

Supported by

Update on the Fast-ion D-alpha (FIDA) and Solid State Neutral Particle Analyzer (SSNPA) Diagnostics

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

D. Liu, W.W. Heidbrink, G. Z. Hao University of California, Irvine

Jan. 6, 2015

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Science

Vertical and Tangential FIDA are nearly Ready for Operation

- Each FIDA system consists of
- spectrometer-FIDA, full D_a spectrum, 16 ch, R=0.85-1.55m, 100Hz, ~5cm, ~10keV
 →measure fast ion (F. I.) profile
- band-pass filter-FIDA, 3 ch at R=1.0, 1.2, 1.4m, 50kHz, energy integrated signal
 → measure F. I. transport associated with instabilities
- Re-installation and calibration were completed in 2014 summer, currently working on data acquisition system and data analysis software.

Upgraded SSNPA System Aims at Measuring Fast-Ion Distribution with Fast Time Resolution and Coarse Energy Information

SSNPA and FIDA Diagnostics Complement Each Other, and Other Fast Ion Distribution/Loss Measurements

🔘 NSTX-U

FIDA and SSNPA System will Provide Valuable Measurements for EP Physics Studies on NSTX-U

FIDA	SSNPA
 v-FIDA, t-FIDA in spectrometer scheme (16 ch, ~5cm, ~10keV, 100Hz) 	Three 15-channel subsystems (~5 cm, 120 kHz bandwidth, [>25, >45, >65]keV)
 → F. I. spatial profile → separate the response of passing & trapped F. I. 	 → F.I. spatial profile in the core & midradius → F. I. transport associated with instabilities
 ▶ v-FIDA, t-FIDA in band-pass filter scheme, (3 ch, ~50kHz) →F. I. transport associated with instabilities 	 ➤ Tangential SSNPA and radial SSNPA → separate the response of passing & trapped F. I.

Will contribute to

(i) validation of off-axis neutral beam injection

(ii) assessment of the effects of NBI parameters on fast ion distribution function, NB driven current profile (FY15 milestone R15-2)

(iii) study of fast ion driven instabilities and associated transport (*AE, critical gradient model, effects of 3D coils, ...)

(iv)study of interactions between fast ions and HHFW