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Abstract

Three-dimensional metallic photonic structures are studied using a newly devel-
oped mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves
the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply
periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD dis-
cretization scheme ensures rapid numerical convergence of the eigenvalue and allows
the code to run at low resolution. Plasmon and photonic band structure calculations
are presented.
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1 Background

The recent upsurge of interest in the electrodynamics of three-dimensional pe-
riodic structures is due to the realization that composite materials can exhibit
unusual electromagnetic properties. For example, a composite material made
of poles and split ring-resonators can display negative dielectric permittivity
and magnetic permeability for a range of frequencies [1]. Such materials known
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as left-handed materials support electromagnetic waves with a very counter-
intuitive behavior: their group and phase velocities oppose each other. Left-
handed materials can be used for developing, for example, “perfect” lenses [2]
capable of sub-wavelength resolution.

Key to understanding the bulk properties of the infinitely extended composite
materials is the accurate determination of the band structure of the electro-
magnetic waves by solving Maxwell’s equations. In the frequency domain, the
wave equation becomes

∇×
(
µ−1·∇×E

)
=

ω2

c2
ε·E (1)

where E is the electric field and µ (ε) the permeability (permittivity) of the
medium. Both ε and µ are spatially varying tensors. The perfect conductor
boundary condition E × n = 0, where n is the normal, is applied at the
conductor boundaries. Because of the system periodicity, and according to
Floquet’s theorem, the electric field can be expressed as Ẽ exp ik·x, where
Ẽ(x+L) = Ẽ(x) is a periodic function, L is any one of the periodicity vectors,
and k is inside the Brillouin zone. Therefore, it is sufficient to solve Eq. (1)
inside the unit cell, which we assume to be a parallelepiped with the dimensions
Lx×Ly×Lz. The equation for Ẽ can be obtained from (1) by replacing ∇ by
∇ + ik:

(∇ + ik) ×
[
µ−1· (∇ + ik)×Ẽ

]
=

ω2

c2
ε·Ẽ. (2)

Here, k·L represents, up to a term 2π(m+n+ l) (m, n and l are integers), the
phase shift experienced by the wave across the unit cell. For m = n = l = 0,
k can be thought of as the wave vector of an incident wave. From now on we
will focus on Ẽ and drop the˜for notational simplicity.

Note that we have chosen here to write the equation for E. The equation for
the magnetic field H is similar to (2) except for ε and µ playing opposite roles.
Hence, the pairs (ε,E) and (µ†,H∗) can be regarded as dual of each other (the
complex ∗ and Hermitian † conjugates are required to derive the Poynting
flux involving E only from an expression solely based on H and vice-versa).
This duality extends to the jump conditions across permittivity discontinuities
([[n·ε·E]] = 0) and permeability discontinuities ([[n·µ·H]] = 0) but not, how-
ever, to the boundary conditions at the surface of perfect conductors. While
the tangential E (Et) must be set to zero there, it is the normal component of
H (Hn) that is required to vanish at the conductor so that the mode structure
of magnetic and electric fields will in general to be fundamentally different. It
turns out that solving for H is from a coding viewpoint straightforward be-
cause Hn = 0 are the default (homogeneous natural) boundary conditions of
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the FE method. On the other hand, solving for E involves applying (explicit)
Dirichlet conditions, which turns out to be numerically more efficient.

2 Discretization

In order to solve (2), the field (e.g. electric) is expanded E =
∑

j Ejej(x)
in finite vector elements ej. Our choice of ej’s is motivated by the desire to
capture accurately discontinuities at conductor and dielectric interfaces. Van
Welij elements [3], by being piecewise linear in the directions perpendicular
to the field but only piecewise continuous along the field, are well suited for
this purpose. Such a spatial dependence ensures that each ej is divergence-free
within an elemental mesh unit. Van Welij elements do not appear to suffer from
numerical pollution (spurious modes) [4], a problem that commonly afflicts
other types of discretizations. However, van Welij elements require a rectilinear
mesh. Although later generalized to curvilinear meshes [5], we found that using
straight hexahedral (brick) elements has a number of advantages not least that
the domain can be built incrementally. Each brick can be identified by a triplet
(i, j, k), i = 1, · · ·Nx, j = 1, · · ·Ny and k = 1, · · ·Nz. Complex geometries can
thus be constructed by adding and removing bricks at will, while noting that
doing so has the disadvantage of introducing “staircase” interfaces.

The discretized version of the vector Helmholtz equation is obtained after
multiplying (2) by a test function ei, integrating over the unit cell domain and
applying the divergence theorem to yield the generalized eigenvalue system

∑
j

AijEj = λ
∑
j

BijEj (3)

where the eigenvalue is λ ≡ ω2/c2,

Aij =
∫

dV (∇ + ik)∗×ei·µ−1·(∇ + ik)×ej (4)

and

Bij =
∫

dV ei·ε·ej (5)

are two sparse matrices and integration is over the volume of the unit cell. To
be exact, the integration by parts introduces a surface term

∮
dσ·ei×[µ−1·(∇+

ik)×E] in the left-hand side of (3). But by virtue of E being periodic this term
does not contribute on unit cell faces. Nor does it contribute on perfect con-
ductor faces since Et = 0 there. Finally, it is straightforward to see that this
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term also cancels at conductor faces when solving for H (replace µ → ε and
E→ H in the above) since we have (ε−1·[∇ + ik]×H)t ∼ Et = 0.

So far we have not deviated from a standard implementation of the FE method.
Integrals (4) and and (5) can be computed analytically assuming ε and µ to
be constant in each brick, with the matrix A yielding a stencil approximation
of operator (∇ + ik)×µ−1·(∇ + ik)× and matrix B an approximation to ε.
When ε = 1, the B-stencil for parallel edges

1
36

1
9

1
36

↑
1
9
←− 4

9
−→ 1

9

↓
1
36

1
9

1
36

(6)

can be regarded as a crude approximation of the identity operator. Had we
chosen an FD approach, then the coefficient 4

9
would have been 1 with all

other coefficients set to zero. This suggests that a certain degree of freedom is
available in the choice of B-stencil. It can be shown that this choice in B-stencil
does not compromise the uniqueness of the solution. Rather, it reflects the fact
that the numerical error is dominated in the FE method by the A-stencil at
high resolution with modifications of B allowed provided they are of same or
higher order of accuracy. This degree of freedom is therefore similar to the
choice of quadrature method in the tunable integration scheme of Bondeson
and Fu [6], and the motivation in Curly3d for introducing a free parameter ∆,
which allows for some flexibility in the choice of B-stencil

0 1−∆
2

0

↑
1−∆

2
←− 2∆− 1 −→ 1−∆

2

↓
0 1−∆

2
0

. (7)

When ∆ is set to 1 we recover the FD stencil while ∆ = 2/3 gives approxi-
mately the FE stencil. Choosing the appropriate value of ∆ so as to minimize
the error is the subject of the following section.
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3 Results

We now test the numerical convergence of the mixed FE-FD scheme by first
considering a structure made of perfectly conducting (metallic) cubes of size
a
2
×a

2
×a

2
embedded in an ε = µ = 1 material. The cubes, which form a periodic

structure, are separated by distance a, the periodicity length. We reproduce
here the results of Mias et al. [7] in Section 4.4 of their paper.

Figure 1 (a) shows the second Brillouin zone (the first Brillouin zone which
contains the point ω = 0 at k = 0 is not shown). The solid line was obtained by
solving the equation for E and using 16 bricks along each direction, whereas all
other curves were obtained at low 83 resolution. The high resolution dispersion
curve is in good agreement with the upper band shown in Fig. 12 of Ref. [7].
Due to the variational nature of the FE discretization, it is apparent that the
FE method systematically overestimates the eigenfrequency. In contrast, the
FD discretization tends to underestimate the eigenfrequency. The mixed FE-
FD scheme is found to perform best when solving for H. We chose a value
∆ = 5/6, which can be shown to be optimal for plane waves. Despite the
departure of the solution from the a plane wave due to scattering occurring
at the conductors, the value ∆ = 5/6 can be seen to yield an accuracy that
is comparable to the one achieved at higher 163 resolution using the standard
FE method, an impressive result considering the fact that the 163 case takes
50 times longer to run.

Having shown that a single ∆ can improve the accuracy over a wide range of
k values, we now investigate the effect of the mode polarization on the con-
vergence properties by considering a lattice of intersecting conducting rods,
which are immersed in an ε = µ = 1 medium. Such a geometry has recently
attracted interest as a possible means to fabricate media with negative per-
mittivity [8]. Each conductor of cross-section a

3
×a

3
is aligned to the principal

axes of the a×a×a cell. In contrast to the previous test case, such a struc-
ture exhibits a cutoff frequency [c.f. Fig. 1 (b)]. In the neighborhood of k = 0
(point Γ in reciprocal space) two photonic and one plasmon branches emerge
with the plasmon eigenvalue ω2a2/(2πc)2 having a weaker dependence in |k|2.
At ka/(2π) = (0.2, 0, 0.3), however, we found the plasmon to have eigenvalue
ω2a2/(2πc)2 = 0.352, that is only slightly below the two photonic branches
0.386 and 0.408, respectively. Analysis of the mode structure revealed the
plasmon’s field to be predominantly aligned to k. In contrast, the two pho-
ton fields are oriented mainly perpendicular to k. In spite of the difference
in their mode structures, we find in Fig. 2 that the convergence rate can be
significantly improved for both types of modes by selecting a single mixture
parameter ∆ between 0.8 and 1.

We now test the capability of Curly3d to handle both positive and negative
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Fig. 1. Dispersion curves obtained by marching in reciprocal space from [000] →
[100] → [110] → [111]. (a) Metallic cavity of size a/2: the curves emphasizing the
accuracy of the mixed FE-FD scheme were obtained at low 83-resolution by solving
for E (circles) and H (squares) and using three mixture parameters ∆. For reference,
the solid curve was obtained using the FE scheme at 163-resolution. (b) Dispersion
curves for the geometry of intersecting conductors with cutoff at ωa/c ≈ 3.6.

ε and µ. Materials with negative ε in a narrow frequency range occur in na-
ture. They include polar crystals (ZnSe, SiC) and free electron plasmas. The
geometry is that of a cubic a

2
×a

2
×a

2
insertion of a dielectric with negative

permittivity (permeability). Here, we solved for the electric field and kept
ka/(2π) = (0.5, 0, 0) fixed while decreasing ε (µ) from 1 to a −1.1. In the pro-
cess, the eigensolution at each step was fed to an inverse iteration eigensolver
as initial guess to the next step. The eigenfrequency as a function of ε is plot-
ted in Fig. 3. For ε = µ = 1, the solution is a plane wave with the numerical
eigenfrequency converging to the exact value to within machine accuracy. As
ε approaches zero, the electric field becomes increasingly tangential to the di-
electric surface and a surface mode develops. The eigenfrequency is ill-defined
at ε = 0. Nonetheless, the mode can be accurately tracked across this point
and the eigenfrequency calculation pursued in the negative ε regime. As ε fur-
ther decreases, sharp features arise at the interface due to the rapid decay of
the wave in the negative dielectric, with the normal electric field flipping sign
at the surface. This is also a regime where it becomes increasingly difficult to
track the mode as the spectrum becomes denser with new modes emerging
from below. Varying µ instead of ε produces a similar curve except for mode
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Fig. 2. Convergence of the eigenvalue λ in the number N = Nx = Ny = Nz of bricks
for the plasmon and photonic modes with conducting rods of size a
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3 , a = 2π,

and k = (0.2, 0, 0.3).
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Fig. 3. Dependence of the eigenfrequency on the permittivity (solid line) and per-
meability (dashed line) inside a cubic of size a
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2 . Results obtained using 123

elements and ∆ = 1.

conversion occurring in the negative regime. Agreement between the ε-E and
µ-E curves is expected since, by virtue of the duality principle, the equations
for (µ, E) and (ε, H) are indistinguishable. We have tested that individual
points on the ε < −0.4 branch of the ε-E curve can also be obtained by run-
ning in µ-E mode and vice versa so that the appearance of two branches can
be explained in terms of coupling to neighboring modes.
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4 Conclusions

We have presented a code, Curly3d, designed for the calculations of band
structures in metallic and dielectric crystals. Curly3d differs from the MIT
Photonic-Band code [9] in that the crystal can have embedded conductors as
well as a spatially varying permeability.

Curly3d uses a mixed finite element, finite difference scheme to accelerate the
numerical convergence of the eigenvalue calculation. By appropriately tuning
the mixing parameter ∆ we were able to show that the accuracy of the nu-
merical results can be improved so as to enable one to run, typically, at half
the resolution required by the finite element method. Moreover, the mixing
parameter ∆ does not depend sensitively on the wave-vector or on the mode
polarization.

A large part of Curly3d, including the matrix assembly, is written in the
scripting language Python thus making it easy for users to extend the code.
Extensive use of nested lists, hash tables and other advanced data types were
made in order to map data on unstructured meshes, composed in our case of
uniform bricks. Curly3d relies on the Ellipt2d package [10]. Both Ellipt2d and
Curly3d are freely available and can be downloaded from the CVS repository
at http://sourceforge.net.
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