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An analytic study of the shielding and time evolution of zonal flows in tokamaks and stellarators is
presented, using the action-angle formalism. This framework permits one to solve the kinetic
equation without expansion of that equation in small parameters of radial excursions and time
scales, resulting in more general expressions for the dielectric shielding, and with a scaling extended
from that in earlier work. From these expressions, it is found that for each mechanism of collisional
transport, there is a corresponding shielding mechanism, of closely related form and scaling. The
effect of these generalized expressions on the evolution and size of zonal flows, and their
implications for stellarator design are considered. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2751604�

I. INTRODUCTION

Since the early 1980s, a range of techniques for reducing
the neoclassical �nc� transport in stellarators has been
developed,1 reducing the nc fluxes to levels subdominant to
the turbulent fluxes over much of the plasma column, and a
new generation of “transport-optimized” stellarator designs
is now being implemented to test these techniques. As a re-
sult, new interest exists to also reduce the turbulent transport
in stellarators. As for tokamaks, it is believed that an impor-
tant mechanism for suppressing the turbulent fluxes in stel-
larators will be by having strong zonal flows �ZFs�, primarily
poloidal E�B flows due to a radially varying electrostatic
potential �Z�r , t� driven by the nonlinearities in the kinetic
equation. It is thus of interest to understand how machine
geometry will affect the strength of these flows.

A calculation of the �Z produced for a given nonlinear
source S for tokamaks has been given by Rosenbluth and
Hinton2 �R-H�, and an analogous calculation for stellarators
by Sugama and Watanabe3,4 �S-W�. These are basically lin-
ear response calculations, computing the dielectric response
D in k2�Z=4���xt /D, where ��xt is the external charge-
density perturbation, driven by the assumed nonlinear
source, ��xt��dtS�t�. In Ref. 2, D is found to have a shield-
ing contribution Dg��kr�g�2 associated with the gyromotion
�superscript g�, corresponding to a “classical” polarization
current Jp,g, and an analogous “nc,� or “bounce” shielding
Db�Ft�kr�b�2 associated with the longer-time-scale bounce
motion �superscript b�, with a corresponding bounce-
polarization current Jp,b. �Here, kr is the local radial wave
vector of the ZF, �g is the gyroradius, �b is the banana width,
and Ft is the fraction of toroidally trapped particles.� In S-W,
it is found that for stellarators, there is a further contribution
Dd�Fh due to motion on the still longer drift time scale
�superscript d�, which can appreciably modify this result.
This term may in turn be associated with a drift polarization
current Jp,d. �Here, Fh��h

1/2 is the fraction of helically
trapped particles.� As will be seen, this form is one particular
limit of the drift shielding natural to the ordering adopted in

Refs. 2–4, generalized in this paper. A second formal ap-
proach applied to studying ZFs in stellarators, computing the
“time-dependent viscosity,” has been employed by Shaing.5

There, the kinetic equation is solved using a high- and low-
frequency ordering, obtaining what is effectively the drift
shielding contribution, in the “1/�” and banana regimes of
stellarator transport. The results of both earlier lines of study
are extended by the approach employed here �cf. Sec. III�.

A formalism natural to treating particle motion on these
different time scales, and in the relatively complex magnetic
geometries of tokamaks and stellarators, is the “action-
angle” �aa� formalism, originally formulated for tokamaks by
Kaufman.6 In it, one reparametrizes phase space points z
from the more directly physical set �r ,p� of real-space posi-
tion r and conjugate momentum p to �� ,J�, with J the 3
invariant actions of the unperturbed motion and � their 3
conjugate angles. Using this formalism, solution of the ki-
netic equation can be carried out, and important quantities
such as D can be computed, without having to introduce
expansions in small parameters of radial and time scale, such
as the ratios of �g, �b, or radial drift excursion �“superbanana
width”� �d to system size L, or the frequency �Z of the ZF
perturbation to the characteristic frequencies 	g,b,d of the
particle motion. The resultant expressions for important
quantities emerge in a form which is almost as simple as the
more familiar forms for an unmagnetized homogeneous
plasma. �Approximations may then be made in the descrip-
tion of the orbit, radial structure of the eigenmodes, and
evaluation of integrals involving them.� The perspicuity of
the aa expression for D permits one to more readily see
parallels which exist among the different time scales, as will
be seen.

The dielectric shielding computed here and other mecha-
nisms affecting ZFs come together in the time evolution
equation for the flux-surface averaged radial electric field
Er���r ·E	, obtained from the surface average of Ampere’s
law, plus an expression for the surface-averaged radial cur-
rent Jr,
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�tEr = − 4�Jr, �1a�

Jr = �4��−1
�tEr + ��Er − Ea� + FS/B . �1b�

The first term in Jr, proportional to the time derivative of Er,
represents the polarization current Jp, with 
 containing the
dielectric shielding contributions. The second term repre-
sents the nonambipolar radial current due to nc transport,
from a first-order expansion in E��Er−Ea�=−��r ·��Z	 of
the nc radial current 
es�s�Er�, where Ea=−��r ·�a	 is the
ambipolar value at which the ion and electron particle fluxes
are equal. FS is the force, here assumed random, exerted by
the turbulence within a magnetic surface normal to the mag-
netic field, which acts as a source driving Er. Using Eq. �1b�
in �1a� yields a Langevin-type equation, with drive FS, and
restoring term �E. Neglecting the � term, as in the qualita-
tive discussion in Ref. 2, results in the ensemble average
�E2	p�t���dEp�E , t�E2 increasing without bound with t, cor-
responding to a 1/� divergence as �→0 in the spectral
function SE�����E2	p���. �Here, p�E� is the probability dis-
tribution function �pdf� for E.� As discussed in Sec. IV, re-
fining this picture by including the � term removes the di-
vergence, resulting in a process where Er�t� evolves
diffusively about Er=Ea, reaching a bounded steady-state
pdf.

In Sec. II, the aa formalism is used to obtain general
expressions for the linear response, with �� ,J� uncommitted
to a particular magnetic geometry. In Sec. III this general
form is specialized to toroidal geometries, and expressions
for D and the response equation determining the size of �Z

are obtained, valid for arbitrary ratios of �g,b,d /L. These are
then specialized to find limits of the general expressions, and
some of the results of earlier work are recovered, along
with results in additional physically interesting limits. A
close correspondence is found to exist between each colli-
sional transport mechanism and a contribution to the polar-
ization shielding. The reader who is more interested in spe-
cific applications and physical implications than in the
formal development, may skim Secs. II and III until around
Eq. �15�, and then proceed more closely from there. In Sec.
IV we analyze the statistics of the ZF time evolution implied
by Eqs. �1�. In Sec. V we summarize the results of the pre-
ceding sections.

II. ACTION-ANGLE FORMALISM

As noted in Sec. I, in the aa formalism one parametrizes
phase points z with the 3 invariant actions J of the unper-
turbed motion and their 3 conjugate angles �. The collision-
less motion is governed by a Hamiltonian H�z , t�=H0�J�
+h�z , t�, with unperturbed and perturbing parts H0 and h.
Here we consider electrostatic perturbations only, h�z , t�
=e���r�z� , t�. The key feature of aa variables is that they
make the description of particle motion very simple. Hamil-
ton’s equations are

�̇ = �JH = ��J� + �Jh � ��J� , �2�

J̇ = − ��h = − i

l

lhl�J,t�exp�il · �� , �3�

where �J ���� denotes a gradient in J ���-space, ��J�
��JH0, and l is the 3-component vector index, specifying
the harmonic of each component of � in the Fourier decom-
position h�z�=
lhl�J�exp�il ·��.

The Vlasov equation may be written

��t + Ĥ0��f�z,t� = − �J̇ · �Jf0 + S�z,t�f0, �4�

where Ĥ0��,H0=� ·��, with �, Poisson brackets, and we
write the distribution function f�z , t�= f0+�f , with f0�J� the

unperturbed portion, satisfying Ĥ0f0=0, and �f�z , t� the per-
turbed portion. Following Refs. 2 and 3, we take the nonlin-
ear term −��f ,h equal to a specified source function
S�z , t�f0.

Laplace transforming in time and Fourier transforming
in �, one obtains

G0
−1�f l�J,�� = il · �Jf0hl�J,�� + �f l�J,t = 0� + Sl�J,��f0,

�5�

with inverse propagator G0
−1��−i�+ il ·�+� f�, in which we

include an effective damping rate � f, to later consider the
effect of collisions. � f goes to a positive infinitessimal � in
the purely collisionless case. Eq. �5� is readily solved for
�f l���, and the charge density at observation point x is then
computed via �now showing species label s� ��s�x�
=�dz��x �z��fs�z�, where ��x �z��es��x−r�z�� is the charge
density kernel, es is the species charge, and �� � is the Dirac
delta function. This yields 3 contributions, labelled A, B, and
C, corresponding to the 3 terms on the right-hand side of �5�,

��sA�x,�� =� dx�Ks�x,x�,�����x�,��

�6�

��s,B+C�x,�� = �2��3� dJ

l
�l

*�x�J�G0��fsl�J,t = 0�

+ Ssl�J,��fs0� ,

��sA, proportional to h or ��, gives the self-consistent re-
sponse of the plasma, with response kernel Ks. ��sB, due to
the initial conditions of �f , gives the transient ballistic re-
sponse, and the third term, ��sC, is due to the nonlinear
drive.

The electrostatic counterpart of the response kernel ob-
tained in Ref. 6 is given by

Ks�x,x�,��

= �2��3� dJ

l
�l

*�x�J�
l · �Jfs0

l · � − � − i� f
�l�x��J�

= Ks
ad�x,x�� + �2��3� dJ


l
�l

*�x�J�

�
���H0

fs0 + l · �J�H0
fs0

l · � − � − i� f
�l�x��J� . �7�
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In the second form here, we have separated out the
�generalized� adiabatic term Ks

ad�x ,x���es��x−x��
�dz��x �z��H0

fs0, by giving fs0 an explicit dependence on
H0�J�, so that �Jfs0�H0�J� ,J�= ����H0

+�J�H0
�fs0, where the

��J�H0 in the second term means �J at constant H0. Special-
izing f0 to the local Maxwellian form,

fM�J� �
n0

�2�MT�3/2 exp�− �H0 − ea�/T� , �8�

where density n0, ambipolar radial potential a, and tem-
perature T are functions of the drift-averaged minor radius
rd�J�, and M is the particle mass, one has �H0

fs0=−Ts
−1fs0,

and Ks
ad�x ,x��=−��x−x�� / �4��s

2�x��, with �s
2�x�

�Ts / �4�ns0es
2� the square of the local Debye length.

III. TOROIDAL GEOMETRY

The expressions given thus far are valid for any system
where the motion is “integrable,” i.e., where a complete set J
of constants of the motion exists. We now specialize to tor-
oidal geometries, including tokamaks and stellarators. Such a
set J exists for systems with at least one symmetry direction,
such as tokamaks and straight stellarators, manifested by
their collisionless guiding-center orbits exactly closing on
themselves in poloidal cross section. An approximate set J
exists for those classes of toroidal stellarators whose ripple
has sufficient symmetry that “superbanana” orbits �defined as
those ripple trapped during at least part of the orbit� approxi-
mately close on themselves. Since devices without this fea-
ture have poor confinement, this includes most stellarators of
interest. We represent the position in terms of flux coordi-
nates r= �� ,� ,��, where 2�� is the toroidal flux within a
flux surface, and � and � are the poloidal and toroidal azi-
muths. In terms of these, the magnetic field may be written
B=�����+�����p=�����p, with 2��p the poloidal
flux, Clebsch angle �p��− ��, constant along a field line,
and ��q−1�d�p /d� the rotational transform. �p and mo-
mentum �e /c�� form a canonically conjugate pair for motion
perpendicular to the field line. It is also useful to define an

average minor radius r��� by �� B̄0r2 /2, with B̄0� B̄�r=0�
the average magnetic field strength on axis. We consider
toroidal systems with the nonaxisymmetric portion of mag-
netic field strength B dominated by a single helical phase
�0�n0�−m0�,

B�x� = B̄�r��1 − �t�r�cos � − �h�x�cos �0� , �9�

with ripple strength �h�x� allowed to vary slowly over a flux
surface, with flux-surface average �h�r����h	.

A suitable choice for the aa variables is �= ��g ,�b , �̄p�,
J= �Jg ,Jb , �e /c��̄�, with Jg��Mc /e�� the gyroaction, � the
magnetic moment, �g the gyrophase, describing the fastest
time scale of the motion, Jb the bounce action, �b its conju-

gate bounce phase, �̄ is the drift-orbit averaged value of �,
and its conjugate phase �̄p, the orbit-averaged Clebsch coor-
dinate �p, describing the slow, drift time scale. To make the
periodicity of the drift angle 2� as for the other 2 phases,

instead of ��̄p , �e /c��̄� we use the closely related canonical

pair ��d ,Jd= �e /c��̄d�, with �d� �̄p / �1− �qmn0�, �̄d� �̄

− �̄pqmn0, where qmn0�m0 /n0. For typical parameters,

�qmn0�1, so that ��d� �̄p , �̄d� �̄�. Correspondingly one has
the characteristic frequencies of motion ���	g ,	b ,	d�,
with gyrofrequency 	g, bounce frequency 	b, and drift fre-
quency 	d, and vector index l��lg , lb , ld�.

We adopt an eikonal form for the structure of any mode
a,

�a�x� = �̄a�r�exp i�a�x� , �10�

with wave phase �a�x����rdr�kr�r��+m�+n��, and slowly
varying envelope �̄a�r�, assumed roughly constant over the
radial excursion of a particle. Thus, mode a has local
wavevector k���a=kr�r+m��+n��. For the ZF poten-
tial �a→�Z, one has �m ,n�= �0,0�.

Using form �10�, one may evaluate the expression
hla�J���2��−3�d� exp�−il ·��ha�z� for the “coupling coeffi-
cient” of mode a to particles with actions J. Writing
�a�r�z��= �̄a+��a, with ��a the portion of �a oscil-
latory in � �so having zero � average�, one finds
hla�J�=es�̄a�r̄�exp�i�̄a�Gla�J�, with Gla��2��−3�d� exp
�−il ·��exp i��a�z� the “orbit-averaging factor.” From
Parseval’s theorem one may show that these satisfy the im-
portant relation 1=
l�Gl�2, generalizing the much-used iden-
tity for Bessel functions 1=
lJl

2�z�.
Multiplying Poisson’s equation −�2�a�x ,��

=4�
s��s�x ,�� by �a
*�x ,��, putting Eq. �10� in Eqs. �6� and

�7� and using d6z=d�dJ=drdp, one obtains the radial inte-
gral of the radially local response equation E�r�,
�drV��̄a

*�r�E�r�, with E given by

k2D�k,��
ei�̄a�r�

Ti

= 

s

�si
−2


l
�Gla

* �J�
i��fsl�t = 0�/fs0 + Ssl����

�� − l · � + i� fs�
� .

�11�

Here, V��dV /dr is the radial derivative of the volume V�r�
enclosed by the flux surface r or �, �si

2 �Ti / �4�ns0esei�,
k2��k�2, and �¯	��2��−2�d�d��dp�f0 /n0�¯ is the
flux surface and momentum-space average over the unper-
turbed distribution function f0. Dielectric function D is
given by D�k ,���1+
s
s�k ,��, with susceptibility

s�k ,��= �k�s�−2gs�k ,���, and

gs�k,�� = 1 − 

l
��Gla�J��2

� − �*s
f

� − l · � + i� fs
� . �12�

Here, �*
f ��*�1+��u2−3� /2�, with �*�−k�cT / �eBLn� the

diamagnetic drift frequency, ��d ln T /d ln n, u�v /vs the
particle velocity, normalized to the thermal speed vs,
k�� ld /r, and Ln

−1�−� ln n0 /�r. As usual, the 1 in D is the
vacuum term from the left-hand side of the Poisson equation,
negligible in comparison to the 
s, which correspond to ��sA

in Eq. �6�. The 1 in gs comes from the adiabatic term Ks
ad in

Eq. �7�. The two terms on the right-hand side of Eq. �11�
arise from ��s,B+C. This response equation is of essentially
the same form as that obtained by R-H and S-W, or of any
linear response calculation. The differences lie in the form of
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the dielectric D, and in the use of the aa form, which facili-
tates dealing with the range of time scales and of orbit-
averaging effects in complex geometries in a general manner.

We now evaluate the Gl. As discussed in previous
applications10–14 of the aa framework, to evaluate these one
needs a description of the particle position r�z�, to evaluate
the required � integrations. The 3 trapping states �passing,
toroidally trapped, and helically trapped� are indicated by
trapping index �= p, t, and h, respectively. Then an approxi-
mate description of r��� is

r = rd + �r�d���d� + �r�b���b� + �r�g���g� ,

� = �h�d + �p�b + ���b���b� + ���g���g� , �13�

� = �d0 + ��hqmn0 + �tpq��d + ���b���b� + ���g���g� ,

where we use trapping-state “switch” �� to describe the be-
havior for different states � in a single expression: ��=1 for
a particle in trapping-state �, and 0 otherwise. Thus, 1=�h

+�t+�p. Also, �tp��t+�p equals 1 if a particle has �= t or
p, and 0 for �=h.

Equation �13� manifests two kinds of dependence on the
phases �i �i→g ,b ,d�, a secular, linear dependence, and
oscillatory dependencies, held in functions �x�i���i�, with
x→r ,� ,�. Here we approximate each of the latter by a har-
monic, �co�sinusoidal form, e.g., �r�i���i���i cos �i, with
amplitude �i. This is a very good approximation for gyromo-
tion �with �g the gyroradius�, and a good approximation for
bounce motion not too near a trapping-state boundary �with
�b the banana width�. For simplicity, we assume that super-
banana ��=h� particles do not detrap, but precess poloidally
dominated by the E�B poloidal drift, 	d�	dE, which is
roughly constant on a given orbit, while drifting radially as

vBt sin �, as usual. �Here, vBt=�t�B̄ / �M	gr�.� This produces
superbananas which are displaced circles, with superbanana
width �d=�hvBt /	dE, a common approximation in stellarator
transport theory. The radial drift motion is thus also har-
monic in �d. For simplicity, we have neglected from this
orbit description a second type of superbanana width, the
finite radial excursions �dt made by �= t particles on the drift
time scale, which give rise to the “banana-drift” transport
branch.7–9 Inclusion of this additional mechanism presents no
difficulty for the basic formalism.

The hl or Gl have been evaluated previously10,13,14

for perturbations with nonzero m and n, but neglecting
the effect of finite �d. For the current application to ZFs,
we keep finite �d, but set m=0=n, making only the first
of Eqs. �13� necessary. Using the Bessel identity
Jl�z�= �2��−1�d�e−il�eiz sin � and Eq. �10�, one finds

Gla�J� = Jlg
�zg�Jlb

�zb�Jld
�zd�e−i�a, �14�

with zg,b,d=kr�g,b,d, and �a a phase factor. Since Gl appears
only as �Gl�2 in the theory here, the value of �a does not enter.

For drift turbulence, which is driving the ZFs, one typi-
cally has k�

d �gi�0.3, and frequencies �d��*�k�
d �. For ZFs,

one has much smaller kr and frequencies �Z, down by an
order of magnitude, perhaps by the “mesoscale” ratio,
kr

Z /k�
d ���gi /a. Thus, for both species, one has the ordering

�Z ,	d�	b�	g, and zg�zb�1. For the moment we leave
the relative sizes of �Z and 	d unspecified. Also, one may
have zd�1 for trapped particles, for ions and also, notably,
for electrons, as noted by S-W.3 Thus, as opposed to toka-
maks, in stellarators electrons can participate in orbit averag-
ing, because their radial excursions on the drift time scale
can be comparable with those of ions.

Because �Z�	b,g, the sum over l in Eq. �12� is domi-
nated by the terms with lg,b=0, an approximation strength-
ened for zg,b�1, for which the factors Jlg,b

2 in �Gl�2 in Eq. �12�
are negligible unless lg,b=0. These reduce the triple sum
there to a single sum 
ld

. In that sum, if one has ��	d, then
over the ld-range �ld�zd over which Jld

2 in Eq. �12� is ap-
preciable the integrand does not change greatly, so that one
can perform the summation, using the identity 
lJl

2=1,
which eliminates the Jld

2 factor, leaving only the factor Jlg
2 Jlb

2 .
In the other limit ��	d, the sum is dominated by the
ld=0 term, and the effect of Jld

2 survives. Thus, for ��	d,
all of gyro-, bounce-, and drift-averaging contribute. Ne-
glecting � fs, Eq. �12� becomes

gs�k,�� � 1 − �0b�bg,bb�, �	d ��� , �15a�

gs�k,�� � 1 − �0d�bg,bb,bd�, ���	d� , �15b�

where �0d�bg ,bb ,bd���Jg
2Jb

2Jd
2	, �0b�bg ,bb���0d�bg ,bb ,bd

=0���Jg
2Jb

2	, Jg,b,d
2 �J0

2�zg,b,d�, bg�kr
2�gT

2 , bb=bgq2 / �Ft�t
1/2�,

and bd�kr
2�dT

2 , with �gT�vT /	g, vT is the species thermal
velocity, and �dT��d�v=vT��vT

2.
The physics represented by Eqs. �15� is that if the ZF

drive in a stellarator has a time variation that is slow com-
pared to 	d �cf. Eq. �15b��, �=h particles have time to par-
tially shield out �Z by drifting along their collisionless su-
perbanana orbits, an averaging mechanism not available to
tokamaks. If the ZF drive varies rapidly compared with 	d

�Eq. �15a��, this new mechanism for radial averaging is lost.
Equation �15a� also holds in the tokamak limit ��h→0�,
where one has zd=0. And in the cylindrical limit ��t→0� of
a large-aspect ratio tokamak, zb vanishes, and the �’s in Eqs.
�15� are replaced by the more familiar �0�bg���0b�bg ,bb

=0���Jg
2	= I0�bg�e−bg, with I0�b� the modified Bessel func-

tion of the first kind. For bg�1, one has �0�bg��1−bg, and
thus gs�bg, the contribution from the classical polarization
current Jp,g. The functions �0b and �0d succinctly describe
the additional contributions from finite bb, corresponding to
shielding due to the “bounce� polarization current Jp,b com-
puted in Refs. 2 and 3, and from finite bd, corresponding to a
“drift” polarization current Jp,d, extending the result in Ref.
3, as noted in Sec. I.

As already noted, for �Z�	g,b, Eqs. �15� are valid for
arbitrary bg,b,d. Using an approach much like that of R-H,
Xiao and Catto15 have extended the R-H tokamak results,
also for �Z�	g,b, obtaining semianalytic expressions for gs

for arbitrary bg,b. In particular, they find gs�bg,b�1�→1, a
result recovered by the tokamak �bd=0� expression �15a�.

We approximately evaluate �0b and �0d using the small-
argument expansion J0�z��1− �z /2�2 for the Bessel func-
tions. �While zg,b�1 is a good assumption, one may have
zd�1 or zd�1. The above expressions for �0d, �0b are valid
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for arbitrary values of zg,b,d.� First taking zd�1, one has
�0d�bg ,bb ,bd��1− 1

2 �zg
2	− 1

2 �zb
2	− 1

2 �zd
2	. Evaluating these

averages, one finds 1
2 �zg

2	=bg, 1
2 �zb

2	=Ftcbbb, and 1
2 �zd

2	
=Fhcdbd. Here, cd��15/2�, and as before Fh= �2/���2�h is
the fraction of particles with �=h, here assuming ripple
strength �h is constant on a flux surface. 1

2 �zd
2	 is proportional

to Fh because only �=h particles have superbanana excur-
sions �d, and the large factor cd=15/2 that enters because of
the strong energy weighting from �d

2�v4. The factor cb is
computed for a stellarator in Ref. 3. Here we evaluate it for a
tokamak to make contact with the value 1.6 found in Ref. 2.
We neglect the contribution from �= p particles in compari-
son with �= t ones, and use the expression for the banana
width �b�v���=0,� ,K� /	p, with kinetic energy K and po-
loidal gyrofrequency 	p�	g�q /�t�. One has v���=0,� ,K�
� ûy1/2, where û�2��B0�t /M�1/2, and y��K /�B0−1� /2�t

+1/2 is the toroidal well-depth parameter, running
from 0 to 1 for particles with �= t. One then obtains
�zb

2	��kr /	p�2��tû
2y	=�kr /	p�22�M2�0

�dK�f0 /n0��0
1dy�y

�ûA�y��û2y�2cbbgq2 /�t
1/2, with cb�10�2/ �3���1.5, in ap-

proximate agreement with the value in Ref. 2. Here,

A�y� =
4

�
�E�y1/2� − �1 − y�K�y1/2��

is a Jacobian factor �K� � and E� � are the complete elliptic
integrals�, with A�y�1��y, and A�1�=4/�.

Equations �15� then yield

gs�k,�� � bg + Ftcbbb, �	d ��� , �16a�

gs�k,�� � bg + Ftcbbb + Fhcdbd, ���	d� . �16b�

Assuming the source terms on the right-hand side of Eq. �11�
remain unchanged, one sees that ZFs in a stellarator with
��	d will be appreciably reduced below those in a stellar-
ator with 	d��Z or in a tokamak, due to the additional
contribution from Jp,d, to which not only ions, but also elec-
trons, may contribute.

One notes that the drift contribution gd=Fhcdbd

�Fh�kr�d�2 in Eq. �16b� has a form analogous to the bounce
and gyro contributions, as opposed to the scaling gd�Fh

found in Refs. 3 and 4, noted in Sec. I. In that work, the term
	d��d

�f was neglected in their counterpart of kinetic Eq. �4�.
Since �d�1/	d, that work is accordingly done in the
limit of very large superbanana width �d��=h�→� �but
�d��= t , p�=0, as before�. In that limit, Jd

2�J0
2�zd� equals

0 �1� for �=h�t , p�, and one finds gs�k ,��	d��1
−�0d�bg ,bb ,bd�1��bg+Ftcbbb+Fh, recovering the limit
gd=Fh found in Refs. 3 and 4, instead of the zg,b,d�1 form
given in Eq. �16b� above.

The ZF time evolution as the successive shielding
mechanisms set in is thus as follows. �The longer-time, dif-
fusive ZF evolution is discussed in Sec. IV.� For times that
are short compared to a gyroperiod �t�	g

−1�, none of the
three shielding mechanisms has time to be established. For
	g

−1� t�	b
−1, the classical polarization term gg�bg begins

to shield the ZF potential �Z, while the gyrophase-dependent
�lg�0� portions of the ballistic term in Eq. �11� phase mix
away. This very early phase is not captured by gyrokinetic

simulations, which carry no gyrophase dynamics. An analo-
gous, bounce-related phase is then entered for 	b

−1� t
�	d

−1, in which the additional bounce-shielding term
gb�Ftcbbb produces a further damping of �Z, superposed on
which are oscillations at ��	b from the lb�0 ballistic
terms, which phase mix away, as seen in simulations.3,4 If the
low-frequency ���	d� portion of the ZF source S��� is
dominant, then in the interval 	d

−1� t, the drift contribution
gd�Fhcdbd establishes itself, further damping the ZF to its
shielded value.

The expressions given thus far have assumed very low
collisionality, � f�	d. Such an ordering pertains to helically
trapped particles in the so-called “superbanana regime,”16,17

with � f →�h�� / �2�h�, the frequency for �=h particles to
scatter out of a ripple well. Ions may satisfy such an ordering
for realistic parameters. For electrons, being much more col-
lisional, this is less common, but can occur for very large
	dE, such as sometimes produced at the electron root.18

More typically, electrons collisionally detrap having com-
pleted only a radial excursion �rd��vBt /�h smaller than
their full superbanana excursion �d=vBt /	d, producing
transport in the 1/� regime.19,20 In this case the electron
contribution to gd will be reduced. Mathematically, increas-
ing � f in Eq. �12� broadens the nearby resonances at succes-
sive values of ld, for each value of �lg , lb�. When � f becomes
larger than �ld	d �where as above, �ld�zd�, then the reso-
nances add to form a single �lg , lb� resonance, and as in the
case of �!	d, the ld resonances may be summed over,
eliminating the Jld

2 factor. �An analogous coalescence of
lb-resonances may be expected at still higher � f, where � f

becomes larger than 	b. In this case, the separate lb reso-
nances coalesce, removing the Jlb

2 factor, and the bounce con-
tribution gb to g.�

In Ref. 5 the “time-dependent viscosity” is computed in
the 1/� and banana regimes. In the moment method formu-
lation of collisional transport used there, the radial fluxes �s

giving Jr=
ses�s in Eq. �1b� are proportional to the averaged
toroidal viscosity �Bt ·� ·�	 �with � the viscosity tensor�.
Thus, in that formal approach, the polarization contributions
to Jr, corresponding to the term in 
 in Eq. �1b�, are those
coming from the high-frequency limit of �, and so of per-
turbed distribution function �f . In the linear-response ap-
proach adopted in Refs. 3 and 4 and the present work, the
same �f is instead used to compute the dielectric response D.

The bounce-averaged kinetic equation used in Ref. 5
may be written

�t�f � − r̄̇�rf0 + C�f , �17�

which may be obtained from Eq. �4� here, but replacing the
source term Sf0 there with the collision term C�f , and ne-

glecting the bounce-average of the convective term Ĥ0, valid

in the 1/� regime. �Here, r̄̇ is the bounce-averaged radial
drift velocity.� In the low-frequency limit, �t�f is neglected
in comparison to C�f , and �17� reduces to the usual equation
used to compute �f and the flux in the 1/� regime. For
the high-frequency limit, C�f is instead neglected, and
�f has essentially the same form as at low-frequency,
but with �h replaced by a flow-damping rate ", i.e., with
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C�f �−�h�f replaced by �t�f �"�f . These low- and high-
frequency limits are both captured by the aa solution �f l

obtained as in Eq. �5�, dropping the source and initial-value
terms there. Taking the gyro- and bounce-averaged portions

of this �lg,b=0�, we write r̄̇��d�=−i
ld
vld

exp�ild�d�, with
vld

=−v−ld
real, one has �f ld

= iG0vld
�rf0, with � f →�h in G0 as

defined following Eq. �5�. Taking �= i", and the lowest non-
vanishing drift harmonic �ld= ±1� for simplicity, gives
�f �v1�rf0ei�d / �	d− i�"+�h��+c.c . , where v1�vBt /2. In
the 1/� regime, 	d is neglected in the denominator, and this
expression approximates the form obtained in Ref. 5 com-
bining its high ��h→0� and low frequency �"→0� results.
This form is also valid in the lower-� superbanana regime
considered above, and is readily generalized to one keeping
all drift-harmonics ld.

We note that the effective collision frequency � f used
here and introduced in Eq. �5� comes from the Krook colli-
son operator, which does not conserve angular momentum
p�. It is thus satisfactory for computing fluxes and responses
associated with mechanisms for which p� conservation is not
crucial, such as the drift time scale response just considered,
but not for computing those for which p� conservation is
essential, e.g., for the long-time collisional flows in a
tokamak.21

One may also consider the effect on D or g of techniques
developed to minimize stellarator nc transport. It has been
argued3,22–24 that neoclassically optimized stellarators should
also have lower turbulent transport, due to less damping of
ZFs. The basic idea of most nc optimization techniques has
been to reduce ripple transport by reducing either Fh, or by
reducing the superbanana width �d�vBt /	d.1 One sees from
the above expressions for �0d, characterized by the argument
1
2 �zd

2	�Fhkr
2�dT

2 , that this is just what is needed to diminish
the low-� shielding from gd.

One notes that associated with each of the 3 polarization
contributions in Eq. �16b� is a collisional �classical#nc�
transport mechanism; the gyromotion producing the classical
polarization term gg also gives rise to classical transport, the
bounce motion producing gb gives rise to axisymmetric nc
transport, and the drift motion yielding gd also produces the
“superbanana” branch of transport, dominant in conventional
stellarators. As indicated above, for simplicity we have not
included in the calculations leading to Eqs. �15� and �16� two
additional contributions, one coming from the radial drift
excursion �dt made by �= t particles in a nonsymmetric torus,
and one from the finite banana widths �bh from �=h par-
ticles. Each of these makes a contribution to the shielding
from g, and also corresponds to a transport mechanism, the
former to the banana-drift branch of transport,7–9 and the
latter to the nc transport in a straight �helically symmetric�
stellarator. Thus, instead of the 3 contributions to ZF shield-
ing in Eq. �16b�, a full description would include 5, each
corresponding to one of the 5 branches of collisional
transport.1

The form of the polarization shielding contributions to g
is close to the form of the radial transport coefficient D for
each mechanism. For each mechanism j, one may use the
heuristic form Dj �Fj� f j��rj�2, with Fj the fraction of par-

ticles participating in that mechanism, �rj the radial step in
the random walk process, and � f j the effective stepping fre-
quency in that random walk. For example, for the axisym-
metric banana regime, one has Fj→Ft��t

1/2, �rj→�b

�q�g /�t
1/2, and � f j→�t�� /�t, yielding the usual banana dif-

fusion expression Dbn��q2�g
2 /�t

3/2. For the 1/� superbanana
regime, one has Fj→Fh��h

1/2, �rj→vBt /�h, and � f j→�h

�� /�h. On the other hand, the small-argument, low-� con-
tribution to g in Eqs. �16� is gj � 1

2kr
2�� j

2	. We approximately
include the �-dependence in gj described above by replacing
� j with �rj �which, as discussed above, becomes less than � j

for larger ��, and a factor Fj arises from doing the indicated
average. We then have approximately gj �Fj�kr�rj�2, and
thus gj� /gj ��Dj� /Dj��� f j /� f j��. Therefore, taking j→g and
j�→b, one expects the gyrocontribution gg in Eqs. �16� to be
smaller than the bounce contribution gb, because classical
diffusion Dg is subdominant to banana diffusion Db. Simi-
larly, taking j→b, j�→d, one expects the drift contribution
gd to dominate gb in Eq. �16b� approximately when superba-
nana transport Dd becomes large compared with Db.

The main goal of nc transport optimization has been to
reduce Dd below the anomalous level Dan, typically larger
than Db by an order of magnitude. Using the above relations,
this yields the approximate criterion gd /gb$Dan/Db for ac-
ceptably low gd. However, since one expects Dan to be an
increasing function of gd due to reducing ZFs, this criterion
is somewhat indeterminate, requiring a specific description
of this functional dependence.

IV. STATISTICS OF ZF EVOLUTION

As noted in Sec. I the time evolution of the ZFs is gov-
erned by a Langevin-type equation, given by inserting Eq.
�1b� into �1a�. In the � domain, this may be written

− i�E��� + "EE��� = cS��� , �18�

where D����1+
��� as before, "E����4�� /D���, and
cS����−4�FS /BD���. We analyze this for the longer-time
diffusive behavior of E.

Assuming first that D���=D0 is �-independent, then
"E="E0 is also �-independent, and in the time domain Eq.
�18� reduces to a standard Langevin equation for E,

�tE�t� + "EE�t� = cS�t� . �19�

The source cS that drives the zonal flows is approxi-
mated as random. Thus, ensemble averaging �19�, one has

�t�E	p = − "E�E	p. �20�

If "E is sufficiently small compared to the inverse correlation
time �S=1/�S of cS, the short time response of E to cS is
E�t�=�−�

t cS�t��dt�. Thus, ensemble averaging �tE
2, one finds

�t�E2	p=Sc0��−�
� d�Cc���, where Cc�����cS�t�cS�t−��	p is

the correlation function for cS. Its Fourier transform is the
spectral function Sc���, and Sc0�Sc��=0�. Thus the random
force FS causes diffusion in E, with diffusion coefficient
Sc0 /2. The corresponding pdf p�E , t� for E obeys

�tp = �E� 1
2Sc0�Ep + "EEp� , �21�

again satisfying Eq. �20�, while �E2	p=�E2pdE obeys
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�t�E2	p = Sc0 − 2"E�E2	p. �22�

Fourier transforming this, one finds an expression for the
spectrum in terms of the driving source Sc0, �E2���	p

=Sc0 / �−i�+2"E�. Neglecting the restoring term predicts
a purely diffusive �E2�t�	p, increasing without bound, corre-
sponding to �E2���	p�Sc0 / �−i��. The restoring term re-
moves the 1/� divergence for �$"E. In the steady state,
Eqs. �22� and �21� yield �E2	p=Sc0 /2"E, and p�E�= p0 exp
�−"EE2 /Sc0�. Since "E�D−1 and Sc0�D−2, one has
�E2	p�D−1. Thus, assuming the turbulent forces FS driving
the ZFs are unaffected, the larger D implied at low-� by the
drift-polarization shielding would reduce "E, but reduce the
diffusion Sc0 even more, resulting in a smaller ZF amplitude
�E2	p

1/2.
The flux through E space is represented in Eq. �21� as

F=− 1
2Sc0�Ep−"EEp. A cross field viscosity acting on

E�B flow could also be included with an additional term in
the flux, F=− 1

2Sc0�Ep−"EEp+�p�2E.
We have seen in Sec. IV �e.g., Eqs. �16�� that D has an

�-dependence, making "E�-dependent as well, so the
constant-"E Langevin treatment just given is only approxi-
mately valid. Equation �18� is more easily treated in the
�-domain. Solving it for E���, one finds an expression for its
spectral function,

SE��� = Sc���/��2 + "E
2���� . �23�

Taking the usual model for Cc, Cc���= �cS
2�t�	p exp�−�S �� � �,

one has Sc���= �cS
2�t�	p2�S / ��2+�S

2����. Because "E��S,
the falloff with � of SE in Eq. �23� is controlled by the factor
��2+"E

2����, and one may take ��0 in the factor Sc���
there. Thus, SE����Sc0 / ��2+"E

2����, and

CE��� � Sc0� d�

2�

exp�− i���
�2 + "E

2���
� Sc0exp�− "E����

2"E
, �24�

where the final form strictly holds only for "E independent of
�. Setting �=0 in this expression recovers the steady-state
result given above for �E2	p. The first form for CE in Eq. �24�
is valid for an �-dependent "E.

V. SUMMARY

In this work, we have used the action-angle formalism to
study the shielding of ZFs, obtaining general expressions for
their polarization shielding, and the time scales on which
they develop. The general expressions are valid for arbitrary
radial excursion sizes �gyroradius �g, bounce/banana width
�b, and radial drift excursion �d� on each of the 3 time scales
of the collisionless motion, and show that the drift polariza-
tion shielding yields a contribution of a form analogous to
those from shielding on the gyro- and bounce-time-scales,
recovering and extending earlier results for this contribution,
which can be the dominant contribution to the polarization
shielding.

The evolution of ZFs on a longer, diffusive time scale is
governed by a Langevin-type equation, with radial electric
field Er�t� moving diffusively about roots Ea of the ambipo-
larity equation. The resultant probability distribution func-
tion is bounded, a balance between the turbulent fluctuations

inducing diffusion, and the nc fluxes providing a restoring
force to E�Er−Ea=0. Expressions for the restoring force,
diffusion coefficient, and steady-state distribution function
have been obtained. The linear polarization contributions en-
ter into each of these. The larger drift-polarization shielding
predicted for stellarators should cause a smaller restoring
force, weaker diffusion, and smaller ZF amplitude �E2	p

1/2,
assuming the turbulent forces FS are unchanged.

As noted, the present work follows R-H and S-W in
examining only half the self-consistent loop involving the
interaction of ZFs and turbulence, considering the evolution
of the ZFs given a specified source FS or S driving them. On
the other side of this loop, Hahm et al. have shown25 that
portions of the ZF spectrum �E2	p��� with ��"l �with "l the
linear mode growth rate, "l��* for drift turbulence� are
relatively ineffective in suppressing turbulence, and also S.
This transition frequency is different from and large com-
pared with the transition ��	d with which we have been
concerned in this work, above which the drift shielding term
gd becomes small.

In the tokamak limit �→0, other restoring mechanisms,
such as those given in the model Eq. �19� of Ref. 2, become
important, and would provide an analogous statistical evolu-
tion of Er, though for that model equation the time-average
value �Er	p of Er would shift from the stellarator value Ea

to 0.
We have noted that each contribution gj �j→g ,b ,d� to

the shielding function g �Eqs. �12�, �15�, and �16�� corre-
sponds to a particular collisional transport mechanism, and
moreover, that the scalings and relative sizes of the gj are
quite similar to those of the radial transport coefficients Dj.
Thus, stellarators with neoclassically optimized designs
�reduced Dd� also have reduced drift-polarization shielding
gd, and thus, a larger ZF amplitude. Assuming the amplitude
of the source �Sl in Eq. �11� or FS in Eq. �1b�� is unchanged,
this implies the tendency suggested in earlier work, that neo-
classically optimized designs will have larger ZFs, and con-
sequently lower turbulent transport as well. However, such
an assumption about the source has not yet been demon-
strated, and further study is needed to clarify the variation
with machine design of these source terms, and of the con-
sequent level of turbulent transport.
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