for one type of turbulent transport,
chosen for definiteness, by explicit evaluation of both the “anomalous diffusion” term arising
from D, as well as the closely related “anomalous pinch” term coming from F. The latter term
is neglected by test-particle calculations, but is shown to have an important impact on the

predicted fluxes.

I. INTRODUCTION

In previous work,!? the action-angle formalism> was
used to generalize the Balescu-Lenard (BL) collision opera-
tor to its (fully electromagnetic) analog in the space of in-
variant actions J=(J,,J/,,J5) of the unperturbed motion.
Assuming only that the unperturbed particle motion is inte-
grable, this “generalized-BL” (gBL) operator describes the
process of diffusion and drag in action space J, just as the
standard BL operator describes diffusion and drag in mo-
mentum space p, the invariant actions for the especially sim-
ple case of unmagnetized motion. The gBL operator is thus
easily specialized to a wide range of geometries, including
the unmagnetized case, as well as inhomogeneous slabs, cy-
lindrical plasmas, and axisymmetric configurations, simply
by assigning a specific physical significance to the actions J
and conjugate angles 0. As for the standard BL operator in
the homogeneous, unmagnetized case, the effects of pertur-
bations of all wavelengths appear in the gBL operator in a
uniform way. The gBL operator thus provides a common
framework from which to view the effects on transport of
perturbations of very short wavelength (1 <Ay ), which
give rise to collisional symmetric (*“classical” and “neoclas-
sical’’) transport, of the longer wavelengths in the turbulent
range, and of wavelengths in the macroscopic range of ripple
perturbations. In Ref. 2 it was argued accordingly that,
along with the quasilinear diffusion tensor® D (J) to describe
transport induced by non-self-consistent perturbations, the
gBL operator developed there (and by different means in
Ref. 1) provides a unifying basis from which to view these
three basic mechanisms of tokamak transport, which are
normally regarded as different and distinct.

The principal purpose of the present work is to make
contact between the formal expressions of Refs. 1 and 2 and
tokamak physics by specializing the gBL operator to the case
of tokamak geometry, and showing that the formal operator
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may in fact be explicitly evaluated, how the mechanics of this
evaluation proceeds, and what the explicit results look like.
In so doing, we more concretely demonstrate two general
aspects of the unifying character of the gBL operator. First,
it will be seen that, within the action-angle framework, sym-
metric, turbulent, and ripple transport coefficients emerge as
specializations to different particular perturbing spectra of
the same general expression. Second, the implications for
transport of important properties shown by the gBL opera-
tor to be shared by the different mechanisms can be studied.

One of the most important of these common properties
is the effect of “self-consistency,” i.e., of including the back-
reaction of the particles on the fluctuations, in addition to
the transport effects of the fluctuations on the particles. As
for the standard BL operator, for the gBL operator inclusion
of self-consistency means retaining the “dynamic friction”
term F, in addition to the diffusive term D in the operator.
The operator may be written

Cf = — 3, T
=3,+(D-3,f — Ff). (1

[In general, we shall use the convention that 4, denotes the
partial derivative with respect to any variable x, and if x is a
vector (e.g., x—J), a gradient in the space of that vector is
denoted; T is a flux in action space, due to the perturbing
fields.] As shown in Ref. 2, F is essential for the operator to
possess the correct conservation laws, and, in particular, the
conservation of toroidal angular momentum p.. As ob-
served in Ref. 2, and as will be demonstrated here in more
concrete form, the constancy of p, implies intrinsic ambipo-
larity of the transport induced by any portion of the fluctu-
ation spectrum, and thus this property holds for the turbu-
lent as well as the collisional spectrum. For a two species
plasma, the turbulent transport is accordingly characterized
by properties that are well known for symmetric transport*:
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(i) Interactions between particles of the same species do not
produce any net particle transport; (ii) the particle fluxes of
the two species are equal; and (iii) the transport is indepen-
dent of the radial electrostatic potential.

For symmetric transport, it is well known that violating
self-consistency by dropping F in C leads to a prediction for
the ion particle flux much larger than the electron flux, in
contradiction to property (ii) here. Similarly, it will be seen
that doing the analogous test-particle calculation for turbu-
lent transport results in a prediction for the particle flux of
one species that is much larger than the self-consistent re-
sult. (Which species depends upon the particular transport
mechanism. ) As noted from the abstract form in Ref. 2, the
turbulent contribution to F represents an “anomalous
pinch” term, closely related in form to the “anomalous diffu-
sion” term coming from D, which cancels the like-particle
portion of the test-particle flux. In this paper, an explicit
expression for this anomalous pinch term will be given for
one particular turbulent transport mechanism.

The manner in which self-consistency of the turbulent
transport is included in the present work requires some clari-
fication. Entering into the expressions for Dand Fin Eq. (1)
is the spectrum of the perturbations inducing the transport.
As for the standard BL operator, the spectrum that appears
inboth D and F in the gBL operator is a thermal fluctuation
spectrum, which will not properly predict the spectrum of a
fully turbulent tokamak. However, the important properties
of the gBL operator follow not from the specific form of the
spectrum, but from the related way in which the spectrum
appears in D and F. Thus in this work we adopt a “pseudo-
thermal” model for the turbulent fluctuation spectrum, tak-
ing literally the thermal structure of the spectrum [cf. Egs.
(76) and (77) ], but replacing the form of the thermal spec-
trum with a model spectrum that better represents the spec-
tra of realistic experiments. In so doing we obtain an opera-
tor containing a realistic spectrum, while at the same time
maintaining the desired conservation laws, H theorem, etc.

Performing this replacement, but retaining only the
term in D in Eq. (1) is equivalent to doing the quasilinear,
test-particle approach followed by a good deal of existing
work in turbulent transport. This approach has the virtues of
being analytically manageable, and of using fluctuation
spectra that one regards as properly modeling experiment.
However, as already noted, all such approaches are non-self-
consistent, with the loss of important properties this implies.
On the other hand, more complete theories of turbulence
retain self-consistency, but result in formidable complexity
of the equations to be solved. (Numerous examples of both
approaches may be found in the review article by Liewer.>)
The present treatment may be regarded as an intermediate
approach, retaining the advantages of mathematical simpli-
city and ease of physical interpretation of the former, while
also acquiring important self-consistency properties of the
latter, without actually having to compute the turbulent
spectrum.

The structure of the remainder of the paper is as follows.
In Sec. I, we summarize the formal results that will be need-
ed for the applications to follow. In Sec. III the notation and
additional physics necessary to specialize the general expres-
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sions of Sec. II to toroidal geometry are introduced. In par-
ticular, central to the formalism are the “coupling coeffi-
cients” A(LJ,w), which succinctly describe the
characteristics of the interaction between particles and the
perturbations of the system. Abstractly defined in Eq. (6),
h(1,J,®) specialized to toroidal geometry is given in Eq.
(33). This single expression contains all three of the basic
tokamak transport mechanisms for both electrostatic and
magnetic perturbations.

Studying a particular transport mechanism in this for-
malism amounts to specializing 2(1,J,») to the relevant
class of perturbations inducing the transport, inserting it
into the general expressions for D or F, and performing the
necessary summations. In Sec. IV we illustrate this, and with
it, the first of the unifying aspects of the formalism, by evalu-
ating D for three classes of perturbations, one representing
each of the three general types of tokamak transport.

Evaluating D alone brings out a good portion of the
mechanics involved in the evaluation of the full flux I, but in
a somewhat simpler context. In order to further aid clarity,
we evaluate D in this section in the “Lorentz limit,” where
the mass M, of diffusing particles is negligible in comparison
with the mass M, of the scattering species. This causes sub-
stantial simplifications in the evaluation process. In Sec. V,
both of these simplifications are removed, evaluating I" for
the turbulent mechanism of Sec. IVB for the cases
M, €M, M, > M,, as well as the case M, ~ M,. This permits
us to derive explicit expressions for the radial fluxes [ cf. Eqgs.
(84), (87), and (102) ] due to all combinations (1-1, 1-2, 2-
1, and 2-2) of species—species interactions, and in so doing,
to demonstrate explicitly properties (i)—(iii) of self-consis-
tent transport already cited for the chosen turbulent trans-
port mechanism. The two terms in the factor 4,/e, — 4,/e,
in each of these expressions for the flux correspond to the
diffusive and frictional contributions to I'. Thus the second
of these terms is an explicit expression for the “anomalous
pinch,” whose existence was pointed out in Ref. 2 from con-
sideration of the abstract form of the gBL operator. We con-
clude Sec. V by demonstrating that the results obtained obey
the Onsager symmetries.

In Sec. VI, we provide some further physical interpreta-
tion of the transport results of Sec. V, considering the rela-
tive size and scaling of the transport contributions from dif-
ferent species-species interactions. This discussion
completes the analogy that exists between symmetric trans-
port and this representative turbulent mechanism. We con-
clude the section with some summarizing comments.

il. THE FORMALISM

Here, we briefly review the abstract results from the ac-
tion-angle formalism which bear on the transport problem,
without reference to any particular magnetic configuration.
The essence of the action-angle formalism is the reparame-
trization of the phase point z of a particle from the more
directly physical set (r,p)of the real-space position r and its
conjugate momentum p, to the mathematically more con-
venient set (0,J). Because the J are constants of the unper-
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turbed motion, the unperturbed Hamiltonian H, is indepen-
dent of 0:

H(z,t) = Hy(J) + h(8,,8), 2)
where
h(z,t) = — (e/cyv(z)A[r(2),t]
+edy[r(2),t] = — (e/c)v"4,, (3)

is the perturbing Hamiltonian. In it, A, and ¢, are the per-
turbing parts of the vector and electrostatic potentials, re-
spectively. In the second form here, 4 is written in covariant
four-vector notation for compactness. From Hamilton’s
equations, we have

0=0,H=0(J) +d,h (4)
and

J= —3dh= —iS1h(1J,t)exp(1-8). (5)
1

The time transform A(LJ,») of the Fourier coefficients
of A(L,J,¢) here are the “coupling coefficients,”

. do ..
h(l,J,(I))E§(—2-'ﬂ"?eIOh(Z,w), (6)

which play a central role in the formalism. In Eq. (4),
Q=0d; H, is the unperturbed time rate of change of 0. Thus,
in the absence of 4, the 0 evolve linearly in time at rate £2. In
Eq. (5) 1=(1,,1,,1,) is a three-component vector index speci-
fying the Fourier harmonic.

When no ambiguity results, we shall simply abbreviate
species label s5,, 5, with the subscripts 1,2. Unless otherwise
indicated, we adopt the convention that a subscript “1” re-
fers to the particle or phase point being scattered, and sub-
script “2” refers to scattering particles. The quasilinear dif-
fusion tensor in action space may then be written®

D, (1) = 3 S1,78(0,02, — 0,)|h(1,d 0, @)% (7)

a I,
Here, a is a mode index labeling each of the coherent
perturbations to the system. The diffusive term D in the gBL
operator is given by

D(1) = $D(1]2),
2

where the diffusion of species 1 induced by species 2 is given
by

D(12) = ¥ 31,1, ¥ (27)°
a I 1,

><J¢17sz(2)17'§(l,'ﬂl —w,) |41rt:t|2|ml -0,
(8)
Here, f(2) =f(J,) is the 8, average of the scattering distri-
bution, and the coefficients a, defined by

a(thl!lszz»m’a) Eh(l]’Jlrmla)h *(IZstwaa)/NgAa (w)y
(9

measure the effectiveness of mode a in coupling particles 1
and2.Ina, N, = fdx|E, (x)|?is a normalizing factor, E, (x)
is the electric field for normal mode g, and A, (@) is the
eigenvalue for mode a of the Maxwell operator,” the general-
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ization to inhomogeneous, electromagnetically interacting
plasmas of the dielectric function €(k,») whose square ap-
pears in the denominator of the standard BL operator. In Eq.
(8), D(1/2) is written in a form where its structural resem-
blance to D is most apparent; the spectrum |4 |? in D, is
replaced in D(1{2) by the sum =, (27)°fd J, f(2)|4ma|?
over contributions to the spectrum from all particles in the
scattering distribution. It may also be written in a form more
transparently resembling its analog in the standard BL oper-
ator,

D(112) = (2m)° f 43,Q,(LOA2), (10)

where the diffusive kernel Q,, is given by
Qp(l,Z)EzllllQ(l,Z), (11)
1,1,
with scalar kernel
Q(1,2) Ez:mS(ll-ﬂl — L) 4mal?, 1.0, = Q(2,1).
(12)
Similarly, the dynamic friction term F is given by

F(1) = YF(1[2),
2

where
F(12) = (277-)3JdJ2 0r(1,2)6;, f(2), (13)
and with the frictional kernel Q defined by
(14)

QF(I’Z)E l]l2Q(1y2)’
|ll

differing from Q,, only in the replacement 1,1, —1,1,. Using
expressions (10) and (13) in the expression in Eq. (1) for
the J-space flux I', we find

(1) =zr(1|2),
2
with
-raj2) = ZJd622 Q(l,z)ll(ll'a.!, - lz'a.], IDA2).
i

(15)

Here, (d °z,= (27)%fd J, denotes an integration over the full
phase space of species 2, and so may also be written as
fdr,[dp,, when this parametrization is convenient.

Closely related to Eq. (15) for I is the expression de-
rived in Ref. 2 for the time rate of change of the total entropy:

S’EEI:S’(I)E —Z%fd"zlf(l)lnf(l)

f d %fd 2, Q(1,2)AA1)A2)
(16)

1
=28
» n':
x{ (1,95, — 1,23, )In[A1)f(2) }}?,

which is manifestly positive definite, giving zero only when
S(1) and f(2) are Maxwellians, f~exp( — Hy/T). Equation
(16) will be useful later in Sec. V in considering the (On-
sager) symmetries of the transport.
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111, SPECIALIZATION TO TOROIDAL GEOMETRY
A. Toroidal variables

We now specialize the general formalism of Sec. [T to the
axisymmetric geometry of a tokamak. We parametrize real
space r by the flux coordinates (7,6,{), with minor-radial
variable r constant on a flux surface It is useful to use the
contravanant basis vectors e, given by e =Vr=?

e’ =V0=06/ 7, & =Vi~ £/R, dual to the covariant set
e, =P e =10, e; = R{. Thus, one may write wave vector k
as

k=ke=k Vr+mV8 +nV¢,
and the unperturbed vector potential A, as

Ay = Aye' = yP(r)VO — y(r)VE,
ie, A, has covariant components (4, 4og, o)
= [0,¥(r), — y(r)]. The unperturbed magnetic field is
thus given by

B=B, +B, = V¢yXVI+ V{ XVy,

and the safety factor is ¢(r) =dy/dy. It will also be useful to
employ the rlght hand triad of unit vectors (% g, b), where
b=B/B and 9= b  XP, in terms of which we may write
k=k +k, k= bk", and k, =%k, + gk,.

For toroidal geometry, an appropriate specialization of
the actions J is>*%7 (J,,Jo/3) = (Jolp 0 =p; ), With J, the
gyroaction (equal to Mc/e times the usual magnetic moment
1), J, the bounce action (equal to the toroidal flux ¢ en-
closed by a drift orbit), and p, the toroidal angular momen-
tum,

pr=e.p=(e/c)A, + Muv;. (17)

The conjugate angles 0 are (6,,6,,{,), the gyrophase,
the bounce phase, and the bounce-averaged toroidal azi-
muth, respectively. The set of subscripts (g,8,{) used herein
designating the actions J will also be used for related triplet
quantmes, eg,l=(, l,,,lg)

In J space, we w111 have use for the (contravariant) basis
vectors €' =4d,J; (i = g,b,{), which are unit vectors. For any
function F(J), we also define e"=4d, F, which is useful in
extracting more directly physical information from action-
space quantities.

One useful physical function of J is the partxcle “banana
center” r,, the average value of 7 that a particle has over a
bounce period. By considering transport in 7, rather than in
r, we eliminate from the problem the complexities of the
unperturbed motion, such as finite gyroradius p, and ba-
nana width »,, which one knows are irrelevant to the net
radial step taken per bounce in the diffusive motion of the
particle, no matter how large they are. Bounce averaging Eq.
(17) and using the constancy of p,, we have

p; = (e/c) Ay + MD,. (18)

It will be useful to define a trapping-state index 7, equal to 0
(1) for toroidally trapped (passing) particles. For 7 =0,
one has v, = b, R0, =0 (where b, ,=B, ,/B), so we may
define 7, for this case by

pe=(e/c)do (ry). (19)

For r = 1, p, in Eq. (18) acquires a kinetic portion, while J,
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becomes a purely minor radial variable.>’ The appropriate
definition of r, in this case is

Jy=(e/c)Age(ry). (20)
Thus we have
— /MQRb, (r=0),
= = 21
=" {e"’/MQgrb, (r=1). b

For 7= 0,J, is v -like,
J,=(Q@2m™! §a’sn My = m ! §d0 gMv, =qMpv,,

while for 7 = 1, one readily shows from Eqs. (20) and (18)
that’

J,=J, — (e/c)Y[xy = — (c/e)p, | = qMD,. (22)

Thus by extending this 7 = 1 definition for J, to r=0 by
J, (r = 0) =J,, we can extract bounce-averaged v, informa-
tion from the J using

{eb (r=0),

J,
r=gyJ, =
€ I T leb+ g6 (r=1).

(23)

B. The coupling coefficients

Fundamental to the calculation of D are the coupling
coefficients #(LJ,w]a). These have been worked out pre-
viously for various cases.®® Here, we give a more complete
evaluation. The A(1,J,w|a) require a description of the spa-
tial structure of each contributing mode @, and of the unper-
turbed particle motion. Fully describing the structure of the
modes in a tokamak is a field in itself. We shall content our-
selves with a model description, chosen to satisfy 2 number
of the general important characteristics that we know the
modes should possess. Our model for the mode structure for
all components 4,, (u = 1,...,4) of mode a is the eikonal
form

A, (x) =4, (r)exp i( dark,(r) + mé + n;)
(24)

The toroidal “gquantum number” » is rigorously con-
stant, because of axisymmetry, while taking m constant is
only approximate, because of toroidal effects. Here &, (r) is
the radial wavenumber, and A (7) is the mode amplitude.
We shall assume here that %, and Aa,‘ (r) may be assumed
about constant over the mmor-radlal excursion of the unper-
turbed orbit of the particle in question. (We emphasize that
situations for which this assumption is not valid present no
difficulty for the basic formalism; the integrals to be per-
formed are simply somewhat different.) Thus, over a parti-
cle’s orbit, mode g is characterized by a local wave vector
k(r=27, ). For externally imposed perturbations, such as rip-
ple from the toroidal-field coils, 4, « typically falls off as one
moves radially inward. For internally generated perturba-
tions, a reasonable model is taking A,,“ localized about some
minor radius r,, with localization width w,. We choose the
simplified form

4, =4,5w,/2r—r,), (25)

where s(x,p) is a steplike localizing function, defined as
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_[1 &>,
SGoy) = {O (x<yh.
(Here, and in what follows, the double overbar will be used
to denote the amplitude of quantities with this radial local-
ization explicitly displayed.) In addition to being radially
localized, the set of modes a represents a full set of eigen-
modes of the Maxwell operator, which, owing to the (near)
Hermiticity of that operator, we expect to be orthogonal and
complete.® We incorporate this general property into our
model by énvisioning each mode a to be specified by both
wave vector k, and by localization radius r,. Thus modes
with the same k are localized within sequential nested toroi-
dal shells, each of thickness w,, centered at radii 7,,,7,5,.-.,
and having volume V, = (27r,;) (27R)w,, jointly compris-
ing the plasma volume ¥V, = 2, ¥,. Therefore the sum over
ain Q(1,2) becomesasum 2, Z,.

We describe the particle motion as in Ref. 6. We make
the usual separation of r into contributions from the guiding-
center motion and the gyromotion,

(26)

r(z) =R+ p,. 27
The gyromotion is given by
P (6,) =p,(Pcos 6, —gsin b, ), (28)

with p, =v, /{) the gyroradius. The guiding-center motion is
described by

R(6,,80) = (e,r, + €570, +e.5,) + pss (29)
where the oscillatory portion of the bounce motion is given
by

ps(6,)=e,r, cos 0, + (e,0, + .5 )sin 6. (30)
Here, r, is the particle banana center, constant in time. The
canonical phases 8 = (6,,6,,,) evolve linearly in time, as

discussed in Sec. II. The particle velocity, needed in Eq. (3),
is thus obtained from Eq. (27) by

v(z)=1(z) =, do1(2). (31)

The time-independent amplitudes »,, 8,, and §, measure
the size of the particle excursions in the 7, 8, and { directions
in the course of a bounce (or transit) period 7,. The trap-
ping-state index 7, already defined, provides the secular con-
tribution to 8, for passing particles, and none for trapped
particles, as is appropriate. ’

The use of only the fundamental harmonics cos 6, and
sin 6, in expression (30) makes it strictly valid only for par-
ticles not too near the trapped/passing boundary. The cou-
pling coefficients for particles near this boundary involve
integrals that yield functions less standard than those from
“harmonic approximation” of Eq. (30). However, the quali-
tative behavior is not much changed.

Using expressions (24)—(30) and Eq. (6), the evalua- -

tion of A(1,J,w|a) is straightforward, using the Bessel identi-
ty

JI(Z) =§__dﬁe~i16eizsin0. (32)
2T
We find
754 Phys. Fluids B, Vol. 1, No. 4, April 1089

h(Ld,0) = 8(l, — n)e™ "7 7m0~ ""s“’s*[ew,gj,b_ .

_ (5 o, Ai) ..;,,( J, TP ] Ot Oy
c N g — 1 ) g+ 1

e e 1
XJIb“ - (; ulA )Jnglb—rm(; qu )Jlg -2"

X (Jlb-rm— leiabk—ieu + Jlb—-rmu le_ mbk +iab“)]'
(33)

First, we define some terms in this expression, and then
provide some interpretation. In it, mode label a has been
suppressed. All of the perturbing potentials ¢ or 4 appearing
in (33) denote the amplitudes 4(r,,m,n), obtained by set-
tingr=r,,8=0,and { = 0in4(x) in Eq. (24). Each Bes-
sel function J,(z) with /, as its index / has argument z =z,
=k, p,, while each J; having bounce harmonic /, in its index
has argument z =z, =[(k,7)*+ (mb, + n£,)*]"% (In
Ref. 6, 2, is called y;.) In Eq. (33) 4, is that component of A
normal to b, while4 = |4 |, and 4,, =e, . A; §,, isthe gyro-
phase at which v, is parallel to A, ie, v;°A;

=v 4, cos(f, —0,,), and 6, is defined by

kep, =z, sin(6, — ,, ), the gyrophase where v, is parallel
to k, . Analogously, we define the phase 6,, and velocity u,
by p,A=u,dcos(f, —6,,), and 6, by kp,
==z, 8in(@, — 0y, ). The velocity u, is defined as
ud=10,Ag + Q. A;. The term in u,;, dominates for
particles with 7 =0 (1).

We first note the overall factor 6(/, — n) multiplying
the factor in square brackets in Eq. (33), a consequence of
axisymmetry, used in Ref. 2 in the demonstration of p, con-
servation. The factor in square brackets is a sum of four
terms, each coming from a different portion of the inner
product v*4,, giving A; the first is the electrostatic contribu-
tion, from the u = 4 component, the second is the contribu-
tion v, *A, resulting from the gyromotion, the third is from
that part of the guiding-center contribution R-A evolving
secularly in time, and the fourth is from the part of R-A
which is oscillatory in time. The structure of each term is the
same; each has an amplitude with units of (e/c)ud (hence
energy), times a factor involving Bessel functions J,(z,)
coming from the 6, integration, times a factor involving
Ji(z,) arising from the 8, integration. The gyro- and
bounce-related Bessel functions are the strength of that por-
tion of mode q that is oscillatory at exp i(1,6, + ,6,), just
as the overall factor 6(/; — n) gives that portion (namely,
all or none) of the mode that is oscillatory at exp i/, {,.

In contrast to the all-or-none dependence on /, of the
contribution of a given mode, one notes that a mode contrib-
utes over a range of /, and /,. We recall the asymptotic forms
for the J,,

J ()= )"/ (I]>2), (34)

J(2) = (2/m2)" ? cos(z — ln/2 — w/4)  (JI]<2).

(35)

We consider J; as a function of . We see that for |/] <z,
J, has an /-independent amplitude (2/7z)'/2, times a factor
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oscillatory in /. For |/ | > z, J, falls off rapidly to zero. Thus
the gyro-related Bessel functions contribute over arange A/,
~ 2z, about /, = 0, while the bounce-related ones contribute
over a range Al, ~2z, about /, = rm.

Because it is helpful in physically interpreting these ex-
pressions, and also because it will be useful in making analy-
tic progress in what follows, we pursue this examination of
the asymptotic forms of the J, a bit further. Applying the
method of stationary phase to approximately evaluate Eq.
(32), we obtain Eq. (35) for |/ | <zand J, ~0 in place of Eq.
(34) for |I|>z. The points 6, of stationary phase, from
which the dominant contributions to the integral come, are
given by

(36)

From this, we may ascribe a particular position 6,, and
6, on a particle’s orbit from which each 4(1,J,») arises.
Thus, in contrast to the unmagnetized case, where a particle
is resonant or nonresonant with a given mode for all time, for
the time-varying velocities in magnetized geometries, a par-
ticle passes through a series of local regions at which the
variation of a given mode is as exp i-€¢, for a succession of
values of 1. This is the physical significance of the range of 1
contributing to D.

From Eq. (33), one discerns the common origin of the
three types of tokamak transport. Axisymmetric (colli-
sional) transport is caused by short-wavelength electrostatic
perturbations. Thus it arises from the first term in square
brackets in Eq. (33). The electrostatic portion of turbulent
transport also comes from this term, while the magnetic por-
tion, arising from modes which tend to have 4, >4, , comes
from the third and fourth terms. Finally, as will be seen for
longer-wavelength modes, which leave y invariant, the sec-
ond term yields just the B, ripple perturbation, which is the
origin of magnetic ripple transport. (Here B, is the perturba-
tion of the magnetic field strength B.) The first term pro-
vides the electrostatic contribution to ripple transport. In the
following section, we use this single coupling coefficient to
derive expressions for transport coefficients for each of the
three basic tokamak transport mechanisms.

I=1zcos 6,.

IV. EVALUATION OF D

In this section, we illustrate the first aspect of the unify-
ing character of the action-angle formalism referred to in the
Introduction, evaluating the diffusion tensor D for each of
the symmetric, turbulent, and ripple transport mechanisms,
simply by specializing the same expressions for D and
h(l,J,w) to the context relevant to the mechanism of inter-
est.

A. Axisymmetric collisional transport (banana regime)

We begin with transport induced by the shortest wave-
lengths (4 <A p ), viz., axisymmetric “banana” transport. It
is instructive to consider first the transport of electrons (spe-
cies 1) scattering off ions (species 2) in the Lorentz limit
M,/M,—0. From the symmetry of Cfunder interchange of
species label, performing this calculation is essentially the
same as treating the opposite limit M,/M, - o (cf. Sec. V).
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The evaluation in the more general case M, ~ M, can also be
performed analytically, as will be seen in Sec. V. A fuller
treatment of the non-Lorentz case will be given elsewhere.'°
Because the §(/, — n) in the A(1,J,w) ensures that /,, = I,,

= n, and because the E X B drift is species independent, the
E X Bcontribution {0, to the toroidal precession frequency
in the argument Q. =1,-Q, — 1,:2, of the delta function in
Eq. (12) drops out. Referring to the remaining portion of
the particle frequencies 2 as ', in the Lorentz limit, we may
take

1,:Q; -0
in Eq. (12) for those 1, having appreciable #(1,J,»). Keep-

ing only the first (electrostatic) term in Eq. (33), |a|* may
be written

la|? = [a|*6(l; — n)6(hy —n)J} J} J: J?

5 Lyp—Tm 123 by, — roms

(@ =| @’s(w, /2.y, — r,)s(W, /25, —7.), (37)

| @|* = e/ N A%
and taking A, (@) to its short wavelength, unshielded limit
A,-1,

N, A, =k?V,.

In (37), r,,, =7, (J,,). Using this in Egs. (10)-(12), we
find

D(1]2) = f d%/DF T 3 Ladlo))|br P
hohs bely

Xs(w, /2,1y, —r,)s(w,/2,ry, — 1,)

XJ’,llifw_,.sz J?

bV Ly — Tam |l,g=11;= n

=¥y lll,mS(ll-ﬂ;)|l_1,h(l/a,2)|2JixJz

hy—Tym>
a ligh,

(38)

the same as yielded by the quasilinear expression (7), with
thermal spectrum

A (1]a,2) |25f d %z, f(2)|4na|?
=s(w,/2,r,, —r,)|4me,e,/kV,|?

xf d®z, f(2). (39)
ya

The arguments (1|a,2) here mean “the spectrum felt by spe-
cies 1 from that portion of fluctuations @ which are driven by
species 2,” and [, d%2,(- " )=§d%2,5(r,, —r,)(***) is
the phase space integral over the toroidal shell ¥,. Hence the
integration §, d°z, f(2)={ v, dr,dp, over phase space in
Eq. (39) yields a factor ¥, n,(r,), with n,(r, ) the density of
species 2, averaged over the volume ¥V, around 7,. In moving
from the first to the second form given for D in Eq. (38), we
note that the only dependence on 1, in the first form lies in the
Bessel functions J, and J,, __ .. Therefore the sums over
l,, and /,, may be performed exactly using the important
identity

1= § n. (40)
= —

H. E. Mynick and R. E. Duvall 755

Downloaded 11 Feb 2005 to 198.35.4.95. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Performing the sum over », in Eq. (38), which yields a
nonzero contribution from only that volume V, in which 7, |
lies, we obtain

DU2)=V;'T T LL75(1,0;)
k llg,IM

4me, e, |2

x|

ny (7, )J%,gJi,,— mm (41)

As usual, the delta function present in Eq. (41) is to be
interpreted not as strictly singular, but as broadened about
the resonant surfaces (where 1,:{}{ = 0), with resonance
widths large enough that, given the density of resonances
from the sums over /,,,,/,,, and mode index a (or k) in (41),
the resonances overlap. Then these sums may be converted
to integrals.

We perform the integrations, first over the (/,,/, ) plane,
and then over k. (Since all the 1, dependence has been elimin-
ated, for brevity we drop the subscript on I, here.) It is con-
venient to reparametrize the (/;,/,) plane with v, =/,
w,=,/,. The integration (summation) to be performed is
illustrated in Fig. 1. As seen here, over the (w,,,) plane,
the sum (or integral) in (41) is nonzero along a line with
slope — 1, given by the resonance condition

(42)

and is appreciable only where the J, are appreciable; hence,
in a rectangle centered about (w,,0,)= (0,7mQ,), of
width Aw, and height Aw,, defined by

0=10Q] =, + o, +

Ao, /m=2,Q,=kv,, Aw,/7=2,Q,=k v + Kk vy.
(43)

Here, v, =A(pg/ 2R)v, istheamplitude of the “grad-B  drift,

normal to b, and 60" is the amplitude of the oscillations in Y

over a bounce period. Physically, Aw, ,, represents the
range of frequencies a particle moving through perturbation

p— ﬁ_c_ _
AR

Wg.ﬂg lg

\ﬂros'o

FIG. 1. Illustration of the summation/integration to be performed over the
(I,,1,) or (w,,0,) plane, in the evaluation of the gBL operator. Indicated is
the resonance line Q,,, = 0, along which the integration contributes, and
the rectangular box, of width Aw, and height Aw,, within which the inte-
grand is appreciable. The dots within this rectangle indicate the position of
resonance with individual Fourier components 1, of the perturbing Hamil-
tonian of the scattering test particle.

756 Phys. Fluids B, Vol. 1, No. 4, April 1989

a encounters due to its gyro (bounce) motion over the
course of its orbit. (The reason for the factor of 7 in the
definition will become apparent shortly.) For modes having
k, ~k,, typical of this section, the last term in Eq. (43),
proportional to v, is negligible. However, when k, >k, as
is typical of the turbulent spectrum to be considered in Sec.
IV B, this term is important.

For the short wavelengths of relevance to this section,
we have z,,> 1, so many bounce and gyro harmonics are
contained in this rectangle. We therefore approximate both
the bounce- and gyro-related factors J 7 by the pairwise aver-
age of the asymptotic forms for J? discussed following Eq.
(35), which eliminates the oscillatory character from the
sums:

JH2)=4[J32) + T}, (D]
=s(wz/2,1)/(72). (44)

This gives the correct small- and large-/ limits previously
discussed, and the coefficient 7/2 of z in (44), determining
the precise transition point from the small- to large-/ re-
gimes, is fixed by requiring that (44) satisfy the averaged
counterpart of identity (40).

We now use the approximation (44) in evaluating (41).
With 2, -V, (27) ~3fd k, we have, for any component D¢
=e"D+e of D,

2

dk
1y (Fy1)

(2m)?

Xf da),,J- do ,Lmé (1))

41e,e,

Di(12) = =

% s(Aw,/2,0,) s(Aw,/2,0,)
Aw, Aw

2
dk 2 «
N (217')317 41Tke;e2 nz(rbl)f dw, 1,1,

% s(Aw,/2,0,) S(Aw,/2,04)
Aw, Aw ’

where w, =w, — Tm{Q,, and w4 (l,,n)= — (@, + nd}).
For both 7 =0 and 1, Aw,/Aw, S€'/?k, /k,, i.e., the con-
tributing rectangle in the (w,,», ) plane is short and broad,
for most k. Thus we may approximately replace /, in Eq.
(45) by its value /, =7m at the vertical midpoint of the rec-
tangle. This replacement in w,, makes the second (gyro-
related) s factor in (45) independent of w,, rendering the
remaining @, integration trivial,
e dw,s(Aw,/2,0})/Aw, = 1. [This corresponds to us-
ing the identity (40).] This leaves

(45)

g

4re,e, |
k 2
s[Aw, /2,04 (1,,n) ]
Aw

. dk <~
DI(12) = ml 1,
(112) f(27)3 i

»  (46)

an(rb1 )
g
where

=L =] — 0,9,/ +1.9;)/Q,,mmn]  (47)
is the averaged value of 1, having now performed the sum Z,.
The value of /, is a consequence of (42). As a result of this,
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we note that there are really only three independent compo-
nents of D, namely, D *,D %, and D %, the rest being given in
terms of these by

D= = (02D 4 20,0.D% + Q2D %)/,

D®=D%= — (Q,D%"+ Q. D%)/Q,, (48)
D¥=D%= — (Q,D% + Q. D%)/Q,.
From Egs. (48) it follows that

Thus since €®' =9, H; =Q'(where H; =H, — p,Q, is the
particle energy in the frame precessing at (). ), the diffusive
portion alone of C conserves energy in this precessing frame,
in the Lorentz approximation. (We shall see that the contri-
bution F to C also conserves E’ separately in the Lorentz
approximation. For the non-Lorentz case only the contribu-
tions from D and F together, summed over species, conserve
energy.'?)

We note from relations (48) the symmetric way in
which diffusion in velocity space and real space enter the
theory in the action-angle framework. This is in some con-
trast with more standard treatments,*'! where radial diffu-
sion appears as a secondary consequence of diffusion in v.

We now complete the evaluation of D%, D%, and D *
by performing the integration over k. Using

n=Rk, = R(k;b, — k,b,), m=rk,=r(kb, + k,b,),

the remaining integrals are easily evaluated. For 7=0,
W = —nQ. <k v, so that the gyro-related s function
S(mk, v, /2, wy) =s(mk,v,/2,0) = 1, for essentially all k.
For r=1, w6 = — (mQ, +nQ.) = — k7, (7, is the
bounce-averaged parallel velocity), s0 that
s(mkyv,/2, — k V) = s(mv, /20,k;/k,) in Eq. (46) se-
lects contributions only from those k having |a,|<a,,
where

tan akEku/kl, tanavEﬁ'vi/'Zﬁl}. (50)

As a passing particle approaches the trapped/passing
boundary, 7 goes to 0, and the domain prescribed by the s
function for 7 = 1 goes smoothly to that for = = 0, making
the D ¥ continuous across the 7 = 0— 1 transition.

Physically, for the local resonance discussed around Eq.
(36), we need 0 = kv = kv, + kv, cos b,, or

tan @, = — v, cos 6,/v. (51)

Because v, goes through 0 for trapped particles, resonance
occurs for all values of ¢, in the interval [ — #/2,7/2] for
some §,. For passing particles, however, (51) implies
|tan a; | is always smaller than some maximum |v, /v,
hence such particles cannot resonate with modes having
|k, /k, | too large.

Using the required k integrals

o k? I_(a,)
fdk..._k.v;cL; k? |=mmAl|I, (@], (52)
Y Lk 0

where !, (a,)=(2/7)(a, + }sin 2a,), we find
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Db , P(b2I_ +4bi, )
Db§ :’:Vlz(v)(vi) (Mlvl. )2 erpb,(I_ '“%Iq}_ ) B
1
D¢ R*(bI_ +4ib2I,)
(53)
with
v (V) =2meie} In Any(r,, ) /M
the collision frequency for species 1 on species 2. For trapped
particles, one has ; =0, hence a, =7/2,sothat I, = 1.
For deeply passing particles, a, —0. In this limit, we have
I, -4/ma,,I_—-(4/3m)a).
From Egs. (53) and (21), we compute the radial diffu-
sion coefficient D "=€" D¢

D7 [mo;[(q/f)2 +141 (54)

Vi W/ M, + (/@I ] (r=1).

The first term in the r = 0 expression here is the domi-
nant, neoclassical term, yielding banana diffusion D,
~v,,p2¢*/€"'* when averaged over pitch angle. The second
term for 7 = 0, smoothly joining the first term for 7= 1 at
the 7=0-+1 transition, represents classical diffusion, D,
~v,,0%. The second term for 7 = 1 is negligible, down from
D, by (e/¢)%

Diffusion in velocity space is also described by Egs.
(53). For example, for 7 = 1, using Eqgs. (23) and (53}, we
have

(T = 0)3

ox 1 2, 1 bb b 2
Do e D= (D 20D % D&
(MR (qMR)Z( +2¢D> + ¢°D**)
3
=v,2(u)u§(i) I_. (55)
by

Similarly, using Eqs. (48) and (53) along with dJ,/
dv, = Mv, /), and the fact that 0, ~¢QQ, for 7 = 1, we find

D (&)2 D& (.Q_")z D
My, My,

3
= v, ()T (3’-) I_.
v,
The factor (v/v, )*I _ appearing in Eqs. (55) and (56) is a
weak function of pitch angle, varying from 1 ata, = 7/2 to
m/6ata, = 0. For both D "l and D **, one notes that only

I_,andnot/,appears. Thisis because D is a particular k
average (), ofll, and so

D' (e"Me™), = ((m + ng)?), = (qRYNk} ), <T_,

noting the definition of I _ in (52). For the turbulent spec-
trum, treated in the next section, we have (k ), =~0. Thus,
as concluded from earlier quasilinear calculations,”'? turbu-
lence causes very little velocity-space diffusion ( < 7_), even
while quite effectively inducing radial transport.

These results may be related to the more familiar Lor-
entz collision operator, as shown in Appendix A.

(56)

B. Turbulent transport

We now move to somewhat longer wavelengths
(A~p; 3 Ap) characterizing plasma microturbulence, and
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perform an analogous calculation of D, using the same
expression (33) for the coupling coefficients used in the pre-
ceding subsection, but specialized to this different regime.

-Specifically, we consider the transport induced by mag-
netic microturbulence at vanishing collisionality. For ther-
mal electrons, whose gyroradius and drifts across field lines
may be neglected (z,, —0), this mechanism was studied by
Rechester and Rosenbluth,'* who found an anomalous dif-
fusion coefficient for passing electrons

e = (7/|Qs|) (ub)?, 57

where b=B /B is the average amplitude of the perturbing
radial field B,, normalized to B. (Here, u= [v;[ is the
bounce average of the absolute value of the parallel velocity,
nonzero for trapped as well as passing particles.) The modi-
fication of this mechanism by the large z, and z, of energetic
electrons and ions was estimated in Ref. 6. Here, we do a
more complete evaluation of D than was done there, for
comparison with the collisional and ripple mechanisms con-
sidered in this section, and in preparation for the inclusion of
the contribution from F in Sec. V.

Since, using the present framework, the derivation for
the turbulent D is quite similar to that just given for symmet-
ric collisional transport, the details of the present derivation
are relegated to Appendix B. The coupling coefficients, and
so |a|? may be written in forms [cf. Eqs. (B5) and (B6)]
analogous to those for the symmetric case. Performing the
sum over 1, as done in Eq. (38), we find the closely analo-
gous expression

2

D(1]2) =

(58)
again the same as yielded by the quasilinear expression (7),
with thermal spectrum

1y (1]a2) 2= f d2, f(2)|4na]?

2 11,780,927 B (1]0,2) 3

Ly~ 7
a hghy

lla)ZJd6 f(2) ‘47}'(210)

(59)

As discussed in the Introduction, the thermal fluctu-
ations given by Eq. (59) do not properly represent the turbu-
lent spectrum of realistic experiments. Thus we replace
|#|? in Eq. (58) by a model spectrum, |2(1]a,2)|?, satisfy-
ing the general characteristics of the turbulent spectrum de-
scribed in Appendix B. We assume that A, in expression
(59) is nonlinearly modified from its thermal value, so that
the fields A(a,2) driven by species 2, given by the z, integra-
tion in (59), are given by

|4(a,2) = 4(a,2)|*s(w, /2,75, —72),
- 2 3729 B 2
|4(a,2)|* = _“_E,.f..)___z_

V,(Ak))

k? kj )
X - - . 60

°XP( 2(8k)°  2(Bk))? ©9
Here, Ak, ~p;” 'and Ak, ~L [ ' are the spectrum widths in
the perpendicular and parallel directions,
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7 i=(Ak) Ak“ measures the volume in k space over
whlch A*(k) is appreciable, and B? measures the overall
strength of the turbulent fluctuations. The normalization is
chosen so that

(By=V} *fdx;kqA(xnz ~32

Thus, |4(1]a,2)|? has the same form as |2(1|a)|? in Eq.
(BS5), but with |4 |? there replaced by |4(a,2)|? in Eq. (60).
[More detailed use will be made of the structure of the spec-
trum in Eq. (59) in Sec. V, where we consider the relative
contributions to the spectrum from different species. ]

Because of the longer wavelengths of the turbulent spec-
trum, and because in addition we have k; <k, in Appendix
B it is shown that the 3 X 3 matrix D has only a single inde-
pendent nonzero component to be evaluated. It is convenient
to choose D ¢, Performing the evaluation, as detailed in Ap-
pendix B, we find

| D¢¢(1|2)=(‘9p¢) DR (2K T3 0.0k,
ar,,
(61)

thh 5p§/8rb= — (MQ.Rb,) = — (eBRb,/c). Here
#r (1]2) is as given in (57), w1th u=u(l), b due to spe-
mes 2 [via Eq. (60)], and

< Jlm JIM-— m )kE

1 1 [77’2/'32
7k, p, mAk,r, 1 172

where the upper (lower) component applies for =0 (1).
Parallel to Egs. (54)-(56) of the preceding section,
from Egs. (21) and (23), we have

}, (62)

D" =D%, (J,”g JI.,,—r.m>k (63)
forr=0and 1, and
D“uCIDvwl(IDJKJSO:<kﬁ)k%0- (64)

The reduction of the Rechester~Rosenbluth result due
to finite z, and z,, discussed in Ref. 6, is contained in the
factor (-}, in Egs. (61) and (63). As discussed in more
general terms around Eq. (36), this factor measures the
(square of) the fraction of each gyro and bounce time that a
particle spends locally resonant with a given perturbing
mode a. In the z,, -0 limit, where this fraction becomes
unity (or zero), the J? there become Kronecker & functions
8(1), and the Rechester—-Rosenbluth result is recovered.

C. Ripple transport (stochastic regime)

We complete the series of illustrations for this section by
computing from the same expressions for #(Lj,w) and D a
ripple transport result. Specifically, we generalize the
expression for the “stochastic regime”'* to include an elec-
trostatic component, and to ripple perturbations having
m#0,0+#0, and to allow gN=gn + m of order unity, as well
as the limit gN> 1 previously assumed. These generaliza-
tions make the theory applicable to internally generated
modes, including low-n MHD modes, as well as to the TF-
coil ripple with which the theory was originally concerned.
This is the same generalization for the stochastic regime that
Ref. 8 achieved for the more collisional “banana drift” re-
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gimes, and is thus relevant for very energetic ions, such as
alpha particles.

The modes we consider have a still longer wavelength
than those of the previous subsections, long enough so that
81, discussed around Eq. (B8) is small compared with unity
(even for alphas). Then only terms 1 with /, = 0 contribute
toD, so that Eq. (B11), which held for almost all particles in
turbulence, holds for all particles here. Thus J, is constant,
and a guiding-center description of the particle motion is
valid.

It has been noted that the second term in Eq. (33) yields
the 4B, perturbation in the guiding-center Hamiltonian H ;.
Taking the small-z, limit (34) of the J, ’s there, and setting
I, =0, this second term reduces to (momentarily restoring
mode index k for clarity)

h(LJw|a) = — Y(e/c)v, p, ik A,y sin(0,, — Oy )

X5(lg _ n)J,b_,.,,, Xe—i(lb—rm)ab,‘—ilxexk (65)

= (puBy )8l —n)J,, _ e o= O ek

where B, EE-t'k)(Ak sin(8,, — 6, ) is the perturbation to

=|B| due to 4, . A more fundamental derivation of this
form, which does not rely on the eikonal representation
(24), comes from recognizing that the /, = 0 Fourier com-
ponent of h(1,J,@) simply involves a line integration around
a gyro orbit:

dg,

l.A(R + pg)

“(VXA)

2)81 =P-Bp (66)

where dl =v, dr is an incremental line element, and
as, =b dS; is an element of area on the disk formed by the
gyro orbit. Expression (65) has the same form as the first
term in (33), to which it may be added to yield the full
coupling coefficient for the ripple problem,

h(1J,0) = ks, —n)J, _ e 7T AEE (67)

where h;=ed(r,,m,n) + uB,(r,,m,n) is the amplitude of
the perturbing portion of H, from which ripple transport
calculations normally begin.

As usual in ripple calculations, we consider the effects of
a single mode a (or k). This perturbation may be internally
or externally induced. For either, the quasilinear expression
(7) applies. Thus, using Eq. (67) in (7), we have (suppress-
ing species subscript ““1” for simplicity of notation)

D(1) =S I6(+Q, — )k 5T |1~ (68)

[ )

This parallels Egs. (38) or (58) of the previous sections,
except that it lacks the sums over both /, and mode index a,
and so is substantially simpler to evaluate. Diffusion now
occurs only because of overlap of the resonances of succes-
sive bounce harmonics /,, equivalent to the overlap criterion
given in Ref. 16. When overlap exists, the sum over /, may be
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converted to an integral, as in the previous subsections,
yielding

Di(1) = (w/|Q, ), ljhz Jt,,_m ) i1 (69)

where now
1=[0,(» —nQ,)/Q,,n].

Thus Eqgs. (B11) again hold, as already noted. Specializing
to 7 = 0 for comparison with the previous theory, from Egs.
(69) and (21) we find

D" = (n/4|Q,)* ?,, (z,)13,- (70)

Here, H=2gnhg/(MQ,r) is the amplitude of the radial drift
r, due to the ripple, given by

Py =e~d = —b3J, sin(nf + 1,0, — o), (71)
Iy

following from Eq. (5). The physics of the result (70) may
be described as follows [almost the same description may be
applied to the turbulent result (63)]: a particle resonant
with bounce harmonic /, performs a random walk, taking a
radial step at velocity 8J, , for coherence time 7,,.. The factor
J,, represents the fraction of the full bounce period when the
radial motion is nonoscillatory. Contrary to the usual lore,
one notes that the point on the bounce orbit during which
this radial step is taken is nor at the particie’s turning points,
in general. From Eq. (36), the step is taken at the turning
point only for 7,/z, ~0, a condition holding only for parti-
cles precessing at almost the same frequency as the ripple
perturbation (i.e., =7}, ). This condition does not hold,

for example, for a typical alpha particle precessing in ripple
due to TF caoils, for which 7, /z,, can be comparable to unity.

We also note the dependence of 7, on mode frequency w. For

(o — nQ,) large enough, the factor TZ can be made to

move into the , > z, limit of the Bessel function, where J:,
and so D", fall off rapidly.

For the longer-wavelength modes of this section, one
has z, ~m6, + n&,~gN0,. The result of Ref. 16 is recov-
ered by letting h; =uB,, @ =0=m, and assuming
z, =~gn> 1, so that the large-z form in (44) may be used for

7}:. For z, ~ 1, the point on a bounce orbit where the parti-
cle receives a radial kick is no longer localized, and corre-
spondingly, the stationary-phase form (44) fails. Then the
full form of the Bessel function must be retained.

V. EVALUATION OF I’ FOR THE TURBULENT CASE

Having gained experience through the evaluation of D
with much of the mathematical mechanics, we can proceed
to consider the effect of reinstating self-consistency, by com-
puting the full flux I in J space, retaining boththe Dand F
contributions.

We will perform this evaluation for the same turbulent
mechanism as examined in Sec. IV B, because this yields
results which are new, and that can thus be compared with
the analogous results for collisional symmetric transport,
which are already well-established.
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A. Preliminaries

Up to this point, nothing has been said about the specific
form of the distribution functions f (J). We now adopt the
near-equilibrium form for both species (suppressing species
label)

Lo =[n/Q2aMT)*?] exp( — K/ T), (72)

where n, ®, and T are functions of 7, (J), Ky=H, — e® is
the (unperturbed) kinetic energy when a particle is at
r = r,, and for simplicity we take equal temperature distri-
butions, 7, =T, =T. If 7, in (72) were replaced by 7, £,
would be of the “local Maxwellian” form f;, used as the
lowest-order distribution function in more standard ap-
proaches to transport. Because it is a function of J alone, f; is
an exact solution of the unperturbed (A = 0) Liouville equa-
tion, and thus contains, in addition to f, the collisionless
correction (in banana width to minor radius) to fy;, which is
what produces the radial fluxes!"'> We thus substitute Eq.
(72) into expression (15) for I'(1|2) to compute the trans-
port.

Toevaluate I'(1(2), -3, f is needed. Using £, in (72) for
/f, we find

1d; fo= (I€'4 — L/ Tf, (73)
where
A=A, + (e®/T), A=A, +Ax(K/T),
A, =[(n'/n) —34c), Ax=T"/T
describes the thermal forces. (The prime denotes derivatives

with respect to r,.) Using (B6) and (73) in Eq. (15), we
find

-— F(I'Z) = fd6222 z ﬂ&(ﬂm)|41ralzll(ll'a‘]l

. - D502 —Jd
2 Jz)f’:’( )‘ﬁ)( ) a l%blu'gn

>(77-§(‘(lres)l4ﬂ7’a|2"%‘g J%.,,-—f.m"lu by — Tam

XL (1€"4; — Lre™4;)fo(1)/5(2), (75)

where the contributions from D(~1},) and F(~1,1,) are
still apparent. The contributions to these terms from the
term in 1'Q in (73) have canceled, due to the argument
1,2, — 1,:Q, of the § function. ( An analogous cancellation
occurs in linearizing the standard BL operator.)

We note in Eq. (75) the same z, integral over |47a|*
that produced the scattering spectrum #(1|a,2)|* in the cal-
culation in Sec. IV B and Appendix B of D(1|2), and the
same identification can be made here in computing I'(1]2).
Here, however, we wish to consider the symmetries that the
retention of F creates between I'(1]2) and I'(2]1), and this
requires that we make further use of the spectral structure
given in Eq. (59) to strip away the z, integration present in
the model spectrum (60). Dropping the subscript “th” on
h,, in Eq. (59), an expression for |&|? yielding the spectrum
(60) is

(74)

1 2) |?
[47@(1,2]a)|* = ‘;’ef “’i) “’i) ,  (76)

with A, given by
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4e,e, 2_.___. }e‘Z(a,Z)‘Z mn
N,A, [Vona(|u, (2)/¢|]
Here, V,n,(:-*)={, d°2,f(2)(---) defines the phase

space average over the toroidal shell ¥,. Thus the desired
model spectrum |4 |? is achieved in Eq. (77) by modifying
the dielectric function A, from its form in a stable plasma,
which would produce a thermal spectrum.

B. Lorentz case

As in Sec. IV, we simplify the summation over 1, by
taking the Lorentz limit 1,2, 78, and then approxi-
mately perform the summation over 1,, again using (44).
Equation (75) then yields

~T(12) = f d%, ¥ 81,210, A4,
— L€ 4, f,(1)£(2), (78)

with the l-averaged kernel Q given by

0(1,2|a) = a(l,Zla)s(. I — 1 )S( s Fyy — 1),

- A 2,
0(1,2]a) =79, 580, /2,05)
Aw

gl
(A, /2,0}40)
Ko D12 807
Aw,,

_ s(Awy /12,0,) s(Awy,/2,0}0)
Aw

gt .
lu, (1) ?|e,/cA(a,2) P, (2)]?
Vana(|u, (2)%) T

Here, as in Sec. IV B, we have assumed that only /,, =0

contributes, so that 1,, are again given by 1= (O,rm,n).

With Eq. (79), one readily sees that the term in 1,1, in Eq.

(78) yields expression (B9), as it shouid. :
From Eq. (21), we have

ee"I = ( —c/BRb,)n, (80)

for any species, and for 7 = 0,1. Therefore the terms in e’ in
the thermal force factor in Eq. (78) cancel, resulting in prop-
erty (iii) of turbulent (or symmetric) transport noted in Sec.
I:

473, _1 (79)

Aw,,

= s —c\/1 1
ly€"4, —1,€"4,) =n (—A ———A)
(e d, — Tyerdy) (Bxb,,) A

—cY/1 1 )
=n — A ——A, .
(BRb,,)(e, e T2

(81)

The kintegration over -Q-in (78) yields the same D ¢¥(1]2) as
in Eq. (B9) or (61):

T3 [A(1],k2)]2
bll k

X-j?‘: I: _ ' n?

|u, (2)?
Vany(lu, ()%

lu, (2)]?
V,n(lu ()%
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Using this in Eq. (78), we find

—c 1 1
—I(112) = D“l2(—A——A)—T
(112) (BRb,,) g, 4= 4 —om
XS, an,,- (83)
Dotting this with €, the radial flux is given by
—TI"(1)2)= — "I['(1]2) = ¢, D"(1]2)
X [(1/e)A4, — (1/e)4,1f6(1)],, s, - (84)

Wenow consider I'(2|1). This is given by interchanging
species indices 1 and 2 in Eq. (75). We evaluate the resulting
expression in the same limit 1,202, » nQ) . used with I'(1|2).
This yields

- =fd6212Q(1,2|a)

XL (€4, —Lre"A)f(1f5(2),  (85)
with Q the same as givenin Eq. (79). Except for the integra-

tion over z, instead of z,, the evaluation of this is essentially
the same as for I'(1|2) in Eq. (78). With (82), we have

—r(2|1)=f a’°z,ﬁ,(l)( ‘c)
Vll

BRb,
2 2
X D§§(1!2)___,u_r%
V,n(|u.(2)%)
1 1 °
x(——Az———A,) —qn| H2),,,~r,
€ € 1 (86)

and thus
—T"Q2|l)= — e=I'(2|1)
= €2D "(2| 1 ) [(l/ez)Az

- (l/el)Allﬁ)(Z)I,“:,“, (87)
where
lu, (2)]?
e2D"(2 I)Ef d%, f,(1Ne?D7(1|2)———F
207 ¢ Bfe(a D] V,n(u, ()%
(88)

Using Eqgs. (84) and (87), we easily verify property (ii)
cited in Sec. I:
J‘d"’zl e, I'"(12) +f d®z, e, (2|1) = 0. (89)
Vll V{l

Taking like-species interactions (1 = 2,i.e., s, = 5,), ei-
ther of Egs. (84) or (87) confirms property (i) of Sec. I, viz.,

f dz, T7(1|2)|,_, =0. (90)
V{l

C. Non-Lorentz case

Since the results (89) and (90) were derived in the Lor-
entz approximation, neither is strictly valid for like-particle
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interactions. To prove property (90) correctly, therefore, we
must return to expression (75), and reevaluate it in the non-
Lorentz case, where M, ~ M,. We shall see that the essential
feature of Eqs. (84) or (87) needed for Eq. (90) to hold,
namely, the presence of the factor (4,/e, — 4,/e,), still
holds for the case M, ~ M,.

Motivated by the form of Eqs. (89) and (90), therefore,
we define the particle and energy fluxes, averaged over a
toroidal shell V,:

In(liz)zf dz, T7(12),
Vﬂ

IK(”Z)Ef d“zl!(-i’-‘-l"(l|2), on
v, T

where K, =K,(1). Using Egs. (B6) and (75) in the defini-
tion of I, and again using the averaging effect of the z inte-
grations on the factors J fg , we have

—I,,(ljZ)=f dSZlf A2y ¥ ¥ 78(Q,.,)
v, v,

k gl hab,

x?‘%;ﬂ JZJ?

hoerm ¥ heY o rm

X |41T(-Z|2€"'11 (ll'erlA 1— lz'e’zAz)

XSy, =y = s, (92)
The new feature of the non-Lorentz case is that the term
1,:2; in the argument Q. of the § function cannot be ne-
glected, thereby coupling the sums over 1, and 1,. The full
resonance condition is now

0=0 =0, — Dy + @y — @y, + n(le - ng)’
(93)

and the relevant ordering is
Ao, ~Aoy, > Aw,, ~Aw,,. (94)

The new aspect of the problem is thus the evaluation of the 1
sums in the presence of the full {,,,:

Y T8 Q) T ITIT TT

hglip behys

5Gwyy) sGwpy)

Aw,,

dea)bz fdwb] 776(‘0'res)

Aw,,

=7 3 Ji, J1, LAy 80y,050) - (95)

hehy
where ), =w, — 0, +m(r,Q,, —7,.Q,,) + n(Q,

— ()¢, ), and where the overlap integral I,, given by
I, (Aw,Aw,x)
_J” d s(Aw,/2,0,) s(Aw,/2,w, — X)
= (92
e Aw, Aw,

is even about x = 0, and symmetric in Aw,, Aw,. With the
definition Aw,, =max(Aw,,Aw,), we have

(96)

o, |x} > |Aw, + Aw,|/2, '
L) = {I/Am>, x| < |Aw, — Awy|/2, 7
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and I, varies linearly with x in the intervening interval
lAw, — Aw,|/2 <x < |Aw, + Aw,|/2.

Owing to relations (94), the “short and broad” approxi-
mation used for the Lorentz case is still well satisfied, and
thus, again, we have

(98)

Asindicated by the spectrum in Eq. (60), the modes consid-
ered here have nearly zero frequency in the frame precessing
at Q.. Thus, for M,~M,, the dielectric function
A, (0 =1,2Q,) appearing in (92) again permits contribu-
tions only from terms with

Ig1,2 = lg =

L 12 2=l 12 =T M.

(99)

causing the remaining sums over /, , and /,, in (95) to drop
out. Using Eqgs. (95), (96), (98), and (99) in (92), there-
fore, we find

—I,,(l|2)=f dﬁzlf d6zzza(1,2|a)
V, V., k

X Gr"Tl (T1'€"A 1 T2°€’2A2 )ﬁ)( 1 )ﬁ,(Z)

—_ 6 6 D of —c¢ ¥
_fVad Zi Jvad zng(1,2|a)n (BRbp)
X— ! (1 Al__A )fo(l)ﬁ)(z), (100)
e \e e,

with kernel Q given by

‘é( 1,2|a)y=n J_?g, J_izlb (Aw,,,Bw,, w50 ) [478|%, _1,
(101)

extending the Lorentz expression (79). The expression for
Ix (1]2) is the same as given in Eq. (100) for 7, (1]2), but
with an additional factor of K,,/T in the integrand. The
factor (4,/e, — A,/e,) in expression (100), present also in
the Lorentz results, implies Eq. (90), as already noted. In
the Lorentz limit, the factor I, in (101) recovers the factor

Jf“ o/ Q1 =5(040)/Aw,; in Eq. (79). For the case
M, ~M,I,(,,w;,,) is a function of comparable size
(~Aw;,") over a comparable range ( ~Aw,, ) of w}, as in

the Lorentz case, but with a somewhat modified functional
form. The factor J_fgz in (101) is not present in (79), since
there all gyroharmonics /, , contributed, while only /,, =0
contributes in (101).

The k summation in (100) may be performed using Eq.
(82), yielding

—1"(1|2)=f d(’zlJ. dz,D%(1)2)
v, v,

|u, (2)|? (—c)
Van2<|u1(2)|2) BRbp
1 /1
xL ( 4,—La, )fo(l)fo(Z),
; \ey e,

e

(102)

where the non-Lorentz kernel Q in Eq. (101) now yields a
slightly modified diffusion coefficient D% (1]2) from that in
(82) or (61):
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D¥(1|2) =7 ¥ [k(1[k,2)[2 TE T2 I,n?
k

~(5)
- ary,

DR (112)( J]_J7 1,04 )i,

(103)
with
(J7, T3, 1%
__ 1 1 1 11'2/32] T
- mhAkp,, mAk,p,, wAk,r L 1/2 2’
(104)

and where, as in (62), the upper (lower) component holds
for 7=0 (1).

D. Onsager relations

We now turn to the Onsager symmetries of the transport
coefficients. In the following, it is convenient to use indices p
or g, which may take on values # and K in designating the
components of the fluxes I, and forces 4,. We define the
coefficients of the thermal force terms, which can be read off
from Eq. (100), and from its counterpart for 7, (1]2):

Li=g (ms,) J, 4o o (BR)

X fos, (2') Z 0@z |a)n?,

1 K, (z)
e, (BRb ) d’z d 2 fou (2)

sz)sz (Z’) (Ko(z )) z Q(Z,Z |a)n

The L ;2 are the coefficients arising from D, and the M )2 are
those arlsmg from F. We have used z and 2’ for the vanables
of integration here instead of z, and z, used previously to
empbhasize that the species labels 1 and 2 in the superscripts
of L ;2 and M ,} correspond to the species labels s,, s, on the
dlstrlbutlon functlons, and not to the integration variables.
This avoids ambiguity when s, = s,. The exponent x,, of the
energy-weighting equals O (1) for p = n (X), and similarly
for x,. In terms of the L’s and M’s, one can write I, (1|2)
and I (1|2) succinctly as

(105)

(106)

-LA2)= Y (L4, —M:4,) (p=nK).
= nK
! (107)

From inspection of Egs. (105) and (106), we note the fol-
lowing symmetries:

L 12 — L 12 M 12

qp?

but

el x #e,M %
These relations may be used to efficiently prove Egs. (89)
and (90), as well as the Onsager symmetries, now under

consideration.
Following essentially the same steps as used to obtain 7,

MZl

2y eL)l=eM,2, (108)
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in Eq. (100), we may evaluate expression (16) for $. The
result is

. 1 2
=— ds
§=333 4 f d zzﬁ)(z)(BRb )

X(LA, — lAz) XS 0 (1,2]a)n?
el 82 k

_ _%zz [Anl,(1]2) +4,,1,2|1)
r, 1,2
+ A T (112) + Ak, I (2]1)]

= -3 33 4,1,1[2).
r, 1,2 p

The first form given parallels expression (100). The four
terms in the second form come from identifying the coeffi-
cients of each of the four terms in the first thermal-force
factor A,/e, — A,/e, on the first line, and the final version
presents the second form somewhat more compactly. The
total particle and energy fluxes for species 1 are given by
I,(1)=Z,1,(1]2). Assuming the thermal forces 4, are in-
dependent of species, the total particle and energy fluxes
(summed over species 1) are given by

2 Loy

where from Eq. (107), L,,=32,,(L}2 - M}}). Usmg
(110) in (109), S may be wntten in the symmetric form'®

§=YS4,L,A4,
s P9
The Onsager symmetries are expressed in the relations
Ly, =L,. (112)
Since we are considering only a 2XX2 matrix L,, here, the
only nontrivial member of relation (112) is L, = L, . This

is easily demonstrated using the definition of L,, and the
first two terms of the symmetries (108).

(109)

—L=-3 L0 = (110)

(111)

VI. DISCUSSION

In previous sections, we have evaluated both the diffu-
sive and frictional portions of the radial fluxes, for a particu-
lar turbulent transport problem of interest. The evaluation
has been carried out for each of the three cases when the
mass of the scattered species is much less than [Eq. (84)],
much greater than [Eq. (87)], and equal to [Eq. (102)]
that of the scattering species. For each of these, both por-
tions of the flux are simply given in terms of the correspond-
ing diffusion coefficient D ”(1|2). Here, we assess the phys-
ical implications of these expressions, by considering the
relative sizes and scalings of D ”(1|2) for all four possible
species—species interactions.

Weuse (1), as shorthand notation for the orbit-averag-
ing factor (_J—f,: J3,_ +m)x appearing in Egs. (61)-(63).
For simplicity, ignoring the factor J fu entering the compar-
able-mass expression D 5(1|2) in Eq. (103), as it is of sec-
ondary importance, the remaining angle-bracketed term is
approximately equal to (1), as well. Then the expressions
for D "(1{2) for all cases may be approximately written
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D(1)2) = (7/|Q,, ) {> Nt (1)52(2). (113)

Consistent with the definition of Aw in Eq. (97), the sym-
bol > ** here refers to the species with larger thermal speed
vy (and so smaller mass). Expression (113) transparently
reduces to Eq. (63) for the case M, € M, to which (84) per-
tains, and also approximately yields the equal-mass case
(103), as already noted. For the case M, > M, described by
Eq. (87), approximately evaluating expression (88), one
finds D "(2|1) given by Eq. (113), with 5 2(1), representing
the perturbing fields driven by species 1, given by

[B(1)/B(2) VP = (n, €3 v%, )/ (n,€20%,). (114)
Expression (114) arises from our adoption of Egs. (76) and

(77) to describe the coupling @(1,2) between any two spe-
cies 1 and 2. Applying expression (113), one finds

D(1|1):D"(112):D"(2|1):D " (2]2)

()b (1) —= (I w2(1)b2(2) (L
b1 b1
u?(2)b? (1)( M u?(2)b? (2)( L
b1 b2

cey 2,04 0 2.2 2 L. 3.2 2
e VT iR U Uy i1 € U U

3 4 (2)knbl

Ne3 0T, .0, ’ (115)
and thus, for M, <M,
neiD"(1|1)>n,ei D7 (1)2) =n,e3 D"(2|1)
>n,eiD""(2)2). (116)

The statement n,e} D "(1|2) ~n,e3 D" (2|1) here is the ap-
proximate counterpart of statement (89) of intrinsic ambi-
polarity. Because D "(1|1)» D "(1]2), the energy flux of
species 1, which is dominated by D" (1|1), will be much
more rapid than the particle flux, to which only D ”(1]2),
and not D "(1|1), contributes. Both the particle and energy
fluxes of species 2 caused by this mechanism will be domin-
antly governed by D ""(2|1). We note that the situation is
quite analogous to the relations holding for collisional (neo-
classical) transport, except that for that mechanism, the
roles of the heavier and lighter species are interchanged. This
is because collisional transport is an electrostatic mecha-
nism, and thus lacks the velocity weighting in both the fac-
tors u? and b 2 in Eq. (113), which, in the present case, the
magnetic mechanism enhances the transport and fluctuation
spectrum of the higher-velocity species.

This completes the demonstration of the unity that ex-
ists between the different tokamak transport mechanisms,
facilitated by use of the gBL operator. Extension of the prop-
erties demonstrated above for the case of magnetic turbu-
lence (and already well established for symmetric trans-
port) to other cases of interest (for example, electrostatic
turbulence, or internally generated ripple) should be
straightforward. For the sample turbulent mechanism cho-
sen, we have obtained an explicit expression for the anoma-
lous pinch term, and showed that, because of its close rela-
tion to the contribution from the diffusive term, the total flux
possesses the appropriate conservation laws, which are lost
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by test-particle calculations. Moreover, we have seen that,
just as for symmetric transport, neglect of this term can to-
tally modify the expected particle flux for one species from
the correct answer.

The theory developed here is not yet complete. Possible
modifications in the transport results may result from using
more realistic descriptions of the mode structure, including
the appropriate combination of electrostatic versus electro-
magnetic components. The treatment of the non-Lorentz
case given here in Sec. V is only for the particular turbulent
mechanism studied, and applied principally toward treat-
ment of the equal-mass case. The effect of the dc inductive
electric field has been ignored here, resulting in only a 2 X 2
Onsager matrix, rather than the 3 X 3 matrix of a full theory.
Some work in incorporating this extension into the action-
angle transport framework has already been carried out in
Ref. 7, for a test-particle calculation, and an extension of this
to the present theory should be possible. Finally, we again
note that the application of the thermal structure of the gBL
operator to fully turbulent transport is somewhat ad hoc.
Thus, for example, it is unclear that our demonstration of the
Onsager relations for this theory, which depended on the use
of the thermal form (76) of the particle-particle coupling,
can be extended to a fully turbulent theory. However, our
“pseudothermal” ansatz does yield an analytically manage-
able theory with the requisite symmetries, conservation
laws, and features of self-consistency, and it does become
fully valid in the limit of a stable plasma, where the dielectric
function A, reverts to its usual thermal form. Thus the theo-
ry represents an improvement upon the traditional quasilin-
ear approach, adding to that approach several of the impor-
tant properties required of a complete theory.
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APPENDIX A: CONNECTION TO THE LORENTZ
OPERATOR

Here we relate the results of Sec. IV A to the Lorentz
collision operator. Parametrizing velocity space by (J,,E "),
the bounce-averaged Lorentz operator may be written®

Cof=9,8, 227,13, f
8 Qg g
This is to be identified with the velocity-space portion of the
diffusive contribution in Eq. (1), written in the noncanoni-
cal variable set y={ y’} in which J, in the canonical set
z=(0,J) hasbeen replaced by E . This diffusive term may be
written

o] )e, =3 —1 'y
0yDd, f=F c?y,/D” a,f, (A2)
where the Jacobian between the sets y and z is given by
aJ,
=|— =[Q; "
=155 25

JdE'’
Taking the restriction C, f of expression (A2) to the 2 X2
velocity-space submatrix of the full D, and using the fact,
following from Eq. (49), that D £7 = D/’ = 0, one has

(A1)
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C,f=9,0,0,'D%3, f

2v,, v\?
& Qg vl 8
where we have used Eq. (56) and v, ~gR(},. We see that
Eqgs. (A1) and (A3) are in agreement, making the identifi-
cation J, =qRMpv, (v/v, )3I_, in approximate agreement
with (22).

APPENDIX B: DERIVATION OF D FOR TURBULENCE

Here we provide the details of the calculation of D due to
a spectrum of magnetic microturbulent fluctuations, dis-
cussed in Sec. IV B. We thus consider modes having ¢ and
A, negligible, and therefore retain only the last two terms in
Eq. (33). Additionally, the spectrum is characterized by k,
~pi ', ky SL 77, with L, the shear scale length. Thus, &,
>k, as opposed to a typical contributing fluctuation for
collisional transport, for which k, ~ k. For A, = 0, one has
6,, = 0in Eq. (33). Then, again using the stationary-phase
approximation for the bounce-associated J, in Eq. (33), one
finds

h(LJ,w) = — (e/c)A6(l, — n)J,g,l (2/mz,)

X (u; cos 8, — iug sin 6, sin 6,)e i(ly — Tm) B4y
(B1)
for |l, — tm| <z,, and

for |i, — rm|>z,. Here, 8,=z, — (I, — Tm)m/2 — w/4,
and u,, defined following Eq. (33), now simplifies to
upd = 0, (6,45 + 5,4, ). From the definitions following
Eq. (33), for k, >k, one has

sin @, = — k,r/z,~ —k,/k,, (B3)
and
(2/myuy (7=0),
o~ B4
“ [|u.[ (r=1), (B4)

with Egs. (B4) valid not too near the trapped/passing
boundary.

As in Sec. IV A, we may replace the contributions
cos® 6, or sin’ 8, in |4 |, oscillatory in /,, by their pairwise
average. Thus, again using Eq. (44), we can write

h(L30|a) 2= |Fd|a) 8, —m)J2 To_.., (BS)
where |2(J|a) > = |(e/c)u, 4 |? with
(r=0),

u, (r=1).

F=

[uo sin 6,

Using (B5), we write |a|? in a form paralleling the sym-
metric collisional expression (37):

laf* = [@8(; —m)8(h —n)

2 2 2 2
><‘,I,g Lpy—Tim¥ I, bLp— Tam?

[@? = [@%s(w, /2,75, — 1.)s(w, /20, —1,), (B6)
[@)2 = |k(1|a)k *(2|a)/N,A, %

where we have written |Z |? with its localizing factor s( )

explicitly displayed,
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B 2=k %s(w,/2,m, — 1)
These expressions are inserted into Eqgs. (10)—(12) to yield

Eq. (58).

Because k; €k, for the turbulent spectrum,
(m8, + nt,) in z, is given by the perpendicular drift mo-
tion. Within a flux surface (m6, + nf,) ~k,q,=k,r,, and
thus,

szklrlzklvg/ﬂb- (B7)

The summation over the (w,,w, ) or (I,,/,) plane in Fig,
1 is conceptually the same as for collisional transport, but,
because the wavelengths involved are longer, the character-
istic frequencies are smaller. Two consequences of the fact
that k; €k, are, first, that the resonance line in Fig. 1 passes
through the contributing rectangle very nearly centered
about /, = 0, and second, the height Aw, of the contributing
rectangle about w, = 7m{}, is so small that the resonance
line crosses only a very few values of /,. From Eq. (43), the
change 6/, in /, of the resonance line in crossing the rectan-
gle is

8l  Aw,
r  Q

1/2 Py

- =€’k p, +(2R)zg. (B8)
For the turbulent spectrum, the term in & in (B8) (which
dominated for a typical mode of Sec. IV A) is totally negligi-
ble. The term in z, is negligible as well, except for extremely
energetic ions, such as alpha particles. Even for these (using
TFTR-like parameters 7, =10 keV,R=2.5m, B=5T),
we have p, =52 cm, z, =k p, ~p,/p,; =26, hence 8/,
~0.8. Therefore, for most particles, only the /, =0 term
contributes, while for alphas the/, = + 1 terms may or may
not also contribute, depending upon the specifics of the tur-
bulence. )

In the absence of /, #0 contributions, we have gz = J,
=0, D¥ = D" = Qpand F¥=¢€*F =0, i.e,, no pitch-angle
scattering can occur. Thus the turbulent contribution to
pitch-angle scattering of these /, #0 terms might be of inter-
est for very energetic ions. A similar problem has been treat-
ed by Putvinskii and Shurygin'® who considered TF ripple as
the perturbation, but the wavelength from this source is too
long to produce significant effects.!” Here, we treat the case
where only the /, = 0 harmonic contributes, which applies
to most classes of particles and types of turbulence.

Whether a single or several terms are kept, the sum over
I, in (58) may not be converted into an integration, in con-
trast to the case of collisional transport. However, since the
factor J fg in Eq. (58) is rapidly oscillatory in the particle
energy and pitch angle, we may replace it with the averaged
form (44) as well. Making this replacement, and the replace-
ment |hy, |*— |4 |* just discussed, from (58) we write the
analog of expression (45):

y dk -
Di(112) = | ——=V,|A(1]k,2)]?
ap = [ 2K v [Fak)

x f do, @, S LLm50-0)

% s(Aw, /2,0,) s(Aw,/2,0,)
Aw, Aw,
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dk T 2
= — YV th(11k,2)]|*2
ﬂf(z,,)s L R(1Kk2) 120,

XS 1 5(Aw,/2,040) $(Awg/2,0,) ,
By sz 1=1

(B9)

where

@y (l,mn)= — (@, + nQ; + mQ,)

=0),
(r=0). B1oy

_[— (1,2, + Q)
- (r=1),

— (0 + k7))

andlisas givenin Eq. (47). [Because Aw, € Aw,, the “short
and broad” approximation used in Eq. (46) is still better
satisfied here.] _

Now, we impose the additional relation that /, =0.
Thus, Eqs. (48), while still true, are replaced by the simpler
relations already mentioned,

pY—DE—op. (B11)

Since k; €k,, we neglect k in m and n, hence m=rb,k,,
n~ — Rb, k,, and thus

pPg?

D% = —gD%= —gD%=¢gD¥%, (B12)

leaving only a single component D 9, which we take as D %,
to be determined.

Both w;, and w, in the s functions in+ B9) are approxi-
mately zero, so both of these may be replaced by unity.
Keeping only the /, = 0 term there, using (60) in (B9), the
remaining k integrals needed are again easily evaluated:

dk exp[ — k31/2(Ak,)? — kj/2(Aky)?)
(27)3/? (Ak, )*Ak,

-]
k2L o1 )’

where we have used Eq. (B3). The upper (lower) compo-
nent here is needed for 7 = 0 (1). Using Egs. (B13) in (B9),
we obtain Eq. (61).

(B13)
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