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Initialization with Realistic Fast lon Distributions could Improve
Accuracy of Hybrid simulations

» Fluid/kinetic hybrid simulation codes typically initialize fast ion distribution

with an analytic form, but it may not be a good fit to the actual distribution.
Analytic anisotropic (full energy component only) NUBEAM (three energy components)
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» More realistic fast ion distribution can be obtained from NUBEAM.
= NUBEAM: Monte Carlo; fast ions behave classically > F(R, Z, E, A=v/v)

» Hybrid simulation codes need the distribution function expressed in terms of
constants of motion (P, u ,E) and the function must be smooth enough to
allow derivatives to be taken with E and P,
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Jacobian of the Transformation from Velocity Space to Constants-
of-Motion Space Strongly Depends on Particle Orbit Topology

» Transformation from velocity space to constants-of-motion space.

B,(R,Z
JB(xy.2.v,v,,v,)d xd P, = (eA, +mV,)R ~ey (R Z)+myR Bf)((R z))
= [F(R,Z,4,E)RVEdRdZd AdE T
B - =
=> f_ (R.u.E)3,, (P, uE)dP,dudE B B(R,Z)
»An exact analytic 3, (P, u,E) - E=86keV Stagnatiop orbits .
1 51 T/Pboundary g

cannot be easily calculated

because it requires integration

over phase space orbits.
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Jocabian Can be Calculated Accurately with Iterative Monte
Carlo Method

. »Jacobian can be considered as the ratio of

" | infinitesimal volume in (Py: M ,E) space to the
infinitesimal volume in (R, Z, A, E) space
[F(RZ,A,E)RVEARAZAAE = 3 [ f (P, u,E)S,, (P, E)dP,d udE

Vsign

> |terative MC method (*improved from Breslau’s work)
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Reconstruction of Fast lon Density Function in
Constants-of-Motion Space

»Divide NUBEAM output particle data into two subsets based on v sign

»For each subset, sort particles by y and divide them into several subpopulations of
equal width in p.

»Divide each subpopulation into a number of bins in the P, and E directions. The bin
width in P, and E direction is the same for each subpopulation.

»Multiply by the numerically calculated Jacobian.

»Apply Gaussian smoothing in both P, and E directions.

»Fit 2D cubic B-spline to the smoothed data using GSL routines, with uniform knots

and a number of coefficients in each direction approximately 5/8 the number of bins.

*Improved from the work of Breslau et al. Sherwood Meeting 2011
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Good Agreement between Raw Fast lon Density
Function and Spline Fit in Constants-of-Motion Space

Raw data from NUBEAM Reconstructed from cubic B-spline fit
25 x 39 Histogram25, n=[2.00789e-14 ,2.10828e-14] f 15 x 24 B-spline: p=2.0589e-14
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Gradients are Smooth, Match well with NUBEAM Raw Data

Raw data from NUBEAM Reconstructed from cubic B-spline fit
25 x 39 Histogram25, u=[2.00789e-14 ,2.10828e-14]

15 x 24 B-spline: n=2.0589e-14
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Gradients are Smooth, Match well with NUBEAM Raw Data
(Cont’d)

Raw data from NUBEAM Reconstructed from cubic B-spline fit

25 x 39 Histogram25, p=[2.00789e-14 ,2.10828e-14] 15 x 24 B-spline: p=2.0589%-14
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Summary

» An interface has been developed to reconstruct fast ion distribution in
constants-of-motion space from NUBEAM output. The spline coefficients
are saved in a file, which can be used to reconstruct fast ion density

function and perform quick spline and derivative interpolations at arbitrary
location.

» The interface has been tested with M3D-K code and reasonable results

have been obtained. This interface could be used for other simulations
codes.

@ NSTX-U



Backup Slides

@ NSTX-U

10



Jocabian Can be Calculated Accurately with Iterative Monte
Carlo Method

»Jacobian can be considered as the ratio of infinitesimal volume in (P, u ,E) space
to the infinitesimal volume in (R,Z,A,E) space

»Step 1: Launch 10M random particles uniformly in (R,Z,A,E) grids, Jacobian3(P,;, u, E)
Is inversely proportional to the particle number/weight in each (P, u ,E) grid

The accuracy of 3(P,, 11, E) IS generally not good near T/P or C/L boundaries.

To improve the accuracy of Jacobian, seti_level=1 for all (R,Z,A,E) grids

»2nd jteration: Double the particle number (20M) and reduce the particle weight by
half; re-launch particles uniformly in (R,Z,A,E) grids; recalculate the Jacobian; find
the grids in (R,Z,A,E) space whose corresponding Jacobian has relative larger error
and change their iteration marker i_level to i _level+1

»n-th Iteration: Launch ~20M particles uniformly in (R,Z,A,E) space except the grids
whose Jacobian has relative larger error. For those grids, increase the particle
number by 27(i_level), and decrease their weight by (¥2)"i_level. ; recalculate the
Jacobian; find the grids in (R,Z,A\,E) space whose corresponding Jacobian still has
relative larger error and set their iteration marker i_level to i _level+1

» Repeat n-th Iteration until relative error is acceptable.
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Gradients are Smooth, Match well with Raw Data
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Blue: raw data from NUBEAM
Red: reconstructed from cubic
B-spline fit
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