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The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator 
(QAS), expected to achieve good stability and particle confinement is examined with a method that can 
lead to estimates of global stability. Making use of fully 3D, ideal MHD stability codes, the QAS beta is 
predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analysed 
through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s, 
α, θk); s is the edge normalized toroidal flux, α is the field line variable, and θk is the perpendicular wave 
vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator 
magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of 
non-symmetric, eigenvalue isosurfaces in both the stable and unstable spectrum.   The isosurfaces around 
the most unstable points in parameter space (well above marginal) are topologically spherical.  In such 
cases attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. 
Introduction of a reflecting cutoff in |k⊥|  to model numerical truncation or finite Larmor radius (FLR) 
yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum 
must be described using the language of quantum chaos theory. However, the isosurface for marginal 
stability in the cases studied are found to have a more complex topology, making estimation of FLR 
stabilization more difficult. 
 
Introduction 

Understanding of ballooning mode stability boundaries may lead to performance 
improvement of toroidal devices through control of disruptions.   Toroidally localized ballooning 
modes have been found as precursors to high beta disruptions on TFTR arising in conditions of 
n=1 kink mode asymmetry. Recent optimization has shown that magnetohydrodynamic stability 
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as well as good particle confinement are likely to be achievable in the proposed National 
Compact Stellarator Experiment  (NCSX), a compact, quasiaxially symmetric stellarator  (QAS) 
for values of the plasma near  β = 4%.1       The configuration, with a major radius of 1.42 m, an 
aspect ratio of 4.4, a toroidal magnetic field 1.2-1.7 T and 6MW of neutral beam heating, is 
stable to MHD instabilities, with β  expected to be limited by high-n kink and ballooning modes.  
This paper describes the ballooning eigenvalue isosurfaces obtained for NCSX above the design 
beta, the first step in examining kinetic stabilization of the ballooning beta limit using a hybrid 
WKB approach.2,3   
Eigenvalue Isosurfaces of the Quasiaxially Symmetric Stellarator 

The VVBAL module of the TERPSICHORE code suite4 has been used to calculate the 
ballooning instability for several NCSX equilibria (Fig. 1) above the design point (β  = 4.1%). 
The displacement of the flux surface grows with growth rate γ; ξ ∝ exp (iω t) ∝ exp (γ t).  We 
define the eigenvalue λ = -ω 2; positive values of λ denote instability, while negative values 
denote stability.  For β = 4.3% and β = 6.8% we have assembled a datacube of ballooning 
eigenvalues λ(s,α,θk), of size (126,101,21).   s is the toroidal flux, α is the field line variable. 
Roughly, within ±π , the ballooning parameter θk determines where the eigenfunction is a 
maximum. Figure 2 shows the plasma iota of the two equilibria. These are weak shear plasmas, 
with vanishing shear near the edge.  

The isosurfaces of λ constrain the possible trajectories of rays of the eikonal equation.  
Consequently they help determine the quantization conditions that are used to find the maximum 
wave vector, and thereby kinetic stabilization of the ballooning mode at the beta limit.  The QAS 
isosurfaces are found to exhibit unusual topologies for the two equilibria. Distinct and unique 
structures at 4.3% β  occur for different ranges of λ in the stable spectrum for Alfven waves: a) at 
λ = −0.15, a helical structure is found near the plasma edge, rotating about an axis nearly parallel 
to the θk axis and open toward the plasma center; b) at λ = −0.45, cylinders are found nearly 
constant in θk, localized in s and α.  At β  = 6.8%, similar structures in the stable spectrum occur, 
although more global in extent. 

The unstable spectra are less complex, consisting primarily of planes and topologically 
cylindrical and spherical isosur faces near the outer edge of the plasma, where shear goes to zero 
and the instability is more easily driven.  In general, there is a weak dependence on the 
ballooning angle θk, stronger dependence on the field line α and quite strong dependence on the 
radial parameter s. At β  = 4.3% topologically spherical isosurfaces are found for the maximum 
eigenvalues, indicative of strong quantum chaos.2  This description “quantum chaos” for the 
paths of rays of the ballooning equation does not mean that the plasma behavior is chaotic, but 
that the mathematics of a quantum chaotic scattering problem can be used for instabilities for 
high values of λ, far above the marginal point of the equilibrium.  As the eigenvalue λ drops to 
zero, isolated unstable cylindrical and planar isosurfaces conjoin and the isosurface is no longer 
simply connected.  At 6.8% β , the surfaces break up at maximum eigenvalues. The configuration     
is Mercier stable at both values of β .  Comparison with a related tokamak shows that the rich 
structure of the QAS spectra arise from the complexity of the magnetic configuration. 
Finite Larmor Radius Stabilization of the Ballooning Mode at the Beta Limit 

In practice, only finite-n modes can be unstable due to finite ion Larmor radius (FLR) 
stabilization,  so that the infinite-n ballooning calculation may underpredict the actual MHD 
limiting beta. The validity of the hydrodynamic, fluid model for MHD breaks down and kinetic 
corrections are required if the condition  (k⊥ ρi)2 <<1 is not satisfied.   Here k⊥ is the wave vector 
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perpendicular to the field line, and ρi is the ion Larmor radius, which for the QAS is ~ 1cm.     
Finite-n ballooning mode stability calculations with a 3D linear MHD code for a two-field period  
QAS configuration showed that the finite-n ballooning modes (n~20) are significantly more 
stable than the infinite-n results.   For H1 and for a 10 field period stellarator,  finite-n ballooning 
modes have been examined by applying the WKB ballooning formalism and semi-classical 
quantization or quantum chaos theory, depending on the topology of the isosurfaces.2,3   Near the 
QAS beta limit the ballooning rays at the marginal point (λ=0) will propagate on an isosurface 
having a new and complex topology, determining k⊥. It remains to be determined whether the ray 
orbits are regular, and how to use the orbit results to estimate k⊥ via the Einstein-Brillouin-Keller 
semiclassical quantization or the quantum chaos method.3   
Anderson localization 

Toroidal localization of the ballooning mode in stellarator plasmas has been identified for 
H13, LHD5 and HSX6. This localization is analogous to Anderson localization7 of electron 
eigenfunctions in condensed matter.   For the QAS, we find that localization increases toward the 
edge of the plasma where the ballooning potential is increasingly aperiodic (Fig. 3) and there is 
stronger effective field ripple (Fig. 4).  Each flux surface has a different shape, changing the 
poloidal angle, θk, at which the eigenfunction is maximized.  The most localized modes in this 
geometry occur in the region where global magnetic shear is weakest, including at the shear 
reversal surface itself, demonstrating the existence of Anderson localization in the QAS. 
Conclusion 

We find Anderson localization of the ballooning mode in the QAS and have obtained 
eigenvalue isosurfaces with which to examine kinetic stabilization of β . A new method of 
regularizing the eigenfunction to estimate k⊥ may be needed for the QAS at the beta limit, 
because of the complex topology of the marginal point isosurfaces.3  The WKB method of high n 
ballooning stability calculations may break down for the QAS at the marginal point, requiring 
fully 3D, ideal or resistive MHD codes such as CAS3D, TERPSICHORE and Spector3D. 
Finally, while drift orbit optimization has allowed neoclassical particle transport to be kept low 
in the QAS, the detailed relationships between the isosurface structures and drift mode growth 
rates need to be examined.  Microinstability-based drift wave calculations for LHD and QAS 
configurations can already predict drift mode growth rates in the electrostatic limit8,9. The 
toroidal dependence of anomalous transport will be sensitive to the localized ballooning 
structures.  An investigation of stable magnetosonic structures would require relaxation of the 
incompressibility condition and integration of a 4th order system of equations. Further work will 
be needed in all these aspects of stellarator configuration design. 
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Figure 1. Ballooning eigenvalues for NCSX 
 above the design point. α=0, θk=0.
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Figure 2.  Iota profiles for equilibria
 above the design point beta.

Figure 3. Eigenfunction localization in poloidal angle 
near the plasma edge, labeled by s, the edge 
normalized toroidal flux.

Figure 4. Effective ripple of QAS, 
calculated with NEO code.
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