On the Energetic Particle Experimental Goals for 2009 run

N.N. Gorelenkov for SFG meeting

Important mile(other)stones for EP experiments in 2009 run

- Build upon previous campaigns great results:
 - BAAE, RSAEs, GAE/CAEs, fishbones, angelfish, Avalanches, ...
 - FIDA, reflectometers, NPA, ssNPA, SFLIP, ...
- General objective: role of EP instabilities on EP transport and confinement.
- This year milestone:
 - Study how j(r) is modified by super-Alfvenic ion driven modes (milestone R09-2)
- ITPA joint tasks/experiments:
 - MDC-10 Measurement of damping rate of intermediate toroidal mode n AEs
 - MDC-11 FI losses and redisctribution from ?localized AEs
 - MDC-6 Comparison of sawtooth control methods for neoclassical tearing mode suppression
 - SSO-2.2 MHD in hybrid scenarios and effects on q-profile
 - SSO-6 Ability to obtain and predict off-axis NBCD
- Recent ITPA tasks/benchmark efforts
 - damping rates, single/multiple mode saturation, validation need mode structure documentation
- Support for GKM/M3D development
 - FI redistribution

GAE/electron transport correlation observed using P_b steps

E. Mazzucato

Power (a.u.)

130334 6 MW 10⁻² 0.8 <δn/n> n=5-6 10-4 10-4 0.4 10-6 0.495 0.505 0 t (s) high-k in magnetics interferometric mode **N. Gorelenkov** /sec GAEs GAEs+Collis $\int_{N}^{\log_{10}(\chi_{\rm e}[{\rm m}^2/{\rm m}^2))}$ $(\overline{\psi}_{\theta})^{1/2}$ 0.1 0.2 0.4

f (MHz)

- $\mathsf{P}_{_{\mathsf{b}}}$ steps at fixed q(r), n_{_{\mathsf{e}}}, \, \omega_{_{\mathsf{ExB}}}
- GAE <δn>/<n> ≤1.5 10⁻⁴ at 6 MW
- Theory predicts χ_e peak at r/a~0.25

GAE/CAE studies

- CAE/GAEs are important for thermal ion/electrons stochastic/resonant heating
- What should we study
 - mode structure
 - present ORBIT/NOVA modeling relies on it, too many "free" parameters
 - polarization
 - often GAEs and CAEs are seen together, similar frequencies
 - Instability drive, saturation
 - ORBIT/NOVA can not predict mode amplitudes
 - HYM need validation
 - FIRETIP
 - HHFW effects on AE excitation/control

Correlation with T_e flattening, χ_e change seen also in V_b scan

• H-mode V_{b} scan at fixed q(r), n_{e} , ω_{ExB}

Plasmas with equal P_b at different V_b

Higher GAE frequency at high B_r allows transient T_e peaking?

- Broad band of higher frequency GAEs at high field
- Resonance with higher energy electrons might allow transient Te peaking

Central T_e spontaneously peaks when GAEs decrease

RF increases central T_e in NBI plasma only when no GAEs

L-mode observations: GAEs and transport also correlate

Possible explanation of 'hybrid-like' discharges in NSTX?

1 MA, 4.5 kG L-modes (2002)

GAE correlation length, amplitude from L-mode reflectometry

