
GRIN PART I 1

GRIN
GReen’s function INtegrals

Irek Szczesniak

and

Alexander Pletzer

Princeton Plasma Physics Laboratory

September 2001

GRIN PART I 2

PART I
Green’s function method and the GRIN program

• Green’s function method

• Examples

• The GRIN program

GRIN PART I 3

Green’s Function Method

The Green’s function is the response to a Dirac excitation.

Suppose we want to solve:

∇2ψ = −4πρ(~x)

and we know the Green’s function G satisfying:

∇2G(~x′, ~x) = −4πδ(~x− ~x′)

which corresponds to the potential due to a point charge.

Then the solution is:

ψ(~x′) =
∫

V

G(~x′, ~x)ρ(~x)dV

GRIN PART I 4

Green’s Second Identity

Central to the Green’s function method is Green’s second identity∮
S

~dS · {G(~x′, ~x)∇ψ(~x)−∇G(~x′, ~x)ψ(~x)} − 4παψ(~x′) = −4π

∫
V
dV G(~x′, ~x)ρ(~x)

which is obtained after multiplying ∇2ψ = −4πρ(~x) by G,
integrating over the volume V, and using the definition of G.

Here,

where α =


1 if ~x′ ∈ V
1
2

if ~x′ ∈ S
0 if ~x′ /∈ V ∪ S

GRIN PART I 5

Boundary Conditions

The intuitive solution (sum of all source contributions)

ψ(~x′) =
∫

V

G(~x, ~x′)ρ(~x)dV

is a special case of the general solution∮
S

~dS · {G∇(~x′, ~x)ψ(~x)−∇G(~x′, ~x)ψ(~x)} − 4παψ(~x′) = −4π

∫
V
dV G(~x′, ~x)ρ(~x)

which also takes into account the effect of inhomogeneous boundary
conditions.

GRIN PART I 6

First Example

Given:
G(x, y, x′, y′) = −log((x− x′)2 + (y − y′)2)

Find the potential ψ due to a source s(t) = cos(t) distributed on a
ring:  x = 3cos(t)

y = 3sin(t)
, t ∈ (0, 2π)

Solution:

y(x′, y′) =
∫ 2π

0

G[x′, y′, x(t), y(t)]s(t)

√
dx(t)
dt

2

+
dy(t)
dt

2

dt

GRIN PART I 7

Solution to the First Example

-10

-5

0

5

10

-10

-5

0

5

10

-10

0

10

-10

-5

0

5

10

The figure depicts potential ψ.

ψ ∼ r inside

ψ ∼ 1
r

outside

GRIN PART I 8

Second Example

b
a

n

-n

Given:

ψ(θ) =

 U(θ) for r = b

0 for r = a

Solve:

∇2ψ = 0

in the shaded region

(a < r < b)

to find the normal

electric field E on r = a.

GRIN PART I 9

Second Example (continued)

Green’s second identity for the example reads:∫
b
bdθ{−G(~x′, θ) ~Eb(θ)−

∂G

∂n
U(θ)}−

∫
a
adθ{−G(~x′, θ) ~Ea(θ)+

∂G

∂n
0}−4παψ(~x′) = 0

For ~x′ on a:∫
b
bdθG(~xa(θ′), θ)Eb(θ) +

∫
b
bdθ

∂G(~xa(θ′), θ)

∂n
U(θ) =

∫
a
adθG(~xa(θ′), θ)Ea(θ)

For ~x′ on b:∫
b
bdθG(~xb(θ

′), θ)Eb(θ) +

∫
b
bdθ{

∂G(~xb(θ
′), θ)

∂n
−

2π

b
δ(θ′ − θ)}U(θ) =

∫
a
adθG(~xb(θ

′), θ)Ea(θ)

GRIN PART I 10

Second Example (continued)

Expand

Ea =
∑

i

E(i)
a ei(θ)

Eb =
∑

i

E
(i)
b ei(θ)

U =
∑

i

U (i)ei(θ)

in basis functions ei(θ). We then get a coupled linear system of

equations:

A ·Eb + B ·U = C ·Ea

D ·Eb + E ·U = A ·Ea

After elimination of Eb, a linear relation between Ea and U can be

obtained, and the problem is solved.

GRIN PART I 11

Punch Line

To solve the above type of problems, we need the capability to:

• compute accurately line integrals involving a kernel with a log
singularity,

• solve dense linear system of equations.

GRIN PART I 12

GRIN

The GRIN code computes integrals of two kinds:∫
C

K(l′, l)ρ(l)dl

∫
C′
ν(l′)

∫
C

K(l′, l)ρ(l)dldl′

with K(l′, l) ∼ log(l′ − l) as l′ → l if C = C ′ (true for elliptic
operators in 2-D).

GRIN PART I 13

GRIN vs. VACUUM

VACUUM is a highly Successful code written by M. Chance, which
is used to compute the natural boundary conditions in a number of
stability codes (PEST, DCON, GATO, ...).

Feature VACUUM GRIN

portability CRAY, alphaa UNIX

max. # of contours hardcoded hardware limited

geometry of contours hardcoded almost arbitrary

choice of kernel 1 (hardcoded) arbitrary with log singularity

basis function Fourier, finite elements user supplied

a ongoing work to port to other Unixes

GRIN PART I 14

Green’s functions provided by GRIN

There are presently 10 kernel functions (G or ∂G
∂n) that come with

GRIN. An example is the toroidally averaged Green’s function for
the Laplace equation (following Chance [Phys. Plasmas 4, 2161
(1997)]):

Gn(R,Z;R′Z ′) =
(

1
πR′R

) 1
2

Γ(1
2 + n) p

n
2 +

1
4
F

(
n+ 1

2 ,
1
2 , n+ 1|p

)
Γ(n+ 1)

p ≡ s− 1
s+ 1

, s ≡ λ√
λ2 − 1

, λ ≡ 1 +
(R′ −R)2 + (Z ′ − Z)2

2R′R

where F (a, b, c|p) is the Gauss hypergeometric function.

GRIN PART I 15

More that comes with GRIN

GRIN has vector and matrix classes implemented.

The matrix class is interfaced to Lapack.

C++ example of matrix operations:

Mat Temp = MatMult(kmat_ab, Inverse(kmat_bb));

Vec chi_a = MatMult(

MatMult(

Inverse(kmat_aa - MatMult(Temp, kmat_ba)),

gmat_aa - MatMult(Temp, gmat_ba)

), dchin_a);

GRIN PART I 16

Example of GRIN usage

Define the geometry (segments)

/* Define segments */

Vec tb(11), ta(5);

segment sa, sb;

ta.space(0., 1.);

tb.space(0., TwoPi);

Vec xa(5); xa = 2.;

Vec ya(5); ya.space(-0.1, 0.1);

sa.load(ta, xa, xb, not_periodic);

sb.load(tb, xb, yb, periodic);

GRIN PART I 17

Example of GRIN usage (continued)

Compute
∫
d`′K(`, `′)α′(`′)

/* set observer point */

double tobs = 0.5;

/* call procedure */

/* greenLaplaceCartesian = Green’s fct

alpha is the basis fct (ext proc) */

double res = greenIntegral(

greenLaplaceCartesian,

sa, tobs, sb, alpha);

GRIN PART I 18

Example of GRIN usage (continued)

Compute
∫

s
d`α(`)

∫
s′ d`

′K(`, `′)α′(`′)

/* beta, alpha are the basis fcts */

double res = twoGreenIntegral(

greenLaplaceCartesian,

sb, beta, sa, alpha);

GRIN PART I 19

GRIN’s NICHE
Reasons to develop GRIN

There is a gap between general software as Mathematica and
specialized software as VACUUM. This gap is filled in by GRIN.

Feature Mathematica 3 GRIN VACUUM

Accuracy depends very good very good

Flexibility very good good poor

Performance poor good very good

Friendliness very good good poor

Programming from scratch tools provided hard to change

GRIN PART I 20

Inaccurate Results of Mathematica 3
Reasons to develop GRIN

0 1 2 3 4 5 6

−0.5

−0.4

−0.3

−0.2

−0.1

0
GRIN vs Mathematica

θ′ (observer)

∫ d
 θ

 ∂
 G

(n
=

2)
/∂

 n

R
0
=1 a=0.95 κ=1 δ=0.95

∫
0
θ′−T+∫θ′−T

θ′ +∫θ′
θ′+T+∫θ′+T

2π

∫
0
2π

∫
0
θ’ + ∫θ’

2π

GRIN

Discrepancy between GRIN’s and Mathematica 3 results.

GRIN PART I 21

Inaccurate Results of Mathematica 3 (continued)

The circles represent the value of
∫ 2π

0
dθK(n = 3) returned by the

NIntegrate Mathematica function for various observer coordinates.

The triangles are those returned by NIntegrate when splitting the
interval in two. The crosses (x) are those values returned by
NIntegrate after further splitting; these agree much better with the
GRIN results obtained using greenIntegral.

GRIN’s results are more accurate because of the proper handling of
the log singularity.

GRIN PART II 22

PART II
Improvements made to GRIN

• Accuracy and performance: Green’s functions and 2F1

• Portability: building the code on different platforms

• Robustness: rely on extensively tested software when possible

GRIN PART II 23

Accuracy and Performance

The Green’s functions for the toroidal Laplace equation are
expressed in terms of the Gauss hypergeometric series (2F1). As
the series converges slowly for some arguments, it is prone to
inaccuracy and bad performance.

GRIN PART II 24

The 2F1 Function

The 2F1 function is represented by the Gauss hypergeometric series:

F (a, b, c|x) =

∞∑
k=0

(a)k(b)k

(c)k

zk

k!

where:

(a)k = a(a+ 1)...(a+ k − 1)︸ ︷︷ ︸
k terms

, (a)0 = 1

The series has the convergence radius r = 1 in the complex plane. For

x ∈ (0, 1) the series converges. For x >= 1 the series diverges. For

x→ 1− the series converges slowly.

GRIN PART II 25

The 2F1 Function

The most important Green’s function (the toroidally averaged Green’s

function for the Laplace equation) uses 2F1 in the following form:

F (n+ 1
2
, 1

2
, n+ 1|x) for x ∈ (0, 1)

This can be computed using the series:

F (a, b, a+ b|x) =
Γ(a+ b)

Γ(a)Γ(b)

∞∑
k=0

(a)k(b)k

(k!)2
[2ψ(k + 1)−

ψ(a+ k)− ψ(b+ k)− ψ(1− x)](1− x)k

for x ∈ (0, 1)

which converges very well for x→ 1−, but slowly for x→ 0+.

GRIN PART II 26

Use 2F1 from GSL?

GNU Scientific Library (GSL) provides only one general function
(gsl_sf_hyperg_2F1) to compute:

F (a, b, c|x) for x ∈ (0, 1)

GRIN PART II 27

Accuracy Comparison of GRIN’s and GSL’s 2F1

GSL’s 2F1 inaccurate near x = 1;

0.2 0.4 0.6 0.8 1

-2·10-13

2·10-13

4·10-13

6·10-13

8·10-13

1·10-12

GSL

GRIN

Absolute error of GRIN’s and GSL’s 2F1.

GRIN’s 2F1 returns results for 0 6 x < 0.9999999999999999.

GSL’s 2F1 returns results for 0 6 x < 0.999 only.

GRIN PART II 28

Speed Comparison of GRIN’s and GSL’s 2F1

0.2 0.4 0.6 0.8 1

100

200

300

400

GSL

GRIN 2

GRIN 1

Time consumption of GRIN’s and GSL’s 2F1.

The ordinates represent the time in milliseconds consumed by calculation

of F (n+ 1
2
, 1

2
, n+ 1|x) done 10000 times for the given x and n = 1. The

timing was on a Sun SUNW, Ultra-4 computer.

“GRIN 1” uses standard series, “GRIN 2” uses the asymptotic series.

GRIN PART II 29

Robustness and Portability

GRIN uses standard tools that have been developed and tested
over many years. These tools guarantee better portability and
better reliability of GRIN.

Dependencies:

• Autoconf,

• STL,

• LAPACK.

GRIN PART II 30

Autoconf

Autoconf is a GNU tool for user unattended configuration of
software packages that makes software portability easier.

The tool has been used and developed over ten years. Every GNU
package employs Autoconf.

Autoconf is capable of guessing:

• platform type,

• compilers,

• libraries,

• dependencies.

GRIN PART II 31

STL
Standard Template Library

STL is a standard C++ library available with every C++ compiler
that conforms to the C++ ANSI standard.

The library offers data structures such as vectors, sets or queues.
Additionally there are algorithms such as sorting, binary searching
or finding set intersection.

GRIN PART II 32

LAPACK
Linear Algebra PACKage

LAPACK is a library for solving matrix equations:

• systems of linear equations,

• least-squares solutions of linear systems of equations,

• eigenvalue problems,

• and singular value problems.

LAPACK is a widely used standard library for numerical
computation.

GRIN PART II 33

New Vector and Matrix Classes

GRIN was written at the time when not every C++ compiler
supported STL.

Feature MV++ STL

used by old classes new classes

performance very good very good

portability not guaranteed all platforms

documentation exists very good

widely used? no very

GRIN PART II 34

GRIN vs. VACUUM

Test case: Compute the vacuum energy matrix

(m− nq)Vmm′ (m′ − nq)

in the magnetohydrodynamic stability codes PEST, DCON, etc., for a plasma

of inverse aspect ratio ε = a/R = 0.9/1, elongation κ = 2, triangularity δ = 0.9,

x = R+ a cos(θ + δ sin θ)

y = κ sin θ


The toroidal mode number is n = 1 and the poloidal mode numbers vary from

−2 · · ·+ 2. Domain extends from infinity to plasma boundary (no wall).

GRIN PART II 35

GRIN vs. VACUUM (continued)

10
0

10
1

10
2

10
3

−20

−15

−10

−5

0

5

10

%
 e

rr
or

of segments

VACUUM−GRIN: 100*(V
0,0

−V
0,0
VAC128)/V

0,0
VAC128

VACUUM

Ngauss=1 2

3

5

Normalized difference of V00 computed by GRIN (blue) and
VACUUM. Both codes agree in the limit of increased resolution
and quadrature order (ngauss=number of Gauss points in each

segment).

GRIN PART II 36

GRIN vs. VACUUM (continued)

10
0

10
1

10
2

10
3

−4

−2

0

2

4

6

8

10

12

14

16

VACUUM−GRIN: 100*(V
0,2

−V
0,3
VAC128)/V

0,0
VAC128

of segments

%
 e

rr
or

VACUUM

Ngauss=1

2

3

5

Difference of V03 normalized to V00. GRIN and VACUUM give a
slightly different value.

GRIN PART II 37

Future Work

Work that can be done:

• improvements to the Gauss quadrature,

• parallel approach with MPI,

• introduce Automake.

GRIN PART II 38

Conclusions

After months of development GRIN is:

• fully working and ready to solve real problems,

• well tested (passed 10 test cases, which included various
geometries tests and internal mechanisms tests),

• flexible (a user specifies the problem: geometry, Green’s
function, basis functions).

GRIN will become available at http://w3.pppl.gov/NTCC in
October 2001.

