The Use of the DCON Stability Code for Determining
the MHD Stability of Axisymmetric Toroidal Plasmas

Version 3.60, September 5, 2002

Alan H. Glasser
Los Alamos National Laboratory
Phone: 505-667-7723
Email: ahg@lanl.gov

SECTIONS

. Introduction

. Straight-Fieldline Coordinates
. Installation

. EQUIL Input

. DCON Input

. VACUUM Input

. DCON Output

. ORBIT Input

. ORBIT Output

10. Other documentation

OCoONOOULPE, WN B

Section 1. Introduction

DCON is a code for determining the MHD stability of static
axisymmetric toroidal plasma. It uses a very efficient algorithm,
originally developed by Newcomb [W. A. Newcomb, Ann. Phys. 10, 232
(1960)] for cylindrical plasmas and generalized by myself to
axisymmetric plasmas. A preprint of a manuscript containing the theory
of DCON is available in the tex subdirectory of this distribution in
both Plain TeX and PostScript formats. The algorithm involves
integrating a system of ordinary differential equations (ODE's), the
Euler-Lagrange equations for minimizing the potential energy delta_W
from the magnetic axis to the plasma edge. A plasma response matrix W_P
is constructed from the solutions. If the smallest inverse eigenvalue
of W_P changes sign, there is an unstable internal (fixed-boundary)
mode. The eigenvalues of W_P are combined with a vacuum response matrix
W_V to form a total response matrix W_T=W_P + W_V. If W_T has any
negative eigenvalues, there is an unstable external (free-boundary)
mode. The name DCON is an acronym for the Direct Criterion of Newcomb.
The code makes no effort to determine growth rates of unstable modes or
frequencies of the stable spectrum, but only to determine whether the
system supports unstable modes. The distance of a zero crossing from
the plasma edge can be used to quantify the degree of instability for an
internal mode, while the total perturbed potential energy can be used
for this purpose for a free-boundary mode.

The present version of DCON evaluates the Mercier criterion D_|I
> 0 for unstable localized ideal interchange modes; the related
criterion D_R > 0 of Glasser, Greene, and Johnson for localized
resistive interchange modes; the criterion C_A < 0 for ideal MHD
ballooning modes in the limit of large toroidal mode number; the
generalized Newcomb criterion for the internal ideal MHD stability of
one low toroidal mode number; and the plasma, vacuum, and total response
matrices and their eigenvalues for determining free-boundary stability.
A future version of DCON will treat resistive instabilities.

In addition to MHD stability, there is a code ORBIT for tracking
the full Hamiltonian orbits of charged particles in the same equilibrium
fields used by DCON. The full-orbit equations are integrated with a
very efficient adaptive ODE solver with high accuracy, both inside and
outside the separatrix, and with extensive graphical output. Full
orbits and drift orbits have complementary uses. For particles with
small Larmor radius, such as thermal ions and electrons, drift orbits
are both more efficient and more accurate, especially for long
trajectories. For particles with large Larmor radius, such as beam
ions, full orbits are more efficient and more accurate. Drift orbits
will be added to ORBIT in a later release, allowing the best of both
worlds and comparisons between them.

Both DCON and ORBIT are written entirely in high-level Fortran
90. They make extensive use of dynamic allocation and deallocation to
allow maximum use of available memory. They use many other advanced
features of Fortran 90, such as derived types, array syntax, and
modules. There are no fixed dimensions of large arrays, no goto
statements, and no common blocks. Extensive use is made of BLAS and
LAPACK linear algebra routines for efficiency. There are interfaces to
a large number of commonly-used equilibrium data types for specifying
equilibria. Adding to these is usually very simple, and | would be glad
to help. Graphic output from DCON is viewed with the XDRAW graphics
code, which is distributed as part of the package and runs on any X
Window system.

This document is a guide to preparing input for DCON and ORBIT
and interpreting their output.
Section 2. Straight-Fieldline Coordinates

A major new feature of dcon_3.50 is the use of generalized
straight-fieldline (SFL) coordinates. Previous versions have used only

one type of these, Hamada coordinates.

For any flux coordinate system, one coordinate, psi, labels the
flux surface, and its gradient is orthogonal to the equillibrium

magnetic field; the other two, theta and zeta, are angle-like quantities
that parameterize the position around the torus the short and long way,
respectively. In DCON, psi is linear in the poloidal flux and

normalized to go from 0 at the magnetic axis to 1 at the last closed

flux surface. Occasionally, rho=sqrt(psi) is used for graphical

purposes as a radius-like variable. Theta and zeta are normalized to
increase by 1 (not twopi) in going one full turn around the torus.

A flux coordinate system is an SFL coordinate system for which
the safety factor

g = (B.del zeta) / (B.del theta)

is a function of psi only. A particular SFL coordinate system is

defined by the variation of (B.del theta) (which is proportional to the

inverse of the Jacobian of the coordinate system) along the field line.

The coordinate systems incorporated into dcon have B.del theta
proportional to B_p**power_bp * B**power_b / R**power_r, with B_p the
poloidal field strength, B the total field strength, R the major radius,

and power_bp, power_b, and power_r input integers. Some commonly-used
and named coordinate systems are:

name power_bp power_b power_r
hamada 0 O 0
pest 0O ©O 2

equalarc 1 0 O
boozer 0 2 0

The (ignorable) toroidal coordinate is
zeta = phi/twopi + nu(psi,theta),

where nu is a single-valued function of theta. PEST coordinates have
the unique property that nu = 0 and the toroidal coordinate is
proportional to the conventional polar angle phi. For all other SLF
coordinate system, nu /= 0.

PEST coordinates are well-adapted to high-aspect-ratio, circular
equilibria. For low-aspect-ratio, strongly-shaped equilibria, detailed
numerical comparisons with DCON show that Hamada coordinates generally
have the best Fourier convergence properties, and others are worse in
proportion to their departure from Hamada. Increasing power _r, as in
PEST coordinates, leads to reduced resolution on the outboard side of
the torus. Increasing power_b, as in equal_arc coordinates, leads to
reduced resolution in the neighborhood of an x-point. The user is
advised to use Hamada coordinates, the default. When using others,
proceed with caution, increase the number of Fourier components, and

monitor the convergence.

Section 3. Installation
The easiest way to unpack dcon_3.50.tar.gz is:
gzip -cd dcon_3.50.tar.gz | tar -xvf -

It will create a subdirectory ./dcon_3.50 and place its files there.
The contents of the dcon package are as follows:

README: this file.

equil: source code for equilibrium data processing

dcon: source code for DCON, stability code

match: source code for MATCH, future code for resistive modes
orbit: source code for ORBIT, full-orbit particle tracking

multi: source code for MULTI, multiple runs of DCON

sum: source code for SUM, data extraction from MULTI runs
draw: xdraw control files draw*.in

equilibria: sample equilibrium files

input: dcon control files

Isode: source code for ODE solver

makefile: master makefile for all codes on all machines

tex: preprint on the theory of DCON and equations for ORBIT
vacuum: source code for Morrell Chance's VACUUM code
xdraw: source code for XDRAW graphics code

DCON has been set up and tested on the following machines:

SGI Octane running the IRIX 6.4 operating system

Sun SparcStations running the SunOS operating system

DEC Alpha running OSF1 operating system

PC Compatibles running Red Hat Linux 6.0 with Absoft Pro Fortran 6.0
IBM running AlIX

If yours is one of these, do "cd dcon" and type make. It will
automatically make all its components, create a directory rundir and a
subdirectory with the name of your operating system, and copy the
executables and a few selected input files to that directory. This is
where you should work. You may want to do:

nohup make > make.log &

to launch a separate process which will keep a log of its actions and
any errors.

If your machine is not among these, you should create a makefile in each
of the subdirectories with the name makefile_"uname’, where ‘uname’ is

the first word of the output when you type the command "uname -a". The
makefile should contain definitions of your Fortran 90 compiler and

links to existing LAPACK, BLAS, and X11 libraries. Then type "make"

while in ./dcon_3.50.

Section 4. EQUIL Input

Both DCON and ORBIT use EQUIL to process the equilibrium data.
EQUIL is controlled primarily by equil.in. It contains two Fortran 90
namelists: equil_control and equil_output. The equil_control namelist
contains most of the input parameters needed to control the equilibrium
operations of the code. The equil_output namelist controls auxiliary
output which is mostly used to diagnose problems. For the most part,
these may be left false and ignored. In this and other namelist input
files, all input parameters have reasonable default values.

Here is an explanation of the input parameters in the first
namelist equil_control, along with typical input values and extensive
commentary.

eq_type="efit"
This specifies the type of the input file. It allows DCON to determine

whether the file is ascii or binary, whether it is direct or inverse,
and how to interpret the data. Here is a list of allowed types:

Name Description Data Type Format
"fluxgrid" NIMROD data file inverse ascii
"miller" Bob Miller's TOQ code inverse binary 8
"chease" Lausanne CHEASE code, 8-byte inverse binary 8
"chease4" Lausanne CHEASE code inverse binary 4
"chum" Modified Miller code inverse binary 4
"galkin" Sergei Galkin's code inverse binary_8

"efit" GA EFIT code direct ascii
"rsteq" ORNL RSTEQ code direct binary 8
"ldp_d" Don Pearlstein's TEQ code direct binary 8
"ldp_i" Don Pearlstein's inverse code inverse binary 8
"jsolver" Steve Jardin's JSOLVER code inverse ascii
"lez" Leonid Zakharov'v code inverse binary_4
"transp" Data from the TRANSP code inverse ascii
"sontag" Aaron Sontag's direct solver direct ascii

In addition, you may specify eq_type="Iar" or "soloviev" to get the two
analytical equilibria. See below for more details.

eq_filename="../equilibria/efit/82205-1.25X"

This gives the path of the data file specifying the equilibrium. The

file may be ascii or binary. It may be the output of a direct
Grad-Shafranov solver, which specifies poloidal flux, R*B_phi, pressure,
and safety factor on a 1D grid of flux surfaces, and the poloidal flux
psion a 2D grid in R and Z; or of an inverse solve, which replaces
psi(R,Z) with values of R and Z on a 2D grid of psi and theta on flux
surfaces.

The next three input quantities,

jac_type="hamada"
power_b=0
power_r=0

are used to control the type of straight-fieldline coordinate system
used (see discussion above). If jac_type is one of those listed in the
table above, the code automatically chooses power_b and power_r
accordingly and ignores the input values. To use any other values,
choose jac_type="other" and set the integer variables power_b and
power_r.

Next come specifications of grid parameters.

grid_type="ldp"type of radial grid packing

psilow=1e-4 minimum value of psi, normalized from 0 to 1
psihigh=1 maximum value of psi, normalized from 0to 1
mpsi=128 number of radial grid intervals

mtheta=128 number of poloidal grid intervals

There are several options for radial grid types. The first,
grid_type="rho", distributes radial grid points uniformly in
rho=sqrt(psi), a generalized radius. The second, grid_type="Idp", uses
a method suggested by L. Don Pearlstein (LDP), which packs the grid in
the neighborhood of the axis and the edge. | have a slight preference
for "ldp", but they both work well. A third type, "original", uses the
same radial grid used in the input data. (Sorry, there's no "extra
crispy" option.) The poloidal grid is uniformly distributed in the
straight-fieldline coordinate theta. Throughout the code, cubic spline
and Fourier representations are used to minimize the effects of grid
discreteness.

The input parameter psilow is used only for grid_type="Idp". A good
value is 1e-4. For the most part, results are insensitive to this

value, but substantially smaller values cause the code to run longer,
and substantially larger values may cause accuracy problems.

The input parameter psihigh determines how close to the edge the ODE's
are integrated. It must be <= 1. For an inverse equilibrium, which

never has a separatrix in the computational domain, it may be set to 1.
For a direct equilibrium with a separatrix, psihigh determines how close
the code approaches the separatrix. Since the safety factor q goes
logarithmically to infinity at a separatrix, the required number of

poloidal harmonics increases with q (see below), and the run time
increases with both the number of harmonics and the number of singular
surfaces, it can be expensive to choose psihigh very close to 1.

The next input parameter is
newq0=0

For newq0 = 0, the code uses the original q profile specified in the
equilibrium file. For newq0 /=0, it readjusts the q profile to give
the specified value of g at the axis, in such a way as to leave the
Grad-Shafranov solution invariant. This can be used to explore the
stability of a range of equilibria for each equilibrium file.

The final input parameter in equil_control is
input_only=f

This is occasionally used in the course of debugging interfaces to new
equilibrium file types. It causes the code to generate information
about the input and then quit.

The equil_output namelist of equil.in determines which auxiliary
output files are produced. These are primarily of interest to me, the
developer, and of very little interest to users. For most code
operation, they should all be left off (f). Turning them on (t) when
they are not used wastes cpu time and disk space. The ascii files are
readable by any text editor and can also be printed. The binary files
are intended for viewing with XDRAW. Here is a brief description of the
optional output files.

gse_flag=f produces diagnostic output for accuracy of solution to
Grad-Shafranov equation

out_eq_1d=f ascii output of 1D equilibrium file data
bin_eq_1d=f binary output of 1D equilibrium file data

out_eq_2d=f ascii output of 1D equilibrium file data
bin_eq_2d=f binary output of 2D equilibrium file data

out_2d=f ascii output of processed 2D data
bin_2d=f binary output of processed 2D data

There are two other input files, each containing a single
namelist. The first, lar.in, is for large-aspect-ratio, circular cross,

low beta equilibrium, using the Shafranov expansion to second order.
The second, sol.in, is for the Soloviev equilibrium.

The lar_input namelist of equil.in is used when eq_type="lar"
and eq_filename="Ilar.in". This allows the user to construct a
large-aspect-ratio, circular-cross-section equilibrium, using the
Shafranov expansion to second order, specifying minor radius a, major
radius r0, central pressure ratio beta0, and central safety factor q0.
The pressure profile is given by p0*(1-(r/a))**p_pres, and the profile
of sigma=J.B/B”2 is given by sigma0*(1-(r/a))**p_pres. Changing these
to something more interesting would be very simple. Here are sample
input parameters:

ma=64 number of radial grid points

mtau=64 number of azimuthal grid points
lar_r0=10 major radium

lar_a=1 minor radius

beta0=0 value of beta (pressure ratio) on axis
q0=3.2 value of q (safety factor) on axis

p_pres=2 power used in specifying pressure profile
p_sig=2 power used in specifying current profile

The sol_input namelist of equil.in is used when
eq_type="soloviev" and eq_filename="sol.in". See Berger et al
[D. Berger,L.C. Bernard, R. Gruber,and 6. Troyon, J. Appl. Math.
Phys. (ZAMP) 31 (1980) 113] for a published stability analysis of this
equilibrium. Here are input parameters:

mr=128 number of radial grid points

mz=128 number of axial grid points

ma=128 number of flux surfaces for surface quantities
e=1 vertical elongation factor

a=1 minor radius

ro=3 major radius

g0=1.26 value of q (safety factor) on axis

Section 5. DCON Input

The stability operations of DCON are controlled by the file
dcon.in, containing two namelists, dcon_control and dcon_output. The
first begins with a set of flags which determine which features of DCON
are exercised:

bal_flag=t Ideal MHD ballooning criterion for short wavelengths

mat_flag=t Construct coefficient matrices for diagnostic purposes

ode_flag=t Integrate ODE's for determining stability of internal
long-wavelength mode
vac_flag=t Compute plasma, vacuum, and total energies for

free-boundary modes
Next come values determining mode numbers:

nn=1
delta_mlow=4
delta_mhigh=8
delta_mband=0
sing_start=0

For each run of the code, there is a single toroidal mode number nn and

a range of poloidal mode numbers from mlow to mhigh. The most unstable
modes are those which bend the field line lease, for which m-nn*q is as
small as possible. The code chooses mlow and mhigh as follows:

mlow=MIN(nn*gmin,0._r8)-4-delta_mlow
mhigh=nn*gmax+delta_mhigh
mpert=mhigh-mlow+1

where mpert is the total number of perturbed mode numbers. The purpose
of delta_mlow and delta_mbhigh is to give the user some control over the
range of mode numbers. For fixed-boundary modes, | have found
empirically that the code works well with delta_mlow = delta_mhigh =0,
and increasing them increases the run time of the code without
substantially improving the accuracy (at least for Hamada coordinates).

For free-boundary modes, they should be positive, high enough to
accommodate the band width of the equilibrium shape. A good way to
choose them is to set newq0 = 0 and run the code several times with
increasing values of delta_mlow and delta_mhigh to find when convergence
is obtained.

In principle, DCON should work for any toroidal mode number nn. In
practice, the larger the value of nn, the more singular surfaces there
are and the more harmonics it uses, so the longer it runs. Run time
increases quite fast with increasing nn. | have mostly used it for nn <=
15. There is an option controlled by the parameter

sing_start=0

which is intended for operation with higher values of nn. With
sing_start=0, integration is initialized near the magnetic axis. For

sing_start > 0, it is initialized at singular surface number sing_start.

This reduces the work necessary, at the possible expense of accuracy.

With sing_start > 0, a different method is used to determine mlow. with
mmin the minimum value of nn*q between the starting singular surface and

the plasma edge, mlow is chosen as:
mlow=mmin-delta_mlow
Using sing_start > 0, | have tested DCON up to nn = 15.

DCON is designed to use banded matrices, which couple each poloidal
harmonic m to only the nearest harmonics, out to m +/- mband. This was
intended to make it efficient to treat nearly cylindrical equilibria.

While there is no serious penalty for using banded form, in practice it
doesn't help much to reduce the band width mband from full. The
limiting factor is that if mband is chosen too small, factorization of a

key symmetric-positive-definite matrix F breaks because one or more of
its eigenvalues goes negative. The code chooses mband as:

mband=mpert-1-MAX(delta_mband,0)
using the input variable:
delta_mband=0

For delta_mband = 0, it uses a full matrix, while for delta_mband > 0 it
reduces the band width. The safest choice is delta_mband = 0. If the
user chooses a value of delta_mband too large, causing F to become
non-positive definite, the code aborts with a message advising the user
to reduce delta_mband.

The next two input variables are;

mthvac=480
thmax0=1

The vacuum energy is computed with the Morrell Chance's VACUUM code.
In general, the input to that code is controlled by vac.in. See
.Jtex/vacuum/vacinput.tex for details. An exception is that one of the
parameters in vac.in, mth, is overridden by a variable in dcon.in.

This is done because it is needed for dynamic memory allocation, which |
added. Mthvac is used by VACUUM as the number of points along the
plasma-vacuum interface.

Thmax0 is used for the high-n ideal ballooning stability computation.

In principle, this requires integrating a 2nd-order ordinary

differential equation in the poloidal angle theta from -infinity to

infinity on each flux surface. In practice, it is done from -thmax to
+thmax, where thmax is the number of complete cycles around the torus
the short way. Thmax is chosen automatically to optimize both accuracy
and speed. The value of thmax chosen internally is multiplied by the
input variable thmax0 to allow some degree of user control. Its default
value is 1, and it is usually best left at 1.

Next come variables controlling numerical accuracy:

tol_nr=1e-5
tol_r=1e-5
crossover=1e-2

Tol_nrand tol_r are relative tolerances used in integrating the main
system of Euler-Lagrange equations. The first controls the tolerance

far from mode-rational surfaces, while the second controls the tolerance
near the rational surfaces. Crossover determines the distance from the
singular surface at which control passes from tol_nr to tol_r, expressed
in terms of the value of m-nn*q which goes to zero at the rational
surface. The ability to impose a tighter tolerance near the singular
surface will be of interest primarily for the later implementation of
resistive instabilities.

singfac_min=1e-5

This is used to determine the position of closest apprach to each
singular surface. The integration terminates when m-nq reaches
singfac_min, then restarts on the other side of the singular surface.

ucrit=1e4

This controls a feature of DCON required for preserving accuracy.
Starting near the magnetic axis, the code integrates a complex system of
ordinary differential equations of order 2*mpert, with mpert = mhigh -
mlow + 1. There are mpert regular solutions and mpert singular
solutions in the neighborhood of the magnetic axis; DCON follows all of
the regular solutions. Each regular solution grows roughly as r*|m| as

it comes out of the axis. The high-m solutions therefore grow much more
rapidly than the low-m solutions. After a short distance, the large
solutions could numerically overwhelm the small solutions, causing the
computation to lose all accuracy. To prevent this, the integration is
stopped occasionally, and the independent solution vectors are
reorganized to eliminate this problem. Ucrit determines how often this
is done. It should be left at 1e4 by the casual user.

The final section of input, dcon_output controls stability
output options. Many of the optional outputs of interest only to the
developer have been removed to avoid confusion. The only remaining ones
are:

crit_break=t determines whether the color of the crit curve (see
below) changes after crossing a singular surface

ahb_flag=f produces output on normal magnetic field eigenvalues and
eigenfunctions at plasma-vacuum interface (in honor of

Allen H. Boozer)

mthsurf0 real variable, provides user control over number of boundary
points used to display surface eigenfunctions for
ahgb_flag=t. Default value 1, number of points
increases linearly with mthsurf0

Section 6. VACUUM Input

Computation of perturbed vacuum potential energy is performed
with Morrell Chance's VACUUM code. This is controlled by the file
vac.in, formerly named modivmc. It is safest to leave the variables in
this file unchanged, with one exception. The input variable a allows
the use of a conforming conducting wall surrounding the plasma, with a =
0 representing a wall right on the plasma boundary; a<=10a wall ata
relative distance a from form the plasma boundary, normalized to the
plasma radius; and a > 20 a wall at infinity. Beware of very small
values of a; the results may be inaccurate because of limited
resolution. See M. S. Chance, Phys. Plasma 4, 6, 2161 (1997) for theory
and code description. Subdirectory ./tex/vacuum of this directory
contains a complete description of the input. Use LaTeX.

Section 7. DCON Output

During the running of DCON, the code writes terse messages to
the screen to inform the user of its progress. Here is the output of a
typical run:
$
S dcon
Equilibrium: ../../equilibria/efit/82205-1.25X, Type: efit
Jac_type = hamada, power_b =0, power r=0
Diagnosing Grad-Shafranov solution
Evaluating Mercier criterion
Evaluating ballooning criterion
Fourier analysis of metric tensor components
q0 = 1.087E+00, gmin = 1.082E+00, gmax = 5.426E+00, ga = 6.119E+00
betat = 2.843E-02, betan = 2.579E+00, betapl = 1.033E+00
nn= 1, mlow = -8, mhigh = 13, mpert = 22, mband = 21
Computing F, G, and K Matrices
Starting integration of ODE's
psi = 1.000E-04, q = 1.087
psi = 5.845E-01, q = 2.000
psi = 8.024E-01, q = 3.000
psi =9.337E-01, g = 4.000
psi =9.813E-01, q = 5.000
psi =9.900E-01, q = 5.426
Computing free boundary energies

Energies: plasma =-1.773E+00, vacuum = 3.050E+00, total = 1.277E+00
All modes stable for nn = 1.

Total cpu time = 2.349E+01 seconds

PROGRAM_STOP => Normal termination.

$

If there are violations of the Newcomb stability criterion, indicating

the existence of internal (fixed-boundary) instabilities, the position

and g-value of the zero crossing(s) are also reported to the screen as
they occur. In that case, the free-boundary energies are not meaningful
and are not reported.

The main results of DCON are reported in four files: dcon.out,
dcon,bin, crit.out, and crit.bin. Here is a description of their
contents.

Dcon.out echoes input parameters; gives various global
properties of the equilibrium; lists a table of surfaces quantities,
including the ideal and resistive interchange criteria D_| and D_R;
lists all singular surfaces for the specified toroidal mode number nn
and their properties; and reports zero crossings of the DCON low-n
stability criterion. If there are any zero crossings, then the system
is unstable to internal, or fixed-boundary, modes, and the computation
of free-boundary energies is not meaningful and is skipped. If there
are no zero crossings, then dcon.out gives plasma, vacuum, and total
energy eigenvalues for free-boundary modes. The lowest total energy
reported in the table is the stability criterion for free-boundary
modes, also reported to the screen; negative means unstable. Following
the table of eigenvalues is a list of the eigenvectors corresponding to
each eigenvalue, normalized to unit magnitude. For each eigenvector,
the component with the largest absolute value is marked with an asterisk
(*). This is useful for identifying the dominant Fourier component of
the most unstable mode. It is also useful to note whether the
components for mlow and mhigh are sufficiently small, e.g. 1e-3. If
not, this is an indication the delta_mlow and/or delta_mhigh should be
increased.

Dcon.bin contains data about equilibrium profiles and local
stability criteria. It is viewed by doing "xdraw dcon".

Crit.out and crit.bin contain the low-n internal stability
results. Do "xdraw crit" to view the graphics file. The main result is
in the first frame, showing the stability criterion. If this changes
sign, the equilibrium is unstable to an internal ideal mode for the
specified toroidal mode number nn. If it is everywhere positive, the
system is stable to this mode number. The second frame shows the q
profile. The crit curve and the g curve are similarly color coded,
changing color as they cross singular surfaces. The color-change can be
suppressed by setting crit_break=f in dcon.in, namelist dcon_output.

This is useful for comparing different runs, using a different solid
color for each run. Multiple files can be compared by listing their
paths below the line "filename(s)" in drawcrit.in.

If bin_2d=t in equil.in, then a graphics file 2d.bin is produced
and may be viewed with "xdraw 2d". It produces two windows, one showing
flux surfaces for the equilibrium, the other surfaces of constant theta.
The latter is especially useful for comparing the angular distribution
for different choices of straight-fieldline coordinates.

If gse_flag=t in equil.in, then a graphics file gsei.bin is
prodcued and may be viewed with "xdraw gsei". It shows log_10 of the
Grad-Shafranov error, integrated over flux surfaces. This can be used
to assess the accuracy of the Grad-Shafranov solution. More detailed
local graphs of log10 error can be seen by doing "xdraw gse". A contour
plot can be seen with "xdraw gsec". The latter two require additional
input files, obtainable by "cp ../../draw/drawgse*.in .".

Section 8. ORBIT Input

This section describes input for controlling the ORBIT code for
following guiding-center or full-orbit trajectories of charged
particles, both inside and outside the separatrix.

In order to follow the particle both inside and outside the
separatrix, account must be taken of the fact that the magnetic field
representation is different in these two regions. The Hamiltonian
equations of motion are expressed in terms of the vector potential A,
with the equilibrium magnetic field B = curl A and electric field E =
-grad phi - dA/dt. (The electrostatic potential phi is taken to be
uniform at present; this could easily be changed in the future for any
known configuration of phi.) Inside the separatrix, the flux surfaces
are closed, the vector potential is expressed in terms of the poloidal
coordinate theta, the toroidal field function f = R*B_T is constant on a
flux surface, and it is most convenient to express the equations of
motion in flux coordinates. Outside the separatrix, the flux surfaces
are not closed, the poloidal coordinate theta is not defined, f is
uniform, and it is most convenient to express the equations of motion in
cylindrical coordinates. ORBIT uses flux coordinates inside the
separatrix and cylindrical coordinates outside, and passes the particle
between the two when it crosses the separatrix. Graphs of the orbit
change color to indicate such a crossing.

The equilibrium used by ORBIT is controlled by the same files
equil.in, lar.in, and sol.in, described above in Section 4. For
direct-type equilibria, the orbit is followed both inside and outside
the separatrix, terminating if the orbit crosses a boundary of the
computational domain. For inverse-type equilibria, the orbit is

followed only inside the separatrix, terminating if it crosses the
separatrix, this this is the boundary of the compuatational domain for
inverse-type data.

The ORBIT code is controlled by orbit.in, containing one
namelist, orbit_input. The first two variables:

gc_flag=t
orbit_type="inner"

determine whether to use guiding-center or full orbits and whether the
initial particle position is specified inside or outside the separatrix
(see below for more detail).

The next three variables:

particle="ion"
ai=2
zi=1

determine whether the particle to be followed is an ion or an electron,
and if it is an ion, its atomic weight ai and atomic number zi. If the
particle is an electon, then ai and zi are ignored.

The next three variables:

psi0=.85
theta0=0
zeta0=0

specify the particle position in straight-fieldline coordinates
(psi,theta,zeta) for orbit_type="inner", with psi linear in the poloidal
flux and normalized to go from 0 at the magnetic axis to 1 at the
separatrix; and theta and zeta parameterizing position the short and
long ways around the torus, increasing by 1 for each full circuit.

The next three variables:
r0=.5
z0=0
phi0=0

specify the particle position in cylindrical coordinates (r,z,phi) for
orbit_type="outer". The initial radial position is set to

r=rs2+r0*(rmax-rs2)

where rs2 is radius at which the last closed flux surface intersects the
horizontal line through the o-point, and rmax is the right edge of the

computational domain. The initial axial position is set to
z=(zmax+zmin)/2+z0*(zmax-zmin)/2

where zmin and zmax are the bottom and top edges of the computational
domain. The initial azimuthal position phiO is specified in radians.

The next three variables:

energy0O=1e4
alpha0=40
phase0=45

specify the initial particle velocity, using spherical coordinates in
velocity space. The initial particle energy is specified in eV; alpha0
and phase0 specify the angle of the initial velocity vector from the
z-axis and the from the r-axis in the r-phi plane, in degrees.

The next three variables:

taumax=10
report=1
stride=5

specify the duration of the run and the frequency of output. Tauis

time in units of the transit time of the particle with its given initial
energy at the o-point, if its velocity were purely toroidal. Taumax
specifies the length of the run in these units. Report specifies the
interval, in these units, at which the code reports progress to the

screen and writes a restart file (see below). Stride specifies the

number of internal integrator steps between graphic and tabular output
of the orbit. Increasing stride can be used to limit the size of the

output files, which decreasing it allows for more detail in the graphs.

The next two variables:

tol=1e-9
errmax=1

control and monitor numerical error. Tol is the relative tolerance
specified to the adaptive ODE solver LSODE. Reducing tol gives tighter
tolerance at the expense of computation time. The code monitors the
relative change in the particle energy due to accumulated numerical
error. If this error exceeds errmax, the code quits.

The next variable:

break flag=f

determines whether the graphic output changes color every time tau
increments by report. Normally, a color change indicates the crossing
of the separatrix. Setting break flag=t increases the frequency of
color change. This can be useful for cross-correlating different orbit
segments between graphs.

The next variable:
cross=t

determines whether the orbit is allowed to cross the separatrix for
direct-type equilibrium data. If cross=f, the particle stops at the
separatrix. For inversse-type equilibrium data, the orbit can only be
followed inside the separatrix.

The next variable:
restart_flag=f

is used to determine whether to restart the orbit from the last saved
restart.out file. The code saves this file each time tau -> tau +

report. If restart_flag=t, the code attempts to read this file. Ifit

exists, the code ignores input values for particle type and initial
conditions, restarts the trajectory from its last state, and uses taumax
to specify an increment on the runtime. If restart_flag=t but
restart.out is not found, the code resets restart_flag=f and proceeds as
if this were the input value.

The final variables:

orbit_out=f
orbit_bin=t

determine whether to produce to produce tabular and graphic output for
the orbit. Normally the values are set as shown. Setting orbit_out=t

a tabular description of the orbit in orbit.out, which is usually not

very useful and is time-consuming. Setting orbit_bin=f causes the
graphical output to be suppressed.

Section 9. ORBIT Input

This section describes output for the ORBIT code for following
full-orbit trajectories of charged particles, both inside and outside
the separatrix.

There is an output file orbit.out which starts with the same
kind of equilibrium data as dcon.out, described in Section 7 above.
Then there are a few lines of information about the orbit that was run.
If orbit_out=t, this is followed by a long table of the orbit. This is

not recommended: it is not very useful, it wastes time, and the
information is better obtained in graphical form.

To view the main graphical output, do "xdraw orbit". This
produces 9 graphs:

. Radial Position, R vs. tau

. Axial Position, Z vs. tau

. Orbit in Poloidal Plane, Z vs. R

. Normalized Poloidal Flux, psi vs. tau

. Parallel Velocity, v_parallel vs. tau

. Orbit Viewed Along Axis, R*sin(phi) vs. R*cos(phi)

. Relative Change in Energy, error vs. tau

. Relative Change in Magnetic Moment, d_mu/mu_0
. Larmor Radius / Radius of Curvature, rl/R

OCooONOOTULLD WN -

The color changes each time the particle crosses the separatrix.

Section 10. Other documentation

There is a subdirectory ./tex containing miscellaneous
documentation. Here is a brief description.

1. tex/dcon/manuscript:
An unpublished manuscript on the theory of DCON.
2. tex/dcon/notebook:

Raw equations on the theory of DCON:

dcon.tex Raw equations on the theory of DCON

bal.tex High-n ballooning theory

mercier.tex Expressions for the Mercier criterion

metric.tex Expressions for the metric tensor

tex/orbit:

orbit.tex Raw Hamiltonian orbit equations in straight-fieldline

coordinates
tex/vacuum:

vacinput.tex Latex file on preparing input to VACUUM.

