FIDA diagnostic, principles

- Fast Ion D-Alpha diagnostic
 - Based on charge-exchange recombination spectroscopy
 - Measure Doppler-shifted D_{α} emission from re-neutralizing fast ions
 - Measure wings of D_{α} line \rightarrow signal buried into high background (cold Da, bremsstrahlung, ...)
- Vertical views, perpendicular to **B**
 - 2 views for each channel (<=> radial position)
 - Intercepting/missing the beam for **direct background subtraction**
- Measured signal: $s(\mathbf{r}, t, E') \propto n_{\text{fast ions}} n_b \langle \sigma v \rangle_{CX} W \longrightarrow n_{\text{fast ions}}(\mathbf{r}, t, E')$
 - 1D sampling of fast ion distribution function, F(E, p)
 - Effective integration over phase-space
 - Weight function W: $(E,p) \rightarrow E'$
 - $n_b < \sigma v >_{CX}$ from experiment
 - W from simulation

2008 setup: two complementary instruments

Goals -- 2008 Run

- Validate interpretation of FIDA signals (extend 2007 work)
 - Check dependence upon plasma parameters (n, T_e, Z_{eff}, ...)
 - Comparison with other diagnostics (sFLIP, NPA, neutron rate, ...)
 - Comparison with simulations
 - Need "quiet" discharges
 - L-mode, Deuterium plasmas, low-density preferred ($n < 5x10^{19} \text{ m}^{-3}$)
 - Shots with beam modulation highly desired (check response time-scales)
- Study of fast ion transport
 - Effects of Alfvén instabilities
 - Single-, multi-mode induced losses/redistribution
 - Reference: XP705
 - Repeat same shot 3x (qualitative spectral scan with *fast system*)
- Fast ion dynamics with additional ion heating (?)
 - Compare with recent DIII-D results for ICRH
 - Discharges with HHFWH

2008 setup: spectrometer

2008 setup: 'fast' system

