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 Appendix 3 
Momentum Damping from Ion-Neutral 
Collisions 
 

A3.0: Introduction 

 Ion-neutral friction represents a potential sink for momentum in a plasma with a 

significant number of neutrals. To quantify the effect of neutral friction on flow damping, it is 

necessary to both measure the neutral density and to know the correct rate coefficients for the 

process.  In the course of this research, an extensive study was done of the available atomic data 

for the proper calculation of the rate coefficients. This appendix discusses the calculation of the 

rate coefficient for momentum scattering, for collisions with both hydrogen atoms and hydrogen 

molecules.  

In Section 1, the general structure of the problem is laid out, including definitions of the 

different cross sections and a description of how to include the ion-neutral friction in the fluid 

equations. Section 2 contains data on cross sections for elastic scattering of protons off of 

hydrogen atoms and molecules. Section 3 contains calculations of the rate coefficient like 

quantities Ω(l,m), which are used to calculate the collision frequencies for momentum scattering. 

Section 4 contains cross sections and rate coefficients for charge exchange between protons and 

hydrogen atoms and molecules. Section 5 briefly summarizes the different analytic fits to cross 

sections and rate coefficients used in the report. Section 6 synthesizes the data and presents a 

set of conclusions. 

 A theme throughout this appendix will be the differences in the data between the different 

sources. Much of the experimental data on cross sections and rate coefficients is subject to 50% 

or larger error, and many of the calculations have not been properly verified experimentally. 
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Hence, for any one process, there can be large variations from source to source. This appendix 

will detail a “best” set of data from the literature for use in analyzing HSX plasmas. 

A3.1: Description of the Problem 

A3.1.1: Definitions of the Cross Sections. 

 If a flux of particles I (particles/(area*time)) is incident on a scattering center which 

deflects the particles, then the number of particles scattered per unit time into an element of solid 

angle dΩ is dn=Iσd(θ,ϕ)dΩ.1 The factor σd(θ,ϕ) is a proportionality factor and is called the 

differential cross section (DCS). We usually have σd(θ,ϕ) independent of ϕ, so that 

σd(θ)=2πσd(θ,ϕ). Then the number of particles scattered through an element dθ at an angle θ is 

2πIσd(θ)sin(θ)dθ. The total scattering cross section is the integral of σd(θ) over all angles. This is 

given by 
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where the possible velocity dependence of the differential cross section is noted. Hence, σTI is 

the total number of particles scattered by the beam per unit time into all angles. 

 The momentum transfer cross section σM is related to the DCS by2 
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Note that this heavily weights processes that redirect the motion of the particles (θ=π). This cross 

section is the one of relevance to momentum transport studies involving neutral collisions, as will 

be shown below. 

 The integral in the total scattering cross section is known to only converge for potentials 

that go to zero at finite range.2 This problem can only be properly treated with a proper quantum 

mechanical calculation. In the classical calculations, a cutoff angle in the integration is introduced 

which, in theory, keeps the proper physics but forces the total cross section to a finite value. This 



 

 

347 

introduction of a cutoff angle can, on the other hand, introduce a degree of arbitrariness in the 

classical calculation of the total cross section, as will be shown below.  The momentum cross 

section (and higher integral cross sections, see below) are finite for interaction potentials which 

tend to zero faster than r-1.2 

 Finally, a general expression for the hierarchy of “integral” cross sections is given by 
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A3.1.2: Derivation of the Elastic Scattering Term in the Fluid Equations. 

 The general need is to understand how to represent the ion-neutral friction term in the 

momentum balance equation. In the following discussion, the variable v will refer to the total 

velocity, with u representing the average velocity and w the random velocity. As is shown in3, the 

v moment of the Boltzman equation yields a momentum equation of the form for particles of 

species a 
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The last term in this equation represents change in the fluid element’s momentum due to all 

collisions, and the proper collision physics must be involved in this term. For elastic collisions 

between species a and b, it is possible to simplify the final term as: 
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In this expression, mαβ=mαmβ/(mα+mβ) is the standard reduced mass, and ναβ is an effective 

collision strength for momentum transfer. In this case, the damping is proportional to the reduced 

mass and the relative average velocity of the two species. The collision strength can be written as 
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In this expression, Tαβ=(mβTα+mαTβ)/(mβ+mα) is an effective temperature, and the integration is 

over the random relative velocities (w=wα-wβ). 

This integral is related to the Ω(l,m) integrals of classical gas transport [1,2]. These 

integrals are defined as 
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where ξ=vr/aαβ, and aαβ=(2Tαβ/mαβ)
1/2. Note that Tαβξ

2 is simply the collision energy in the CM 

frame.  These Ω(l,r) integrals are tabulated for various collision processes of interest in [2], or can 

be numerically calculated from any source of the appropriate cross section (σT for Ω(0,0), σM for 

Ω(1,1), etc.).  It is then possible to write the effective collision frequency for momentum transport as 
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 This expression shows that the Ω integrals have units of cm3/s, which are the standard 

units for rate coefficients. It is apparent that (16/3) Ω(1,1) acts as a rate coefficient for momentum 

transfer collisions. Further, it can be shown that the rate coefficient for all collisions is related to 

Ω(0,0) as [2]: 
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It should be noted that the effective collision frequencies in Golant et .al.  and Bachmann 

et. al. are the same, when a proper transformation of integration variables is used. The definition 

of effective temperature is equivalent in the two references. As can be seen, the problem of 

momentum damping is reduced to the evaluation of the effective collision strength for momentum 

transfer, which requires an integration of the momentum transfer cross section over the relative 

velocity between the two species. Data for the momentum transfer cross sections and Ω integrals 

will be presented in sections 2 and 3. 

 

A3.1.3: The Charge Exchange Term in the Fluid Equations. 
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Charge exchange is a second process that can damp the momentum of ions in the 

plasma, and will be shown to be the dominant process for protons interacting with atomic 

hydrogen. This damping mechanism is often discussed in the context of the L-H transition, where 

it can damp flows and inhibit H-mode access. For instance fluid modeling of the TEXTOR biased 

H-mode has been done with an ion-neutral friction term of the form nimiνi0Ui.4 The collision 

frequency is simply the charge exchange frequency 
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This modeling appear to be much more heuristic than the formal derivation presented for 

the case of pure elastic scattering. Formally, this expression is the rate at which charge exchange 

collisions occur, not the rate at which momentum is transferred from one species to another. The 

difference between these two rates is determined by the distribution of angles of the charge 

exchanged ions, as accounted for by 1-cos(θ) weighting in σM. This topic will be developed fully in 

Section 2.2. It will be shown that a proper quantum mechanical calculation for proton-hydrogen 

atom collision will include both "elastic scattering"  and charge exchange in a single formulation. 

No such unifying calculation exists for hydrogen molecules, and a momentum damping rate from 

charge exchange of the form in A3.10 will be used. 

 

A3.2: Cross Section Data for Different Elastic Processes. 

A3.2.1: Sources 

 The total and momentum transfer cross sections for protons scattering off of atoms and 

molecules have been tabulated in a number of references. In the paper by Bachmann and Reiter, 

a classical calculation is used to calculate the cross-sections for elastic scattering on both atoms 

and molecules. The results are fit to a function of the form 
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In these expressions, an, aln, arn, Ei,min, and Ei,max are parameters given for each type of collision, 

and are available in both their paper on the internet.5 The energies Ei in the formula are in the lab 

frame, with the assumption that the neutral is still. Hence, the energy in the center of mass frame 

is given by Ecm=(mr/mi)Ei. Note that their paper contains some errors in the fit coefficients, so it is 

highly recommended that the values from the web site are used. 

 Krstic and Schultz6 give a comprehensive account of elastic scattering cross sections for 

all isotopes of hydrogen. The calculations are done using full quantum mechanical models. Data 

is presented for both the differential cross sections and the integral cross sections, in both tabular 

form and with numerical fits. In particular, the integral cross sections are fit to a function of the 

form: 
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In this reference, all energies E are in the CM frame. The fit parameters ai and bi are provided in 

their paper, and the tabular data is available on the Internet7 as well as in their paper6. 

 

A3.2.2: Proton Elastic Scattering off of Hydrogen Molecules. 

   Other less complete sources exist for the case of protons colliding with hydrogen 

molecules. The fit to momentum transfer cross section in Tabata8  is based on the data by 

Phelps9. The data for σM in Phelps is not a first principle calculation, but is based on a small 

amount of data which is extrapolated based on physics assumptions to form a complete set of 
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recommended data. The data on the total scattering cross section in the early work by Barnett10 is 

taken from Cramer11. Note that the presented by Cramer need to be divided by 3.536x1016 cm3 to 

compare them with the calculations.  A fully quantum mechanical calculation has been done by 

Baer et. al.12 at a CM energy of 20 eV. 

 The total cross section for the p+H2 elastic scattering is shown in figure A3.1, for all the 

sources from which data is available. 

 
Figure A3.1: σT

 for p+H2 elastic scattering. 
 

The data for the total cross section shows fairly poor agreement between the two 

sources. According to Krstic and Schultz, the error in the Bachmann calculation is partly related to 

an improper choice of the deflection cutoff.  The quantum mechanical calculation by Baer agrees 

closely with the Krstic and Schultz result. The old data by Cramer falls under all the theoretical 

calculations. 

Fortunately, the disagreement in the total cross section is unimportant; the momentum 

transfer cross section is the quantity which enters into transport calculations. The data on this 

important cross section is shown in figure A3.2.  
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Figure A3.2: σM

 for p+H2 elastic scattering. 
 

 The different sources generally agree well for impact energies less than 30 eV. Above 

that energy, the fully quantum mechanical calculations deviate significantly from the other two 

sources. The data recommended by Phelps and the calculations by Bachmann are in fairly close 

agreement. Unfortunately, the data in the Phelps recommendation is based on experimental data 

only up to 2.3 eV. In Phelps' paper, he notes that his momentum cross section is lower by an 

order of magnitude than one calculation, and specifically states that more theory and experiment 

are needed for 1eV<E<1keV. The fit by Tabata smoothly interpolates the data from Phelps, 

although that paper also provides some warning about the momentum cross section above 1eV. 

Krstic and Schultz note that vibrational motion of the molecule will cause a decline in the 

momentum transfer cross section above 10 eV, an effect not considered in the classical 

calculation. Given the uncertainty and lack of data, indications are that the Krstic and Schultz data 

are the most trustworthy13, and they will be the primary source for this reaction in the future.  

In the Section 3.1, the Ω(1,1) integrals will be numerically integrated for the different 

models of the momentum transfer cross section. The analytic fit provided by Krstic and Schultz 

has bad properties outside the range .1 eV<Er<100 eV, making the integration over particle 

energies difficult. To fix this, the tabulated data have been smoothly extrapolated outside the 
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range of the tabulated data and fit to a polynomial. The fit is shown in A3.2, and the fit parameters 

are provided in Section A3.5. 

 

A3.2.3: Proton Elastic Scattering off of Hydrogen Atoms. 

The works by Bachmann and Reiter and by Krstic and Schultz contain calculated cross 

section data for the elastic scattering of protons off of atomic hydrogen. In the work by Bachmann 

and Reiter, a purely classical model of the scattering process is invoked. This has limitations, 

especially at low energies. For the case of H++H, quantum mechanical effects become important. 

In particular, the two nuclei should be regarded as indistinguishable at low energy, and a proper 

quantum mechanical calculation is needed to resolve this physics.  

The fully quantum mechanical calculation by Krstic reveals many new features. In these 

calculations, the key physics point is the inability to distinguish between a slow proton elastically 

scattered off of the atom from the slow proton resulting from the charge exchange event. The two 

processes are indistinguishable. As the energy increases, the overlap in the two channels is 

reduced and the differential cross section shows the classical separation of a forward peak 

(scattering) and  backward peak (charge exchange). Throughout the work by Krstic, the 

combination of these two channels is maintained, so that the “elastic” differential cross section 

contains the effects of both resonant charge exchange and classical elastic scattering.  

In the calculations, it is possible to distinguish between the two particles by labeling them 

by there spin. In this case, it is possible to distinguish between the “spin-exchanged” particles and 

the scattered particles. In the high energy limit, the spin exchange cross section becomes the 

standard charge-exchange cross section. This distinction allows the calculation of the traditional 

elastic cross section. Quoting their paper: “The “true elastic” differential cross sections may be 

approximated as the absolute value of the difference of the presented “elastic” and charge 

transfer differential cross sections. This can then be used to recalculate the integral quantities, 

such as momentum transfer and viscosity cross sections to obtain results that have the right 
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classical limits…the spin exchange cross section defined in the low energy limit goes smoothly 

over to the proper charge transfer cross section in the classical limit of distinguishability.” This 

section will demonstrate that by using the appropriately calculated quantum mechanical DCS 

from Krstic and Shultz data, the more traditional and familiar results regarding charge exchange 

and classical elastic scattering can be reproduced.  

The techniques described above for separating the effects of charge exchange and 

classical elastic scattering require the knowledge of the DCS. In the Krstic and Schultz reference, 

the DCS has been fit to an analytic function, with the fit parameters provided in their paper. 

Alternatively, the raw data is available in tabular form on the internet. The quantities 

2πsin(θ)σd,el(θ,E) for elastic scattering and 2πsin(θ)σd,se(θ,E) for charge exchange are tabulated 

for 768 angles between 0 and π, for 30 CM collision energies between .1eV and 100eV. 

Unfortunately, the fits only approximate the structure of the DCS; for all subsequent calculations, 

interpolation in the tabulated DCS will be used. 

Krstic and Schultz also provide a table of integral cross section data corresponding to 

calculations done in the indistinguishable (IP) and (DP) sense, The DP calculation is based on a 

DCS which is weighted toward forward scattering, and is to be used in situations where elastic 

scattering and charge exchange are treated as separate processes.  The IP data is used in cases 

where the two processes can be combined. 

 Figure A3.3 displays the different DCS for a CM energy of .1 eV.  
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Figure A3.3: DCS for p+H scattering at Ecm=.1eV. 

 
 These graphs show that at low CM energy, there is no strong peak for either forward or 

backward scattering. Hence, there is little separation of the classical elastic (forward) scattering 

channel and the charge exchange (backward scattering) channels. 

 The equivalent plot for a CM energy of 100 eV is shown in figure A3.4. At high energy, 

there are clear peaks for forward scattering ( traditional elastic scattering in this limit) and 

backward scattering (traditional charge exchange). The 1-cos(θ) weighting in the momentum 

transfer cross section largely eliminates the large peak at forward angles in the calculation of σM. 

This leads to the conclusion that the charge exchange channel will dominate the momentum 

transfer process. 

With these differential scattering cross sections, it is possible to proceed to the integral 

cross sections. Because the total cross section is technically divergent for a classical calculation, 

it is necessary to introduce a cutoff angle in the integration to keep the cross section finite. This 

cutoff can lead to a total cross section with little physical meaning, while the quantum mechanical 

cross section still has the meaning described by equation (A3.1). Hence, it is not worthwhile to 

compare the classical and quantum mechanical calculations of the total cross section.  
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Figure A3.4: DCS  for p+H scattering at Ecm=100eV. 

 

The momentum cross section is finite in both sets of calculations, and is shown in Figure 

A3.5, using both classical and quantum mechanical calculations of σM. The two analytic fits 

(classical and quantum mechanical calculations) show very different trends as a function of 

proton energy. The discrepancy can be understood as follows. The Bachmann result includes 

only elastic scattering in the distinguishable particle sense; i.e. no charge exchange. The 

appropriate quantum mechanical calculation for comparison for this process comes from using 

the "classical elastic" DCS when computing σM. The σM calculated this was is surprisingly close to 

the Bachman result. Note also that the tabulated Krstic and Schultz  "distinguishable particle" 

(DP) approximation agrees closely with the Bachmann and Reiter result.   

As the proton energy is increased, the classical elastic scattering contribution to σM 

becomes less important compared to the charge exchange component. This confirms the 

traditional result that charge transfer is the dominant process for momentum loss in ion-atom 

interactions. In section 4, more traditional data for charge exchange cross sections and rate 

coefficients will be presented, allowing further comparisons with the quantum mechanical 

calculation. These results are already sufficient to demonstrate that the quantum mechanical 

calculations of Krstic and Schultz are the preferred way of treating all processes in p+H collisions. 
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Figure A3.5: σM

 vs. proton energy for p+H collisions. 
 

 

A3.3: The Integrals Ω(l,r) 

A3.3.1: Protons Scattering on Molecular Hydrogen (p+H2). 

The integral quantity Ω(1,1) is tabulated as a function of ion energy in reference Bachmann 

and Reiter, based on their classical calculations. In this case, the fit to the data is specified as 
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where Tαβ is the effective temperature defined earlier.  The values of Ω(1,1) are based on the 

momentum transfer cross sections calculated in that reference using classical techniques, not 

experimental data. 

The little direct experimental data comes from experiments in drift tube mass 

spectrometer to measure the mobility of trace ions in a background gas. The mobility is defined 

as the ratio of the static drift velocity (vd) of the ions to the electric field (E) accelerating them: 
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It is possible to show14 that  
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The drift velocity is proportional to E, as the electric field specifies the acceleration of the proton 

between collisions. The drift velocity is inversely proportional to the number density of 

background molecules (N), as these molecules lead to collisions which retard the movement of 

the protons. In this expression, Teff is an effective temperature defined as 
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and the new collision integral, ω(1,1), is related to the previous Ω(1,1) as 
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In these equations, T is the temperature of the background gas in the drift tube, and mr is the 

reduced mass as specified before. In comparing the two forms of the collision integral Teff and Tαβ 

have been made set equal to each other. Note that for clarity in this document, the notation has 

been changed slightly from the notation in Ellis, et. al.15, where ω(1,1) is confusing called Ω(1,1). 

The experimental values of vd, ω(1,1), and Teff are provided for many different 

combinations of ions and background gasses Ellis, et. al. The data relevant for this study is a 

table for the scattering of protons in a background of hydrogen molecules. The data is provided in 

terms of ω(1,1), which is transformed to Ω(1,1) as described above. Teff and Tαβ are used 

interchangeably in the transformation. 

Using the definition of the integral Ω(1,1), it is possible to numerically integrate this quantity 

from any tabulation of the momentum transfer cross section. This enables Ω(1,1) for a given 

calculation of σM to be checked against limited available experimental data. In doing this 

integration, it is important to be sure that the analytic form of the momentum cross section is valid 

for the entire range of energies included in the integration. For the calculation shown here, the 
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integration was done over a range of energies Teff/25<E<25Teff. The total of experimental data, 

analytic fits, and numerically calculations are shown in figure A3.6. 

 
Figure A3.6: Ω (1,1)  for p+H2 collisions. 

 

The analytic form of Bachmann is slightly above the experimental data from Ellis. The 

values of Ω(1,1) numerically integrated from the Tabata and Shirai σM or the Krstic and Schultz σM 

agree very well with the available data. At higher temperatures, the Bachmann and Reiter analytic 

form is the largest, with the Krstic form the smallest. This is due to the fall of in the Krstic σM for 

energies above 10eV. The Ω(1,1)  values calculated from the Tabata and Shirai σM
 appear to split 

the difference between the other calculations. Never the less, the data from Krstic and Schultz 

appear to be the most creditable, and the Ω(1,1) calculated with their data will be used as the 

reference case. Note that the numerically integrated Ω(1,1) data have been fit to analytic functions. 

These fits are shown in A3.6, and are listed in table A3.1.   

 

A3.3.2: Protons Scattering on Atomic Hydrogen. 

 The Ω integrals for the p+H collisions are calculated in the same way as for the p+H2 

process. The important difference is that, as discussed above, this calculation includes important 
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effects in the coupling of elastic scattering and charge transfer. The analytic fit to Ω(1,1) from 

Bachmann and Reiter and the numerical integrated values are shown in the figure A3.7. 

 
Figure A3.7: Ω (1,1)  for p+H collisions. 

 

As noted repeatedly above, the difference between these curves is the consistent inclusion of 

charge exchange effects in the case of the Krstic and Schultz calculation. The analytic fit 

parameters for the Krstic and Schultz fit is given in table A3.2 

 

A3.4: Charge Exchange Cross Sections and Rate 
Coefficients. 
 

 Besides elastic scattering, charge exchange must be considered as a sink for 

momentum. Large amounts of data are in existence for the cross sections for protons charge 

exchanging with atoms and molecules. Unfortunately, most of the data in the literature is for 

proton impact energies above 1keV. This is the energy range relevant to energetic neutral beam 

interactions, but is beyond the energies of thermal ions in HSX. 
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A3.4.1: Charge Exchange between Protons and Hydrogen Molecules. 

 The cross section for p+H2 collisions has been calculated and tabulated in a number of 

sources. Sources of raw data for different energies include the papers by Barnett10, Gealy and 

Van Zyl16, and Koopman.17 The analytic fit by Tabata and Shirai8 is based on the recommended 

data in Phelps.9  Analytic fits by Freeman and Jones18 and Janeev19 provide a simply means of 

interpolating the data. The fit by Janeev is stated to be an interpolation for 15 eV<Er<50 eV.  The 

results from these sources are shown in figure A3.8. 

 
Figure A3.8: σcx for p+H2 collisions. 

 

As can be seen from the plot, the Janeev does not fit the data well in the energy range 

where it was interpolated. The analytic fit by Freeman and Jones is good at only high impact 

energy and fails spectacularly for E<100 eV. The fit by Tabata appears to fit the data most 

accurately, although this conclusion is based solely on the assumption that the Phelps 

recommended data are correct for E<30 eV. It is clear that the charge exchange rate for p+H2 

collisions is not well established for E<100eV. The theoretical calculation by Baer et. al. appears 

to be slightly above the other data. 

The rate coefficient for charge exchange between protons and hydrogen molecules has 

been fit to an analytic form by Freeman and Jones,18 based on the analytic fit to the rate 
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coefficient. Note that there is a misprint in this article: there should be a logarithm on both sides of 

their polynomial fit in section three of the introduction. For comparison, analytic cross section of 

Freeman & Jones18, Tabata8, and, Janeev19 have been numerically integrated against a 

Maxwellian distribution. The integration was done over particles with energy Ti/100<E<100Ti. 

Based on the above cross sections, it is anticipated that the Freeman and Jones rate coefficient 

will only be valid for Ti>100 eV. The rate coefficients based on the Tabata and Janeev fits are 

expected to be more accurate at low energies. These analytic and numeric rate coefficients are 

shown in figure A3.9. 

 
Figure A3.9: <σcxv> for p+H2 collisions. 

 
 It is obvious that when the Freeman and Jones analytic cross section is numerically 

integrated to calculate a rate coefficient, it agrees with the Freeman and Jones analytic rate 

coefficient. This testifies to the consistency of that data set. For Ti<80 eV, the Freeman and Jones 

rate coefficient is significantly less than the numerically derived values from Janeev and Tabata, 

and in not considered reliable by the author of this report. The dip in the Janeev cross section at 

20eV is seen to bring the rate coefficient down compared to the Tabata value for low 

temperatures.  
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Based on all of this data, the numerically integrated rate coefficient based on the Tabata 

cross section appears to be the most reliable. This rate coefficient has been fit as discussed in 

section A3.5. The fit parameters are provided in table A3.1, and the quality of the fit is shown in 

figure A3.9.  

A3.4.2: Charge Exchange between Protons and Hydrogen Atoms. 

A great deal of data exists for the cross section for charge exchange between protons and atomic 

hydrogen, although most of it is at higher energy. Freeman and Jones provide a simple formula 

for the cross section: 
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The data from Barnett20 is provided in tabulated form. The experimental data in Newman, et. al.21 

and Gealy &  Van Zyl16, is provided in tabular forms with error bars. The data in Tawara et al.22 

and Fite et al.23 is mostly at higher energies, and must be read off a graph to determine values. 

The process of reading the data off of the graph introduces some error in the graph below. The 

book by Janeev19 provides a simple analytic form of this cross section. Figure A3.10 illustrates 

the good agreement between the data sets.  

The analytic form of Freeman and Jones and Janeev appears to fit the data from many 

sources well, although it may be slightly high. Further, this expression extrapolates well to low 

energies. The analytic form by Janeev also fits the data well, but does not extrapolate well to low 

energies. This will be important when evaluating rate coefficients. The IP spin exchange cross 

section from Krstic and Schultz6 tends to sit in the scatter of the experimental data, lending 

confidence to that quantum mechanical calculation. 
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Figure A3.10: σcx for p+H collisions. 

 
 

The final quantity to discuss is the rate coefficient for proton-atom charge exchange. In 

the paper by Cornelis21, the rate coefficient is given as 

                               318.

i

8

cx
T10v

!
>="< .                                                   (A3.19) 

No range of applicability is given for the fit. The analytic fit by Freeman and Jones is stated to be 

good in the energy range of 1eV to 100keV. In addition, the cross sections from Freeman and 

Jones and from Janeev were numerically integrated to derive the rate coefficient. The integration 

was done for Ti/100<E<100Ti. For Ti<1eV, this integration could fail, due to the poor behavior of 

the cross section analytic forms at low energy. The various calculations of the p+H rate coefficient 

are shown in figure A3.11. 

Based on this data, the analytic fit by Freeman and Jones has been selected as the 

appropriate means to represent the proton-atom charge exchange rate coefficient. This data 

appears to be questionable for ion temperatures below 1eV, which is the stated lower limit of the 

analytic forms applicability. 
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Figure A3.11: <σcxv> for p+H collisions. 

 

As a final point of comparison, it was stated in Section A3.1.2 that the rate coefficient for 

a process is given by 8Ω(0,0). In section A3.2.3, it was shown that the quantum mechanical 

calculation of elastic scattering for the p+H2 reaction includes a spin exchange term that becomes 

the traditional charge exchange process above about 1eV. Hence the rate coefficient for charge 

exchange calculated in this section should be equal to the quantity 8Ω(0,0), where the spin 

exchange DCS is used to calculate σT in the calculation of Ω(0,0). Figure A3.11 shows the 

excellent agreement between these quantities and lends confidence to the entire formalism. 

 

A3.5: Summary of Analytic Fits. 

 Many rate coefficients, cross sections, and Ω integrals have been fit in this report. All of 

them have been fit to a function of the form 

                                     ( ) ( )
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n
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In this expression, f could represent Ω, σ, or <σv>, and x could represent Ti, Teff, Ei or Er, The 

table below provides the fit parameters for these fits. In no cases have the fits been tested to the 

accuracy of those found in the refereed literature. 

Parameters 
1. Krstic and Schultz 

σM, p+H2, extended 

2.Tabata and Shirai 

Ω (1,1), p+H2 

3. Krstic and Schultz 

Ω (1,1), p+H2, 

4.Tabata and Shirai 

<σv>cx, p+H2 

a0 -33.6453 -21.2924 -21.3742 -22.985057 

a1 -0.70536 -0.16951 -0.553961 .6694131359 

a2 -0.354471 -0.0504561 -0.248971 -.1875214003 

a3 -0.0364058 -0.013732 0.00563185 -.246949x10-1 

a4 0.0205793 -0.00052472 0.00813684 .10649315.x10-1 

a5 0.000327074 0.000357204 -0.00073384 .58798933x10-2 

a6 -0.000561123 9.73171e-006 -0.000115252 -.191458651x10-2 

a7 4.47933e-005 -5.18618e-006 2.19459e-005 .189237109x10-3 

a8 -5.65137e-007 2.08049e-007 -1.10458e-006 -.628954476x10-5 

Independent 

Variable 
E

cm Teff
 Teff

 Ti 

Table A3.1: Fits for p+H2 collision processes 

 

Parameters 
1. Krstic and Schultz 

Ω (1,1), p+H 

2. Krstic and Schultz 

Ω (0,0), p+H, based on spin exchange 
σ 

a0 -19.2219 -20.5518 

a1 0.372866 0.387916 

a2 -0.000137784 -0.00505016 

a3 -.000137784 -0.000338638 

a4 -4.94137e-006 -3.13511e-005 

a5 -1.46294e-007 -2.92195e-006 

a6 -6.29297e-009 1.84907e-007 

a7 1.78525e-010 1.81937e-009 

a8 -3.98841e-008 -1.00575e-008 

independent 

Variable 
Teff Teff 

Table A3.2: Fits for p+H collision processes 
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A3.6: Synthesis of the Data Presented in the Appendix. 

 For p+H collisions, all of the classical elastic scattering and charge exchange physics are 

encapsulated in the Krstic and Schultz indistinguishable particle calculations. For p+H collisions 

where no such combination is possible, the two processes have to be taken separately. The 

calculations chosen to represent the two processes are shown in figure A3.12. 

 

Figure A3.12: Comparison of the competing processes for p+H2 collisions. 
 

In the ion temperature range of HSX (Ti=25 eV), charge exchange seems to be the dominant 

process. Note that, as discussed before, the treatment of charge exchange here is not on par with 

the treatment of elastic scattering, and should be taken as an estimate only. 

 In the model by Coronado and Talmadge,24 the formulation upon which the modeling in 

this paper is based, the ion neutral collision term is written as miniνinUi. In writing this, we assume 

that the neutrals are at rest in the lab frame. Equating this to the terms given above yields: 

        iH,cxHiiipHipHipHipHiinii UvnnmUnmUnmUnm
2222

!+"+"=" .              (A3.21) 
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The velocity and ion density can be factored out and the appropriate terms involving Ω(1,1) 

inserted to yield: 

vnn
m

m

3

16
n

m

m

3

16
2222

2

H,cxH

)1,1(

pHH

i

pH)1,1(

pHH

i

pH

in !+"+"=# .                        (A3.22) 

 Consider a plasma with a neutral hydrogen density of 1x1010 cm-3 and a molecular 

hydrogen density of 1x1010 cm-3. These numbers are approximately those given by three 

dimensional DEGAS simulations of HSX plasmas. The individual contributions to the collision 

frequency and the sum of the three terms are plotted in figure A3.13.  

 

Figure A3.13: Ion-neutral collision frequencies. 
 

 It is clear that for this case, the elastic scattering of protons on H dominates the 

momentum damping process at HSX relevant temperatures; collisions with molecules can be 

virtually ignored.  
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