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The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator
(QAYS), expected to achieve good stability and particle confinement is examined with a method that can
lead to estimates of global stability. Making use of fully 3D, ideal MHD stability codes, the QAS betais
predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analysed
through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s,
a, qu); sisthe edge normalized toroidal flux, a isthefield line variable, and g is the perpendicular wave
vector or balooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator
magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of
non-symmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around
the most unstable points in parameter space (well above marginal) are topologically spherical. In such
cases attempts to use ray tracing to construct global ballooning modes lead to a kspace runaway.
Introduction of a reflecting cutoff in |k.| to model numerical truncation or finite Larmor radius (FLR)
yields chaotic ray paths ergodically filling the alowed phase space, indicating that the global spectrum
must be described using the language of quantum chaos theory. However, the isosurface for marginal
stability in the cases studied are found to have a more complex topology, making estimation ¢ FLR
stabilization more difficult.

I ntroduction

Understanding of balooning mode stability boundaries may lead to performance
improvement of toroidal devices through control of disruptions. Toroidally localized ballooning
modes have been found as precursors to high beta disruptions on TFTR arising in conditions of
n=1 kink mode asymmetry. Recent optimization has shown that magnetohydrodynamic stability
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as well as good particle confinement are likely to be achievable in the proposed National
Compact Stellarator Experiment (NCSX), a compact, quasiaxialy symmetric stellarator (QAS)
for values of the plasmanear b = 4%  The configuration, with a major radius of 1.42 m, an
aspect ratio of 4.4, a toroidal magnetic field 1.2-1.7 T and 6MW of neutral beam heating, is
stable to MHD ingtabilities, with b expected to be limited by high-n kink and ballooning modes.
This paper describes the ballooning eigenvalue isosurfaces obtained for NCSX above the design
beta, the first step in examining kinetic stabilization of the ballooning beta limit using a hybrid
WKB approach.??

Eigenvalue | sosurfaces of the Quasiaxially Symmetric Stellarator

The VVBAL module of the TERPSICHORE code suite® has been used to calculate the
ballooning instability for several NCSX equilibria (Fig. 1) above the design point (b = 4.1%).
The displacement of the flux surface grows with growth rate g, x p exp (iwt) u exp (gt). We
define the eigenvalue | = -w?; positive values of | denote instability, while negative values
denote stability. For b = 4.3% and b = 6.8% we have assembled a datacube of ballooning
eigenvalues | (s,a,qx), of size (126,101,21). s is the toroidal flux, a is the field line variable.
Roughly, within +p, the ballooning parameter g« determines where the eigenfunction is a
maximum. Figure 2 shows the plasma iota of the two equilibria. These are weak shear plasmas,
with vanishing shear near the edge.

The isosurfaces of | constrain the possible trajectories of rays of the eikonal equation.
Consequently they help determine the quantization conditions that are used to find the maximum
wave vector, and thereby kinetic stabilization of the ballooning mode at the betalimit. The QAS
isosurfaces are found to exhibit unusual topologies for the two equilibria. Distinct and unique
structures at 4.3% b occur for different rangesof | in the stable spectrum for Alfven waves:. @) at
| =-0.15, ahelica structure is found near the plasma edge, rotating about an axis nearly parallel
to the gk axis and open toward the plasma center; b) a | = - 0.45, cylinders are found nearly
constant in g, localized in sand a. Atb = 6.8%, similar structures in the stable spectrum occur,
although more global in extent.

The unstable spectra are less complex, consisting primarily of planes and topologically
cylindrical and spherical isosurfaces near the outer edge of the plasma, where shear goes to zero
and the ingtability is more easily driven. In general, there is a weak dependence on the
ballooning angle gk, stronger dependence on the field line a and quite strong dependence on the
radial parameter s. At b = 4.3% topologically spherical isosurfaces are found for the maximum
eigenvalues, indicative of strong quantum chaos.?> This description “quantum chaos’ for the
paths of rays of the ballooning equation does not mean that the plasma behavior is chaotic, but
that the mathematics of a quantum chaotic scattering problem can be used for instabilities for
high values of | , far above the margina point of the equilibrium. As the eigenvalue | drops to
zero, isolated unstable cylindrical and planar isosurfaces conjoin and the isosurface is no longer
simply connected. At 6.8% b, the surfaces break up at maximum eigenvalues. The configuration
is Mercier stable at both valuesof b. Comparison with a related tokamak shows that the rich
structure of the QAS spectra arise from the complexity of the magnetic configuration.

Finite Larmor Radius Stabilization of the Ballooning Mode at the Beta Limit

In practice, only finite-n modes can be unstable due to finite ion Larmor radius (FLR)
stabilization, so that the infinite-n ballooning calculation may underpredict the actual MHD
limiting beta. The validity of the hydrodynamic, fluid model for MHD breaks down and kinetic
corrections are required if the condition (kn r;)*><<1 isnot satisfied. Herek is the wave vector
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perpendicular to the field line, and r; is the ion Larmor radius, which for the QAS is ~ 1cm.
Finite-n ballooning mode stability calculations with a 3D linear MHD code for a two-field period
QAS configuration showed that the finite-n ballooning modes (1~20) are significantly more
stable than the infinite-n results. For H1 and for a 10 field period stellarator, finite-n ballooning
modes have been examined by applying the WKB ballooning formalism and semi-classical
quantization or quantum chaos theory, depending on the topology of the isosurfaces.>® Near the
QAS beta limit the ballooning rays at the marginal point ( =0) will propagate on an isosurface
having a new and complex topology, determining k. It remains to be determined whether the ray
orbits are regular, and how to use the orbit results to estimate k~ via the Einstein-Brillouin-Keller
semiclassical quantization or the quantum chaos method.

Anderson localization

Toroida localization of the ballooning mode in stellarator plasmas has been identified for
H1®, LHD® and HSX®. This locdization is analogous to Anderson locdization’ of electron
eigenfunctions in condensed matter. For the QAS, we find that localization increases toward the
edge of the plasma where the ballooning potential is increasingly aperiodic (Fig. 3) and there is
stronger effective field ripple (Fig. 4). Each flux surface has a different shape, changing the
poloidal angle, gk, a which the eigenfunction is maximized. The most localized modes in this
geometry occur in the region where global magnetic shear is weakest, including at the shear
reversal surface itself, demonstrating the existence of Anderson localization in the QAS.
Conclusion

We find Anderson localization of the ballooning mode in the QAS and have obtained
eigenvalue isosurfaces with which to examine kinetic stabilization of b. A new method of
regularizing the eigenfunction b estimate k~ may be needed for the QAS at the beta limit,
because of the complex topology of the marginal point isosurfaces.®> The WKB method of high n
ballooning stability calculations may break down for the QAS at the marginal point, requiring
fully 3D, idea or resistive MHD codes such as CAS3D, TERPSICHORE and Spector3D.
Finally, while drift orbit optimization has allowed neoclassical particle transport to be kept low
in the QAS, the detailed relationships between the isosurface structures and drift mode growth
rates need to be examined. Microinstability-based drift wave calculations for LHD and QAS
configurations can aready predict drift mode growth rates in the electrostatic limit®°. The
toroidal dependence of anomalous transport will be sensitive to the localized ballooning
structures. An investigation of stable magnetosonic structures would require relaxation of the
incompressibility condition and integration of a 4" order system of equations. Further work will
be needed in all these aspects of stellarator configuration design.
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near the plasma edge, |labeled by s, the edge
normalized toroidal flux.



