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MOTIVATION: Investigate turbulent microinstabilities in NSTX and CMOD H-mode plasmas
exhibiting unusual plasma transport
- Remarkably good ion confinement and resilient Te profiles on NSTX
- ITB formation on CMOD
- Identify underlying key plasma parameters for control of plasma performance
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NSTX: NBI in MHD Quiescent Discharge:
T.> T, Resilient Te Profiles
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NSTX H-mode:

Electron Temperature Profile Resiliency

During H-mode
Te(r) remains resilient
electron density increases
ion temperature decreases

What clamps

Electron temperature profile?

Examine microinstability
Growth rates at 3 zones

g profile: partial kinetic EFIT
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NSTX: Examine ITG and ETG Microstability

Find: tearing parity eigenfunction, with broad wave vector spectrum vy(k, p;)
ITG instabilities, with symmetric eigenfunctions and parabolic y(k p;)
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NSTX ITG Near Marginal Stability at 0.8r/a

With 25% error bars on shearing rate, ITG possibly stable with
2-3y'TG > @, g Criterion
What should be the criterion for ITG stability?

Dimits (PoP 2001) requires 4y'7%> wg, 5

Nonlinear Calculations including ExB shear would resolve this
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NSTX: ETG Instrinsically above Marginal Stability

At plasma Edge: wg,g < 2y'T6

Fastest Growing ETG Drift Mode Wavelengths
and Growth Rates Decrease as a(VT,)/T, is Reduced

Higher Critical Gradient for ETG than TEM, Similar to ITG
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What is the Instability at 0.65r/a on NSTX?
What Effect Does It Have on Transport?

Character of Most Unstable Mode Changes to ITG-TEM

Appears to be microtearing mode, driven by a(gradeTe)/Te
if all other gradients =0, mode ~ unchanged.

If no collisions, mode switches to ITG-TEM
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Summary: NSTX H-mode Gyrokinetic Results
If 2-3y,,< wg,g Stabilizes ITG, ITG may be stable everywhere.
wg,g Suppression of ETG and microtearing modes not yet known

NSTX electron losses and resilient Te profiles as yet unexplained
NOTE: utearing, ETG core driving forces (avVNe/Ne, VTe/Te) unchanged during plasma evolution.

r/a Xi Xe TG ETG
< Xneo S>> .
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neo .
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NONLINEAR GS2 Simulations reproduce linear result

ITB TRIGGER: Before n_ peaks, region of reduced transport and
stable ITG microturbulence is established without ExB shear
Quiescent, microturbulence in ITB region
Moderate microturbulence in plasma core
High microturbulence level outside half-radius
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SUMMARY

Linear flux-tube calculations of ITG/TEM, Microtearing and ETG microstability:
ST predictions not as clearly connected to observed transport as for tokamak

NSTX
Low y; as inferred by TRANSP
- consistent with GS2 result that ITG stable in core
and is possibly stabilized by wg,g near edge
- Impurities, finite p* effects may fully stabilize ITG at edge
High ¥, inferred by TRANSP
- may be consistent with GS2 result that ETG unstable in edge
and microtearing modes are intrinsically unstable outside core
- Not consistent with GS2 result of ETG stability in core
Reversed shear inferred by EFIT may be incorrect (need MSE)
Nonlinear calculations underway to determine level of transport
CMOD
Low ;, % Within the ITB and high y;, %, outside the ITB as inferred by TRANSP
- consistent with GS2 stability analysis of ITG, TEM, ETG
- Nonlinear and linear GS2 in qualitative agreement
- Sawtooth propagation measurements confirm low transport in ITB region
at the trigger time (Wukitch, PoP, 2002).



Microtearing Mode Exhibits
Symmetric A_par
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Internal Transport Barrier in Density Profile
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