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Abstract

Concerns about the flexibility and robustness of a compact quasiaxial stellarator design are

addressed by studying the effects of varied pressure and rotational transform profiles on

expected performance. For thirty, related, fully three-dimensional configurations the global,

ideal magnetohydrodynamic (MHD) stability and energetic particle transport are evaluated. 

It is found that tokamak intuition is relevant to understanding the magnetohydrodynamic

stability, with pressure gradient driving terms and shear stabilization controlling both the

periodicity preserving, N=0, and the non-periodicity preserving, N=1, unstable kink modes. 

Global kink modes are generated by steeply peaked pressure profiles near the half radius

and edge localized kink modes are found for plasmas with steep pressure profiles at the edge

as well as with edge rotational transform above 0.5.  Energetic particle transport is not

strongly dependent on these changes of pressure and current (or rotational transform)

profiles, although a weak inverse dependence on pressure peaking through the

corresponding Shafranov shift is found.  While good transport and MHD stability are not

anticorrelated in these equilibria, stability only results from a delicate balance of the

pressure and shear stabilization forces.  A range of interesting MHD behaviors is found for

this large set of equilibria, exhibiting similar particle transport properties.

PACS numbers  52.20.Dq, 52.30.Bt, 52.35.Py,52.55.Hc,52.65.-y
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I. INTRODUCTION

An intense effort to achieve a stable and well confined compact quasiaxial stellarator

(QAS) [1, 2] configuration has led to a promising design for a modest size experiment to be

called the National Compact Stellarator Experiment (NCSX) [3, 4].  New ideas for

symmetric stellarator design have driven the development of advanced computational tools

to evaluate and optimize neoclassical plasma transport and magnetohydrodynamic (MHD)

stability in fully three-dimensional geometries.  Computational studies can identify

conditions which will increase or decrease plasma transport and MHD instability, thereby

making possible the design of a stellarator experiment with a range of expected scenarios, to

test and improve our understanding of the underlying physics.  A plausible picture of the

flexibility and robustness of the design configuration can be projected before construction

begins.

Loss of plasma confinement has been a historical problem in stellarator experiments,

which the new quasisymmetric designs are expected to circumvent [5].  Loss of confinement

can be driven by MHD instabilities and by neoclassical and anomalous transport processes.

Very recently it has become possible to calculate the probability of these effects for a

particular equilibrium, making use of advanced computer packages as well as high

performance computing platforms.    Although developments in anomalous transport theory

are approaching a stage useful for transport predictions, this paper will only investigate

predictions for neoclassical transport and ideal MHD stability for one candidate NCSX

design, and thirty related equilibria.  Such calculations are now a necessary step in the

planning of a new experiment.



4

In Section II we discuss the variations of the pressure and rotational transform

profiles considered for equilibria which maintain a fixed boundary shape as well as the

average β. The results of the MHD stability and particle transport calculations are given in

Sections III and IV.  Section V provides a summary and conclusion.

II.  THE BASELINE DESIGN AND THE PRESSURE AND ROTATIONAL

TRANSFORM VARIATIONS

The baseline case, called QAS3_C82, is the candidate design configuration for

NCSX presented at the 1999 meetings of the European Physical Society [3] and the

American Physical Society [4].  This is a three field period, compact stellarator with major

radius 1.6 m,  and aspect ratio 3.5.   A toroidal field of 1T is assumed at the magnetic axis.

To assess flexible performance in a modest-sized experiment, the VMEC code [6] is used to

obtain equilibria at β~3.8% for six pressure profiles and five ι profiles, leading to 30 related

equilibria exhibiting different stability and transport behaviors.  The rotational transform,

ι=1/q, is produced by both external field coils and currents arising from the various sources:

the equilibrium-based pressure-dependent bootstrap and Pfirsch-Schlüter currents, in

addition to the externally driven ohmic, beam-driven and RF-driven currents.  Flux surface

cross sections are shown in Figure 1 for the baseline case.

The pressure profiles and ι profiles we consider are shown in Figures 2 and 3.

Most stellarator density profiles are broader than the Advanced Reactor Innovation and

Evaluation Study (ARIES) [7] profiles chosen for the initial design for NCSX.  The

QAS3_C82 current profile was chosen to be similar to that of a bootstrap current profile in
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a low collisionality reactor, to enable rapid reactor performance scaling.  The plasma

equilibria obtained are designated P0X/I0Y as follows: P00/I00 is the baseline QAS3_C82

configuration.  P01, P02 and P03 were defined with P(r) = Po[exp(-(s/σ)2)-exp(-1/σ2)]/(1-

exp(-1/σ2)). The edge normalized toroidal flux label s is proportional to (r/a)2 and varies

from 0 at the plasma center to 1 at the plasma edge.  σ was varied so that P01 is similar to

P00,  P02 is more peaked than P01, while P03 is broader than P01.  For P01, P02 and P03,

σ = 0.52, 0.4, 0.7.  P04 is a very broad, parabolic pressure profile defined as P = Po (1-s2)α

with α = 0.5.  P05 is the pressure profile used in the Helias [8] reactor studies based on the

Wendelstein 7-X (W7-X) design [9], defined by P =  Po (1-11s/7 + 4s2/7 ).  

The ι profiles are chosen as follows: I01 is linear in s, maintaining the central ι(0) =

0.26  and the edge ι(1) = 0.47, the same as in I00.   I04 is also linear in s, with ι(1) higher

than 0.5.  We define δ = ι(1) - ι(0), and F as the factor by which the edge shear is increased

relative to I01. The ι profiles I01-I04 are written ι(s) = ι(0) + δ(2-F)s + δ(F-1)s2.   The

parameters ι(0), δ and F are shown in Table I.

In this way we can explore the effects of a range of pressure profiles, such as might

be generated through on- and off-axis heating and fuelling scenarios, while maintaining the

average and edge values of ι similar to those of the baseline case. By studying the equilibria

with these pressure profile variations for each ι profile, we look for robust and flexible

response from this quasiaxisymmetric stellarator.  We can also compare to what would be

expected in the axisymmetric, tokamak, case.



6

III.  MAGNETOHYDRODYNAMIC STABILITY

The global, ideal MHD stability of quasiaxial stellarator designs is being evaluated

with the three-dimensional stability code packages CAS3D [10-12] and TERPSICHORE

[13]. Recently CAS3D has been used to verify and extend calculations [14,15] of the

TERPSICHORE code, showing stability of the kink (N=1) and periodicity-preserving

(N=0) modes for the proposed stellarator, even without a conducting wall [15].  The two

codes have been extensively benchmarked against tokamak and quasiaxial stellarator equilibia

and have been found in good agreement [16].  Most of the stability calculations for the

pressure and ι scans of this paper have been obtained with the TERPSICHORE code.  The

CAS3D code package calculations are found to be in very good agreement, as is shown

below.

TERPSICHORE [13] uses an efficient variational method to solve the equation

δWp+δWv - ω2δWk =  0.

Here δWp, δWv, δWk and ω2 represent the potential energy in the plasma, the magnetic

energy in the vacuum region, the kinetic energy and the eigenvalue of the system.  The

MHD perturbations evolve as exp(iωt), being unstable if ω2 < 0.

Global MHD instability in fully three-dimensional stellarators differs fundamentally

from that of axisymmetric tokamaks.  The toroidal mode instabilities in tokamaks are not

intrinsically coupled. They can be identified by unique toroidal mode numbers n = 0, ±1,

±2, ….  In stellarators, the toroidal modes are coupled through the magnetic field periodicity

[10]. If Nfp  is the number of field periods of the stellarator, there are 1+ [ Nfp/2]
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independent mode families for decoupled problems.  If Nfp  = 3 as for NCSX, there are two

important mode families designated by N.  The N=0 family, comprising only the coupled

toroidal mode numbers n = 0, ±3, ±6, … and the N=1 family, comprising only the coupled

toroidal mode numbers n = ±1, ±2, ±4, ±5, …  The N=0 family is called the even parity or

periodicity-preserving mode family while the N=1 family is the odd parity mode and is

non-periodicity preserving.  N=0 includes the “vertical” instability (n=0) and N=1 includes

the usual external kink mode (n=±1), familiar in tokamak MHD studies.  In stellarators,

both the N=0 and N=1 families describe kink-like instabilities.

With an ι(r) ranging from 0.25 to 0.50 the resonant values of m/n are from 4 to 2.

Here m specifies the poloidal mode number.  The basis functions for the ideal instabilities

are described in mode selection tables, which include m and n for these resonant and nearby

m/n values.  These tables then comprise the perturbation basis modes assumed for the

calculations of the instabilities in the N=1 and N=0 families. Calculations in this paper use

108 modes and 68 modes, respectively (see Tables II and III).  The stability of each

equilibrium has been evaluated for the external kink and periodicity-preserving modes for

48, 68 and, in some cases, 96 surfaces.  The TERPSICHORE calculations were carried out

with a pseudoplasma approximation for the vacuum region, setting the wall distance at 1.5

minor radii away from the plasma boundary.

Figures 4  and 5 summarize the stability of the N=0 and N=1 modes and how it

depends on the pressure and ι(r) described in the last Section. Configurations were denoted

stable on the basis of a) positive eigenvalues for the most unstable mode, or b) if the most

unstable mode eigenfunction is a numerical instability, as shown by convergence studies.
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The normal displacements of the unstable eigenfunction ξ and the plasma potential

energy change, δW, calculated with TERPSICHORE for the N=0 and N=1 mode families,

one for each pressure profile, are shown in Figures 6-10. The figures show the radial shape

of the five largest Fourier components of each of the most unstable modes, as well as their

identification (m,n).

 The CAS3D calculation of ξ and δW for the P02/I00 case, in very good agreement

with the TERPSICHORE calculations, is shown in Figure 7. The CAS3D2.vac calculation

of the unstable free-boundary perturbation uses the Green’s function technique for

calculating the vacuum contribution with a conducting wall at infinite distance from the

plasma. The calculation is for 128 flux surfaces, uses 108 perturbation harmonics and has

the natural resonances eliminated (see discussion below of Figures 12 and 13).

The CAS3D code package [11] solves the same problem as does TERPSICHORE.

The calculations are based on the plasma potential energy

Wp  = 1/2  ∫∫∫d3r  [ |C|2 - A(ξ•∇s)2 + γp(∇•ξ)2]

associated with the displacement ξ.  In Figure 7d, C1, C2 and C3 are components of the

vector C, which stabilizes the plasma energy integral.  C1 describes the field line bending

energy, C2 depends on the local shear and the parallel current density, while C3 is the field

compression energy.  δW is the total potential energy change due to the  presence of the

instability.

 Destabilization is driven by the second term in Wp, with the current density j  in A,

A = 2 | ∇s|-4 (j  ×∇s)• (B•∇)∇s
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driving instability, modulated by the plasma curvature and the local shear.  The third term

in Wp is stabilizing. It is proportional to γp, where γ is the ratio of the specific heats and

describes the energy associated with field compression.  The code version used here is for

incompressible modes (∇•ξ = 0) and therefore the stabilizing term proportional to γp does

not contribute.

We find that pressure profile P00 is stable to the kink and the periodicity-preserving

modes for all of the ι profiles (see Figs. 4 and 5). P04, on the other hand, is unstable to both

modes with all of the ι profiles tested. The P01 and P02 pressure profiles are stable to N=0

global modes with all ι profiles. The remaining cases exhibit either stability or instability

depending on the ι profile studied. With the very peaked pressure profile, P02, the external

kink is unstable for I00, I01 and I02, but is stabilized with I03 and I04. The higher edge ι

and increased edge shear of these two ι profiles serve to stabilize the kink for a very peaked

pressure profile. The pressure profile P05, characteristic of the Helias reactor studies based

on W7-X, leads also to a stable external kink for all ι profiles except I04, where the natural

resonance at ι = 0.5 is destabilizing. For each pressure profile the unstable modes found

were stabilized for ι profiles having increased edge shear, except for the broad High-mode or

“H-mode” pressure profile, P04.  Many of the stability calculations at 48 and even 68 flux

surfaces exhibited very rapidly varying numerically unstable eigenfunctions with further

convergence studies at 96 flux surfaces being necessary.
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The VMEC code was used to generate Figure 11, which shows how the parallel

current density peaks near the plasma edge and drives the kink unstable for case P04/I00.

The parallel current density is plotted for two configurations which were stable and

unstable to the N=0 and N=1 instabilities.  Holding ι fixed at the plasma edge leads to this

result from the force balance ∇P = j×B [17]. These instabilities are related to the edge

localized modes (ELMS) seen in tokamaks during high heating power H-mode operation.

The influence of the edge current density in driving such edge localized modes is well known

[18]. The QAS edge localized kink modes (ELKs) are also known in tokamaks as “peeling

modes”, and are sometimes precursors to disruptions.

The TERPSICHORE calculations were carried out with a “detuning” factor which

smooths the parallel current density profile, at the radial locations with ι=3/m or 6/m, etc.

At these Mercier unstable points for P00/I00 (see Fig. 12), the CAS3D calculations show

that a locally diverging parallel current density which appears at ι=3/7 (s= 0.8) drives kink

and vertical instabilities, if  resonant contributions are included.  This is not found if we

assume that an island forms with a locally flattened pressure profile (∇p=0 in the vicinity

of the rational surfaces) or, equivalently, if the natural resonances are eliminated from the

calculation. Then the locally diverging parallel current density is suppressed and the

corresponding singularities do not appear.

The normal displacments ζs of the N=0 and N=1 instabilities are shown in Figure 13

for the case P00/I00 as calculated with CAS3D2.vac without eliminating the natural

resonances (Fig.12) and without a locally reduced pressure gradient. The largest Fourier
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components of the N=1 and N=0 families are shown. The calculations were for free-

boundary perturbations for which the vacuum part was computed using the Green’s

function technique with a conducting wall at infinite distance from the plasma. 128 flux

surfaces and 68 perturbation harmonics were used for the N=0 family, and 108 perturbation

harmonics for the N=1 family.

An additional set of calculations was carried out to model one possible startup

condition, keeping the pressure and ι profiles as in P00/I00, but with β reduced to 1%. This

equilibrium is found stable to the N=0 and N=1 modes.

IV.  ENERGETIC PARTICLE TRANSPORT

In recent work with the ORBITMN code [19] we have surveyed a variety of

quasiaxial stellarators and examined both thermal and energetic particle transport. It was

found that for a three field period, compact stellarator similar to QAS3_C82 (called

QAS3_53 (1T) in Ref. 19), a neutral beam of deuterium ions at 40 keV, injected parallel to

the magnetic axis, would be depleted in energy by 41% after one slowing down time.  We

have calculated the effect of the various pressure and ι profiles described above on such a

beam of heating ions. Only the pressure and ι dependent changes in the magnetic geometry

are included in these simulations, without changes in the deposition profiles or in the

slowing down and pitch angle scattering rates.  Since peaked pressure profiles lead to more

peaked deposition profiles and reduced losses, future work should include these deposition

profile effects.  Because of the strong q (or ι) dependence in particle transport [20-22] we
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expect that the ι profile changes would be of primary importance and that there would be

little difference in beam ion loss rates among pressure profiles with a fixed ι profile.

Simulations for twenty-five equilibria (pressure profiles P01-P05 and iota profiles

I01-I05), with deuterium beam ions at 40 keV and a peaked deposition profile, led to similar

energetic particle losses in every case (Fig. 14). The P01 and P00 equilibria give nearly

identical results for energetic particle losses.  The P01 pressure profile is based on a

Gaussian approximation to the QAS3_C82 pressure profile, leading to slightly increased ion

loss rates for these equilibria, 45% after one slowing down time.  The figure shows a weak

dependence of the particle and energy loss fractions on the position of the magnetic axis

and, specifically, the pressure profile dependence.  The magnetic axes in these simulations

ranged from 1.50 m to 1.63 m, depending on the pressure profile.  The statistical error in the

particle loss is ~ (nlost)
0.5/ntotal ~ ±4%.

 Fig. 15 shows the time evolution of the fraction of beam ion loss in one energy

slowing down time for configuration P01/I00.  The concave structure of the loss evolution

with time is characteristic of QAS [19], and is unlike the convex time evolution plots more

typically seen in tokamak beam ion orbit simulations [21,22].  Over time, more and more

ions find their way into loss orbits in the QAS stellarator, while in tokamaks, the

incremental losses decrease with time.  High initial losses from the parallel beam occur

because of  banana width and “orbit wobble” and are also not found in tokamaks. 

To investigate the stellarator energetic particle loss characteristics, we launched an

ensemble of 4000 neutral beam ions in the baseline configuration, with random initial pitch

and without any pitch angle scattering.  Figure 16 shows the time dependence of the lost
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beam ions.  Regions of highest particle density represent locations in energy/pitch space

characterised by high particle loss.  In an axisymmetric tokamak these collisionless losses

would occur very rapidly, and entirely during the first toroidal orbit. However, in the QAS a

spectrum of longer time scales are observed for the collisionless beam ion loss. It is

interesting to note the pocket of high beam ion losses (0.6<λ<0.8 for pitch =  λ = v///v) due

to the collisionless stochastic loss of passing beam ions.  This phenomenon has been termed

“bucket transport” by Mynick [23, 24] and arises for energetic ions after some energy

slowing down has occurred.  Simulations of alpha loss from the Tokamak Fusion Test

Reactor (TFTR) [25] which were compared to pellet charge exchange measurements of the

confined alpha particle distribution, also showed small losses attributed to stochastic

collisionless passing alpha particles [26], resulting from toroidal field ripple.

For the most part these results confirm our expectations; there is little effect on

energetic particle transport from the variations in plasma pressure and ι.  The P03 cases

with the magnetic axis at 1.5 m, exhibit somewhat reduced energetic particle loss, as ions

near the axis are less likely to intersect the last closed flux surface.  The I04 cases all have

somewhat higher edge ι but this was not sufficient to greatly lower particle losses. We note

that the particle transport is only slightly greater in regions of MHD stability and slightly

lower in regions of N=0 mode instability. The N=1 unstable cases P02/I00, P02/I01 and

P02/I02 did not exhibit clearly reduced particle transport, compared to the kink stable cases

P02/I03 and P02/I04.  A case of reduced plasma β (1%) with P00/I00, which was chosen to

model startup, has a small magnetic axis shift and reduced levels of neutral beam ion energy
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transport (37%). The thirty equilibria showing a range of MHD behaviors, are not

characterized by greatly different particle transport properties. 

V. CONCLUSIONS

A series of simulations and calculations varying the pressure and ι profiles for a

compact quasiaxisymmetric stellarator has shown that the stability of the N=1 and N=0

families of global ideal MHD is quite dependent on the particular pressure and ι profiles

chosen.  Calculations for fixed edge poloidal flux and fixed plasma boundary shape at 3.8%

beta show that many of the concepts in tokamak MHD are useful in understanding how

instabilities arise in QAS.

The calculations show quantitatively how these changes in the plasma configuration

affect the global ideal MHD stability and energetic particle transport.  Unlike early

configurations studied before finding the candidate configuration, in which variations in

plasma boundary shape and ι profiles led to either improved kink stability or improved

particle transport, but not both; in this study good particle confinement is not anticorrelated

with MHD stability.  The variables which affected stability most strongly are the plasma

pressure gradient which is destabilizing, and the edge shear and edge ι below 0.5, which were

stabilizing. The parameters which most strongly affected the energetic particle transport are

the Shafranov shift of the magnetic axis and the plasma ι; low shift and high ι being

correlated with better energetic particle confinement.

Global and edge localized kink modes are found to be generated by pressure profiles

peaked near the half radius and the plasma edge, respectively, although increased shear can
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provide some stabilization.  Unstable edge localized modes are found for most plasmas with

edge ι above 0.5.  In tokamaks, edge current density (which drives the ELKS in the QAS

simulations here and ELMS in tokamak H-modes) is found to stabilize global kink modes.

Similarly the QAS cases with high edge pressure gradients and high edge current density

displayed ELKS, but not global kink modes.

Energetic particle transport is not strongly dependent on these changes of pressure

and ι profiles, although a weak inverse dependence on pressure peaking through the

resulting Shafranov shift is found.  We have recently shown that in QAS the thermal and

energetic particle transport behavior are correlated [19], so that we expect these plasmas

will also not differ greatly in their thermal ion confinement.  While good transport and

MHD stability are not anticorrelated in these thirty equilibria, stability only results from a

delicate balance of the pressure and shear stabilization forces.  Although the baseline design

has been shown to be robustly stable relative to the tokamak vertical instability [15], we

have shown in Secion III that variations in the pressure and ι profiles can lead to “vertical”

(N=0 kink mode) instability, if the boundary and β are kept constant.  It is important to

note that this “vertical”, N=0,  instability arises only for plasmas which are also kink (N=1)

mode unstable.

A range of interesting MHD behaviors has been found for a large set of equilibria

with not dissimilar particle transport properties. The particular pressure and ι profiles used

can be considered as targets for experimental planning to develop effective methods for

plasma fuelling, heating, current drive and for coil design.  The construction of such a device
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will provide an opportunity for interesting and flexible plasma physics experiments against

which modern computational plasma theory can be tested.
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Table I    Parameters of  rotational transform profiles , ι(s) = ι(0) + δ(2-F)s + δ(F-1)s2

ι(0) δ F

Ι01 0.26 0.21 1.0
Ι02 0.26 0.21 1.5
Ι03 0.26 0.21 2.0
Ι04 0.26 0.26 1.0
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Table II      Basis functions (68 modes) used for calculations of the N=0 family most
unstable eigenfunctions.  A “1” represents a mode used in the calculation, while
“0” represents a mode not used for the stability calculation.

    m    0  1  2  3  4  5  6  7  8 9 10 11 12 13
    n
   -4     0  0  0  0  0  0  0  0  0  0  0  0  0  0
   -3     0  1  1  1  1  1  1  1  1  1  1  1  1  1
   -2     0  0  0  0  0  0  0  0  0  0  0  0  0  0
   - 1    0  0  0  0  0  0  0  0  0  0  0  0  0  0

0  0  1  1  1  1  1  1  1  1  1  1  1  1  1
1  0  0  0  0  0  0  0  0  0  0  0  0  0  0

    2     0  0  0  0  0  0  0  0  0  0  0  0  0  0
    3     1  1  1  1  1  1  1  1  1  1  1  1  1  1
   4      0  0  0  0  0  0  0  0  0  0  0  0  0  0

5  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   6      1  1  1  1  1  1  1  1  1  1  1  1  1  1

7      0  0  0  0  0  0  0  0  0  0  0  0  0  0
8   0  0  0  0  0  0  0  0  0  0  0  0  0  0

   9      1  1  1  1  1  1  1  1  1  1  1  1  1  1
 10      0  0  0  0  0  0  0  0  0  0  0  0  0  0
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Table III     Basis functions (108 modes) used for calculations of the N=1 family most
unstable eigenfunctions.  A “1” represents a mode used in the calculation, while
“0” represents a mode not used for the stability calculation.

 m  =  0 1 2 3 4 5 6 7 8 9 10 11 12 13
  n
  -8      0 0 0 0 0 0 0 0 0 0   0   0   0   0
  -7      0 0 0 0 0 0 0 0 0 0   0   0   0   0
  -6      0 0 0 0 0 0 0 0 0 0   0   0   0   0
  -5      0 1 1 1 1 1 1 1 1 1   1   1   1   1
  -4      0 1 1 1 1 1 1 1 1 1   1   1   1   1
  -3      0 0 0 0 0 0 0 0 0 0   0   0   0   0
  -2      0 1 1 1 1 1 1 1 1 1   1   1   1   1
  -1      0 1 1 1 1 1 1 1 1 1   1   1   1   1
   0      0 0 0 0 0 0 0 0 0 0   0   0   0   0
   1      1 1 1 1 1 1 1 1 1 1   1   1   1   1
   2      1 1 1 1 1 1 1 1 1 1   1   1   1   1
   3      0 0 0 0 0 0 0 0 0 0   0   0   0   0
   4      1 1 1 1 1 1 1 1 1 1   1   1   1   1
   5      1 1 1 1 1 1 1 1 1 1   1   1   1   1
   6      0 0 0 0 0 0 0 0 0 0   0   0   0   0
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Figure  Captions

Figure 1. Flux surface cross sections of QAS3_C82 at toroidal angle φ = 0o, 90o, 180o and

270o within each field period.

Figure 2. Pressure profiles studied for their effect on  stability and transport.   The flux label

s is the edge normalized toroidal flux, and is proportional to (r/a)2.

Figure 3.  ι profiles studied for their effect on  stability and transport.  The flux label s is the

edge normalized toroidal flux.

Figure 4. Stability diagram for N=1 mode family for thirty equilibrium configurations.

Figure 5. Stability diagram for N=0 mode family for thirty equilibrium configurations.

Figure 6. TERPSICHORE calculation of the N=1 mode family, the unstable kink mode for

P01/I04.  The largest Fourier components are (2,1), (4,2), (8,4), (3,1), and (10,5).  The flux

label s is the edge normalized toroidal flux.

Figure 7. TERPSICHORE and CAS3D calculations of the unstable external kink mode for

P02/I00.  This is the odd parity perturbation, calculated for 128 flux surfaces, 108

harmonics and the N=1 family.   The flux label s is the edge normalized toroidal flux.

Figure 7a: The largest Fourier components of the normal displacement ξ  from the

TERPSICHORE calculation are (3,1), (4,1), (5,2), (6,2), and (5,1). 

Figure 7b: TERPSICHORE calculation of the flux surface averaged energy associated with

the normal displacement shown in Fig. 7a.

Figure 7c: The largest Fourier components of the normal displacement ξ from the CAS3D

calculation are (3,-1), (4,-1), (6,-2), (5,-2), and (5,-1).  The two code packages use different
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conventions in the Fourier series. CAS3D defines f(s,θ,φ)  = Σm,n fmn cos [2π(mθ + nφ)],

while TERPSICHORE defines f(s,θ,φ)  = Σm,n fmn cos [2π(mθ - nφ)],

Figure 7d: CAS3D calculation of the components of the flux surface averaged energy, δW,

associated with the normal displacement shown in Fig. 7c.

Figure 8. TERPSICHORE calculation of the unstable kink and periodicity conserving modes

for P03/I04. The largest Fourier components of the N=1 family are (4,2), (2,1), (10,5), (5,2),

and (8,4).  The largest Fourier components of the N=0 family are (6,3), (12,6), (7,3), (11,6),

and (5,3).  The flux label s is the edge normalized toroidal flux.

 Figure 9. TERPSICHORE calculation of the unstable kink and periodicity-conserving

modes for P04/I02. The largest Fourier components of the N=1 family are (9,4), (2,1),

(11,5), (3,1), and (8,4).  The largest Fourier components of the N=0 family are (7,3), (6,3),

(13,6), (8,3), and (12,6).    The flux label s is the edge normalized toroidal flux.

Figure 10. TERPSICHORE calculation of the unstable kink and periodicity conserving

modes for P05/I04.  The largest Fourier components of the N=1 family are (4,2), (2,1),

(10,5), (8,4), and (5,2).  The largest Fourier components of the N=0 family are (6,3), (12,6),

(7,3), (11,6), and (5,3). The flux label s is the edge normalized toroidal flux.

Figure 11. Parallel current, (j•B)/<∇φ•B>, for an ideal MHD unstable case and for a stable

case, as calculated with VMEC.  Only the nonresonant part of j•B is included.

Figure  12. Mercier instability criterion for configuration P00/I00.  The resonant part of j•B

has been accounted for, giving the Mercier resonances identified by DI. The profiles of the

plasma pressure and ι are shown.
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Figure 13. CAS3D predictions of the largest Fourier components of the most unstable

modes for the N=0 and N=1 instability in configuration P00/I00. In these calculations the

natural resonances have not been eliminated.  Identification of the 10 largest Fourier

component harmonics is shown.  These modes are stabilized if the natural resonances are

eliminated.

Figure 14. Particle and energy loss percentages for twenty-five equilibrium configurations. A

unique symbol for each pressure profile, P0X, is used to designate the particle loss fractions

as shown near the bottom of the figure.   The five different equilibrium configurations found

with five ι profiles for each P0X, lead to five different, but similar values for the position of

the magnetic axis. The energy losses are not differentiated by symbols for each P0X, but can

be identified by the major radius location for each configuration and the symbol marking the

corresponding particle loss percentage.

Figure 15. Time evolution of beam ion loss from P01/I00 during one slowing down time.

Figure 16. Time of loss for neutral beam ions in P00/I00 orbiting without pitch angle

scattering shown as a function of initial pitch angle. Initial ensemble of 4000 ions had

random initial pitches.
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