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Up to now, the term ‘‘transport-optimized’’ stellarators has meant optimized to minimize neoclassical

transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in

such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we

demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of

two powerful numerical tools not available until recently, namely, gyrokinetic codes valid for 3D

nonlinear simulations and stellarator optimization codes. Two initial proof-of-principle configurations

are obtained, reducing the level of ion temperature gradient turbulent transport from the National Compact

Stellarator Experiment baseline design by a factor of 2–2.5.
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Transport due to plasma turbulence has been a major
challenge for magnetic confinement since the inception of
the fusion program in the 1950s. Starting in the 1980s, a
number of approaches to neoclassical-transport-optimized
stellarators were discovered [1–5], in which the high neo-
classical (NC) transport levels attributed to classical stella-
rators could be substantially reduced, to a level making
stellarator confinement comparable to that achievable in
tokamaks, dominated by turbulent or ‘‘anomalous’’ trans-
port. In recent years, two powerful numerical tools have
been developed, which also make mitigating turbulent
transport in stellarators a realistic possibility, namely, con-
figuration optimization codes such as STELLOPT [6], and
gyrokinetic (GK) codes valid for 3D configurations, such
as the GENE/GIST code package [7,8]. In this Letter, we
make use of these two new tools to demonstrate that new
stellarator configurations with appreciably diminished tur-
bulent transport levels can be evolved from stellarators
designed without this turbulent-transport optimization,
raising the prospect of a new class of stellarators with
greatly improved overall confinement.

STELLOPT seeks to minimize a cost function C2ðzÞ ¼P
iw

2
i C

2
i ðzÞ in the ‘‘shape space’’ z � fzjg specifying a

stellarator design, where the C2
i are the contributions

from any physics or engineering criteria the user wishes
to apply, and the wi are adjustable weights. (For the fixed-
boundary equilibria we compute here, the zj are the Fourier

amplitudes specifying the boundary shape of the design.
One could equally well take free-boundary equilibria, with
the zj the currents in the coil set.) For the turbulent con-

tribution C2
t , one could ideally take Ct ¼ hQGKi, the sur-

face- or volume-averaged heat flux QGK from nonlinear
GENE runs, but this would be far too computationally

expensive, since many hundreds of individual configura-
tions are evaluated in a typical optimizer run, and a non-
linear GK parallel simulation for a single flux tube for the
present application requires on the order of 100 CPU days.

To surmount this obstacle, we instead employ a ‘‘proxy
function’’ Qprox in C2

t to stand in place of QGK, a fairly

simple function of key input geometric quantities, based on
theory and on the geometry dependences of QGK found in
GENE studies on a family of NC-optimized stellarators [9].

Qprox need not give a highly accurate prediction of what the

GK result will be (though of course the more accurate the
better)—it need only capture enough of the physics to
guide the optimizer toward configurations which GENE

will subsequently confirm has reduced QGK. Moreover,
by examining the means by which STELLOPT contrives to
improve Qprox and QGK, one may learn methods for

deforming the stellarator shape to achieve the turbulent
stabilization which are geometrically possible, whose dis-
covery without the optimizer would be extremely difficult.
For Qprox, we begin with an expression for the ion radial

heat flux Qi ¼ ��n0g
xxdTi=dx, with radial coordinate

x � ð2c t=BaÞ1=2, 2�c t the toroidal flux, Ba the magnetic
field strength B at the plasma edge (where x ¼ a), and
gxx � jrxj2 the xx component of the metric tensor. We use
the quasilinear expression for the ion conductivity, � ¼P

kDk, with

Dk ¼ ð!�iLnÞ2
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Here,!�i � �ðckyTi=eBÞ�n is the diamagnetic frequency,

with inverse density scale length �n � L�1
n � �@x lnn0

and ky � k � ŷ the wave vector component in the binormal

direction ŷ � b̂� x̂, with x̂ and b̂ unit vectors in the
directions normal to a flux surface and along the magnetic
field. The final form is obtained using a simple mixing-
length argument for the mean-square potential fluctuation
amplitude hj�kj2i, with cD a multiplicative constant,
determined below.
As in Ref. [9], for simplicity we consider only ion

temperature gradient (ITG) turbulence [10] with adiabatic
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electrons. As found there, two geometric quantities central
to determining the form and amplitude of the turbulence
are the ‘‘radial curvature’’ �1 � ex � �, with vector curva-
ture � and ex the covariant basis vector for x [8], and the
local shear sl � @�ðgxy=gxxÞ, with � the poloidal azimuth
in flux coordinates, which parametrizes distance along a
field line. An approximate ITG dispersion equation is

0 ’ 1

�
þ!�ið1þ �iÞ!di

!2
þ k2kv

2
i !�ið1þ �iÞ

!3
; (2)

with !di ¼ �!�i�1=�n the ion drift frequency, �i �
�T=�n, and �T � �@x lnTi. The first term on the right
side is the adiabatic electron contribution, the second
term gives the ITG ‘‘toroidal branch’’, and the third term
gives the ‘‘slab branch’’. If that 3rd term is neglected,

Eq. (2) is quadratic in !, giving ! � �i�k ’ �!�i½�ð1þ
�iÞ�1=�n�1=2, becoming unstable for �1 < 0 (‘‘bad curva-
ture’’). This expression has a critical pressure gradient �cr ¼
0, which becomes nonzero for a more complete dispersion
equation, e.g., from including the 3rd term in Eq. (2). Here,
we include �cr simply as a parameter, bymaking the replace-
ment ð1þ �iÞ � �p=�n ! ð�p � �crÞ=�n. Then one has

�k ’ ð!�i=�nÞj��1ð�p � �crÞj1=2Hð�p � �crÞHð��1Þ;
(3)

withHð�Þ the Heaviside function. Retaining the 3rd term in
Eq. (2), and making the replacement kk ! �ði=qRÞ@� (with
R the major radius and q the safety factor), yields a
Schrödinger equation, which localizes the mode in � to wells
in the effective potential Veffð�Þ, proportional to the first two
terms in Eq. (2) [9].

We model k�2
x on the intuition that sl plays a role similar

to that played by flow shear [9], stabilizing the mode and

diminishing its radial extent from the ‘‘mesoscale’’ (k�1
x �

ffiffiffiffiffiffiffiffiffiffiffi
Lp	i

p
) to a microscale (k�1

x � 	i) when the E� B shear-

ing frequency !E becomes comparable to the inverse
correlation time ��1

E for fluctuations in the absence of
E� B flow [11]:

k�2
x ð!E; slÞ ’ 	2

i þ 	iLp=½1þ ð�E!EÞ2 þ hð�sslÞ2i���:
(4)

Here, 	i is the ion gyroradius, Lp � ��1
p , �E, �s are con-

stants set below, and h�i�� is an average along a field line
weighted by a Gaussian of width ��, a simple means of
giving k�2

x the nonlocal character more rigorously imposed
by actually solving the mode equation noted above alongB.
Qprox is thus determined by Eqs. (1), (3), and (4), which have

5 as yet undetermined constants, �cr, �E, �s, ��, and cD.
Here, we neglect the flow-shear contribution (we set �E ¼
0) and fix the remaining 4 by using simulated annealing [12]
to make a best fit of Qprox with the QGK from the results of

GENE simulations on the family of 3 flux tubes in each of 4

toroidal configurations studied in Ref. [9], giving values
0.053, 1.12, 0.207, and 0.959, respectively. A comparison

ofQprox (solid lines) and QGK (dashed lines) along one field

line of each of these 4 configurations is given in Fig. 1. For
all flux tubes simulated,Qprox represents reasonably well the

form of QGK along B, and also gives the approximate
magnitude in each case but for 2 of the 3 tubes simulated
for W7X (Wendelstein VII-X) [13], where it is too small by
a factor of about 3, indicating that some further physics is to
be found to improve the present Qprox. The predictive relia-

bility of C2
t is somewhat better than that indicated in Fig. 1,

since it uses the surface average hQproxi of Qprox, and the

local disparities in (Qprox �QGK) tend to cancel.

In Fig. 2–4 we show the results of two STELLOPT runs
using this Qprox. The Levenberg-Marquardt optimization

FIG. 1 (color online). Comparison of Qprox (red solid line)
with QGK (black dashed line) for one flux tube of each of the
4 toroidal configurations studied in Ref. [9].
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scheme [14] STELLOPT uses runs in successive ‘‘genera-
tions’’ of equilibria, here each with 54 members (one for
each direction of shape space z), to determine the direction
in z space to move next. For both cases, STELLOPT begins
with configuration LI383, which formed the baseline con-
figuration for National Compact Stellarator Experiment
(NCSX) [15], at 
 ¼ 4:2%. wt is made large enough to
make C2

t dominate C2 for the first several generations.
Constraints are also applied to maintain the plasma 
,
aspect ratio, and RBt ( ¼ major radius� toroidal field),
but the configurations are otherwise unconstrained. After
several generations, a sample equilibrium is chosen from

each run, before the configurations become less interesting
from a practical standpoint (for example, their rotational
transform dropping excessively). We select a sample con-
figuration ‘‘QA_35q’’ from generation 4 of the first run,
and ‘‘QA_40n’’ from generation 7 of the second. Ct is
2 orders of magnitude below that of NCSX for QA_35q,
and about 1 order of magnitude for QA_40n. The reason
why is shown in Fig. 2, which compares radial curvature
�1ð�Þ for 1 poloidal transit for NCSX (dashed black line)
with those for QA_35q [dashed gray (green) line] and
QA_40n (solid red). For both new configurations, one
sees that STELLOPT has found a means of boosting �1 so
that it has bad curvature (�1 < 0) in a much narrower
region than NCSX and worse curvature than NCSX only
where �1 > 0 for both configurations. While QA_40n has a
�1 which is somewhat more oscillatory than for NCSX,
and more so for QA_35q, both have smooth, converged
VMEC [16] equilibria. In Fig. 3 we show the boundaries of

NCSX (dashed black line) and QA_40n (solid red line) for
cross sections at 4 values of toroidal azimuth � . The
boundaries for QA_35q are similar to those of QA_40n.
While Ct has fallen orders of magnitude from that of

NCSX, the decisive test of whether the new configurations
truly have reduced transport is from nonlinear GENE runs.
This comparison is given in Fig. 4, showing the line
averaged QGK for NCSX (dashed black line), QA_35q
[dashed gray (green) line] and QA_40n (solid red line)
versus time. One sees that both indeed have QGK substan-
tially diminished from that for NCSX, by a factor of about
2.5 for QA_35q and about 2 for QA_40n. The reduction is
not as large as indicated by Qprox, but the proxy is clearly

adequate to guide STELLOPT in the direction needed to
reduce the turbulent transport. The achieved reduction is
quite appreciable, comparable to the reduction achieved in
tokamaks in going from L to H mode.

FIG. 3 (color online). Comparison of boundary shapes of
NCSX (dashed black line) and QA_40n (solid red line) at
values of N� ( ¼ number of field periods� toroidal angle) ¼
0;��=2; �.
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FIG. 2 (color online). Comparison of radial curvature �1ð�Þ for
1 poloidal transit for NCSX (heavy dashed black line), QA_35q
[dashed gray) green line], and QA_40n (solid red line).
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FIG. 4 (color online). Comparison of line-averaged heat flux
QGK versus time for NCSX (heavy dashed black line), QA_35q
[dashed gray (green) line], and QA_40n (solid red line) from
nonlinear GENE runs. QA_35q and QA_40n achieve reductions
in turbulent transport over that in NCSX by factors of about 2.5
and 2, respectively.

PRL 105, 095004 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

27 AUGUST 2010

095004-3



While QA_35q fares somewhat better than QA_40n in
itsQprox andQGK, it does worse in its NC transport level, as

assessed by its ‘‘1=�’’ NC value QNC � 3=2eff =�, with eff
the configuration’s ‘‘effective ripple strength,’’ and � the

thermal collision frequency. QA_35q has 3=2eff about

30 times that of NCSX. However, the high degree of NC
optimization present in NCSX makes its predicted ripple
transport smaller than that of its estimated turbulent trans-
port by about the same amount [17], so that NC transport is
still not dominant for this configuration. In contrast,

QA_40n actually has better QNC than NCSX, with 3=2eff

about 0.6 times that of NCSX.
QA_35q and QA_40n were arrived at using almost the

same STELLOPT parameters, the main difference being the
selection of different representations for the boundary in
producing the equilibria. This small difference set
STELLOPT on two similar but different courses through

shape space, owing largely to the highly structured topog-
raphy of C2ðzÞ. These two systems provide the first ‘‘proof
of principle’’ that substantial turbulence mitigation can
indeed be achieved by 3D shaping using this approach.
However, in evolving them, STELLOPT did not apply vari-
ous constraints to the configurations to make them fully
satisfactory. For example, while mostly ballooning stable,
as is LI383, QA_35q and QA_40n are kink unstable, and
their rotational transforms are smaller than that of LI383 by
factors of about 2.7 and 1.6, respectively. As found from
earlier experience in finding attractive candidate designs,
including, for example, LI383 and the N3ARE design
derived from it [18,19], finding configurations satisfying
multiple constraints can often be achieved, but the trajec-
tory through shape space is a multistaged process, requir-
ing human assessment and adjustment.

Many further possibilities exist for making use of this
general approach to turbulent transport mitigation. The
reduction STELLOPT achieved in QA_35q and QA_40n
principally made use of the �1 dependence ofQprox, finding

a means of deforming NCSX to restrict the domain of bad
curvature, and thereby alleviate the ITG instability. In a
similar way, one may seek other configurations which
reduce transport by using the sl dependence in Qprox.

Also, as noted, the present Qprox can be improved as a

model for ITG transport, and one may expect further im-
provements would accrue as more of the significant physics
in QGK is captured by Qprox. Further, the present restriction

to ITG turbulence was taken only for simplicity—any
modes which GK codes such as GENE can compute
(e.g., trapped-electron or electron temperature-gradient
modes) can be addressed by this method, developing a
modified Qprox guided by theory and by GK studies of

QGK. Moreover, it will also be of interest to use starting
designs other than NCSX, to see what different means
of achieving transport reduction STELLOPT finds as the
initial configuration is varied. For example, each of the
NC-transport-optimized designs studied in Ref. [9], and
perhaps tokamaks, would provide an edifying test bed for
this approach. Work addressing these avenues has been
initiated.
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