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Appendix 6
Plasma Flows, Radial Electric Fields, and
Radial Currents in a 3D Electron-lon Plasma.

AG6.0: Introduction

This appendix lays out the method of calculating the neoclassical heat and particle flows
in an unbiased plasma. The development is based on the works by Shaing1, Shaing and Callen,?
and Coronado and Talmadge,3 but most closely follows the work of Coronado and Wobig.“’5
Indeed, reference 4 specifies the solution to the problem in very general terms. Easily computed
expressions for the viscosity are found in Shaing, Hirshman, and Callen.’

The purpose of this discussion is to specify the derivation for an electron-ion plasma in
HSX, and cast the equations in a form that can be easily computed and compared to
measurements. Some further points regarding neoclassical theory will be clarified ion the
process. It is assumed that the gradients in the plasma potential, electron and ion pressure, and
electron and ion temperature are all measured quantities; the modeling predicts the particle and
heat flows based upon these measured gradients. It is also assumed that the Hamada spectrum
and basis vectors are known for the configurations of interest, so that calculation of the
contravariant components of the flow is sufficient to specify the flows.

This section is laid out as follows. Section A6.1 details the consequences of
incompressibility of the heat and particle flows; the contravariant flows are written in terms of ExB
and diamagnetic parts, and unknown force free parallel parts. Section A6.2 specifies the forms of
the viscosity and collisional friction. Section A6.3 solves the parallel momentum and heat flux
balance equations to derive a set of coupled differential equations for the force free flows. These
equations can be solved for the force free parallel flows, solving the problem. Section A6.5
provides the relationship between the gradients and radial currents. Sections A6.5 calculates the

viscosity coefficients needed in the formulation.
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The previous developments on this subject have generally used the volume as a flux
surface label and let the Hamada toroidal (T) and poloidal (o) angles vary from zero to one. The
development here will leave the flux surface label as an arbitrary p, and allow the angle to vary as
0<a,C<2m. It will be assumed throughout that the neutral density is a flux surface constant. This
restriction could presumably be removed via the techniques described in chapter 6. This
derivation will assume that the reader is familiar with Hamada coordinates and the manipulations

that were performed in the chapters 5 and 6.

A6.1: Source of the Force Free Heat and Particle Flows.

For any given species ‘a’, the lowest order heat and particle flows are determined by the lowest

order components of the continuity, momentum balance, pressure, and heat flux equations”z'4

v-U, =0 (A6.1)
U.xB _vo 4 vp, (A6.2)
c e,n,
v-q, =0 (A6.3)
q, xB = P2 y1 (A6.4)
2e

a
The terms on the left of these equations are the flows; the terms on the right are the driving
gradients. It can be shown”” that these expressions lead to poloidal and toroidal heat and particle

fluxes of the form

u¢ = c A @+La& +A, B (A6.53)
BC@ A, +A, | dp e,n, dp

Ut =- c A, @+La& +A B° (AB.5b)
B“@ A +A, )\ dp e,n, dp



_cC B, 5p, aT,
BC@ B,+B, )| 2e, dp

ot = - c B, 5p, aT,
@ B“@ B,+B, )| 2e, dp

+P,

+p,0,B°

401

(A6.6a)

(AB.6b)

A set of equations very similar to these was derived in Section 5.4.4. In general, one is free to

pick any value for A;, A;, B4, and B,, as long as A;+A,=0 and B;+B,=0. Coronado suggests the

following choice,” which will be used throughout this derivation:

<BCBC> <B'BT>

A,/A, =B,/B, = _

B.) (8B,)

(AB.7)

Note that this choice is not unique. In particular, the Coronado and Talmadge development uses

A1=1 and A,=0. With the choice made in (A6.7) and collapsing the gradients into the constants

Ga{gLa&)
Jp e,n, dp

a

G, - (ii)
2e, dp

the heat and particles fluxes are given by

o CG <BBT> o
U= a AB
*"BJg (B-B) °
UC CGa <BBP> + A Bt
° B%Jg <B'B> 2

_ Caa <BBT> a
Qa - BC\/§ <B B> +pa0aB
q- cG, <B'BP>+p o Bt
a B¢ g <BB> aVa

(A6.8a)

(A6.8b)

(AB.9a)

(AB.9b)

(A6.10a)

(A6.10b)
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These expressions will be used throughout this derivation. Note that all of the terms are known
except for the force free parts Aj, Ae, 0j, and ce.
To solve for these terms, it is necessary to look at the next order terms in the fluid

equations. Consider the 1% order momentum and heat balance equations: o

m;N, %Ua = Naea(E +1Ua xB) -vV:-D,-Vp,-mN,v_ U, +F, (A6.11)
c

LE V-E, CAE Vp, -v,.q, + LE F., (A6.12)
m 2m m

a a a

0 e. 1
Iq _Sa ! B-
atqa m anx

a

The required parallel momentum and heat balance equations can be derived by
calculating the scalar products of (A6.11) and (A6.12) with B and taking a flux surface average,
assuming that there is no inductive electric field. After this has been done, the steady state

version of these equations becomes

<B-v-D, >+mN,v,, <B-U, >—(B-F,)=0 (A6.13)
S m_v
<B-V-Ea>+%<B-qa>—<B-an>=O (A6.14)

a
For the electron-ion plasma being considered here, there are the four unknowns (A;, A, o, and
oe) and four equations ((A6.13) and (A6.14), for both electrons and ions). The task is to write the
equations (A6.13) and (A6.14) in terms of the unknown variables. To do this, it is necessary to

specify the friction and viscous forces.

A6.2: Specification of the Friction Forces and Viscosities.

This section specifies the form of the friction and viscous forces needed to solve
equations (A6.13) and (A6.14) for the parallel heat and particle flows.
To begin with, the viscosities can be written in general as

a g
<B V- Da> = Mamug + Maﬁu?a; T Wazq q_a + Wazt q_a (A6‘15a)
P C

a a
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(Bp-V-D,) =uf)Us +uflU; +ul), == ) G uip) == % (A6.15b)
Pa P.
B\ « . qs q;

<B \% Ea>_Ya1aUa +Ya1§Ua +Ya2ap_+Ya2§p_ (A6.16)

The forms for the heat and particle flows given in (A6.9) and (A6.10) can be substituted into these

expressions, yielding

C (Hai, B-Br) Mo (B-Bp
(B-V-D,)= A Bl E(MBC <<B-B>>_MB“ <<B'B>>) (AB.17a)
| aai N <B'BT>_M32C <B.BP> A7a
0,0 . B} pa@(MBt (B-B) B“ (B-B>J
o (ul (B-Br) st (BB,
(Be-V-D,)= A3 'B%Gaﬁ(ust <<B-B>>_plt3“ <<B B>>] A6.17b
s 6®.B G, c (uf), <B'BT> “a2§ <B B > o
a a2 Pa\@( B° (B-B) B“ (B- B)]
V- = a L | Yata <B'BT>_Y81C <B'BP>
(B-V-E,)= A .G..-B)G, \/E(YBE (B-B) B (B'B>J (AB.18)

0,6, -B) Co © (1a2 BBr) vur (B-Be)
o ez B° (B-B) B* (BB
P. g (B-B) (B-B)
These expressions show that the viscosities can be written as a term directly proportional to the
gradients and a term proportional to the force free heat and particle flows. In the future, these

expressions will be written as

0]

a

\/ava+0a6a2'B)+ T

VD )= ) G. ¢ g
P a a2 .
Bo-V-D,) =27 BIG, VP 10, (G B}—=- LV (AB.19b)

Jg ° P. \fg

(B-V-D,) =1 631 B)+G V, (A6.19a)
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B-V-E,)=2G, B}G,~—H,+0,@E, B} giﬁa (A6.20)

Vg P Vg

The terms V and H are geometric factors related to the viscosity coefficients that can be found by
comparing the different expressions above.
The complete expressions for the collisional friction are given by Coronado and Wobig.4

The friction is given by

a 2 a q
F.= Z(A?Ub —3612 i) (A6.21)
a 2 a q
F,, = Z (— /13U, + 5522 i) (A6.22)
The quantities 1 can be calculated as
f?? = _nama (\/a6ab _VZb] (A6.23)
(3 =05 =-nm, @aéab - rjb] (A6.24)
'6 v’ 13/4 +4x% +15x%, /2
b ® o (I+x§k11+ma/mk)
05, =-nm, (A6.25)
. (m, /m, \27/4)
% (1+x§b11+ma/mb)

where Xap=Viha/Vinp IS the ratio of thermal velocities, va=2kvak, Ta=2kIak, and d,, is the usual

Kronecker delta. The remaining quantities are defined as
I =3vi, /(1 +Xx2, ) (A6.26)

4 4mn.e’eZlnA1+m,/m,
T 2,3 12
3Vm mavth,a (I"'ngy

Vab

(AB.27)
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A6.3: Solution for the Parallel Flows and Heat Fluxes.

The next step in the derivation is to write down the coupled linear algebraic equations for
the parallel heat and particle flows. In evaluating the parallel heat flux and momentum balance
equations, it will be necessary to evaluate the <B-U> and <B-q>. These can be calculated by first

noticing that

UC
B

(B-B;) +£(B-BP> (AB.28)

B-U,)- >

Substituting in expressions for the flows in (A6.9) and (A6.10) allows (A6.28) to be simplified as
(B-U,)=2,(B-B) (AB.29)
In a similar manner, the term <B-g> can be written as
(B-q,)=p,0,(B-B) (A6.30)

With these expressions, the friction terms in the parallel equations (A6.11) and (A6.12) can be

written as
(B-F,) = /',(BB)- %eqzoi (B-B)+ /%), (B-B)- %Eifzce (8-B) (A6.31)
(B-F,.) =2 (BB) _ge:;oi<s-s> + 0%, (B-B) - %z‘:goe (8°B) (A6.32)
(B-F,) = —/,(BB) +%€“220i (8-B)- /5, (B-B) +§€i§209 (8-B) (A6.33)
(B-F,.) = —(%,(B-B)+ %ﬁ‘;‘zo@ B)- (), (B-B)+ %z;;oe (B-B)  (Ae34)

The electron-neutral collision frequency will be neglected in this development, but charge
exchange collisions will be considered in the ion equations. Hence, the charge exchange terms in

the ion momentum and heat flux equations will be written as

m.nv, <B-U, >=mnuv, A <B-B> (A6.35)

[ I 19} [ B | A R |
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m-llﬁ_Uln < BqI >=%p|GI<BB> (A6.36)

With all of these pieces now assembled, it is possible to derive the coupled linear
equations for the force free particle and heat flows. In particular, the parallel ion momentum

balance equation becomes

26, B G V+06I2 B)+——V+an ) <B-B>-

i inti

(AB.37)

2 2

(€‘11xi<B-B>-gfﬂzoi<B-B>+fiﬁ% (B-B)-</%0.(B-B)| =0

Collecting terms yields a final form for the ion momentum balance equation

A B-1,(B-B)+mny, <B-B>)-\ /(B B)

c (A6.38)

Vg

oi(‘. -B+§£‘1‘2<B-B>)+oe§£‘f2<B-B> _gty_-Scty

Vg

In a similar manner, the electron momentum balance can be written as

© |__G>|

105(B-B) +1, (o B33 (BB) oy S0 (BB +
(A6.39)

oe(i " -B+§€?§<B-B>) -G, Sv, -

N

The ion parallel heat balance equation can be simplified to read

2@, B+ 4 (B-B) i (5, (B-B)+

2 2
o(mT” p(BB)+4, B-</5(BB)|-

o, %é‘; (B-B) (A6.40)

—G.LH. _Eiﬁl

Vo Py

The electron parallel heat balance equation can be simplified to read



205 (B-B)+2, (5 (B-B)+ 4, -B)—oié % (B-B)+

2 ee
O, (ggzz

<B-B>+5e2-B)=—G

c,, G,

H

eEe

Pe

c —
_He
Vo
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(AB.41)

Combining equation (A6.38)-( A6.42) yields a system of four coupled equations of the form

R
Jp en; dp
a, a, a, a,][\ S, S, 0 O 5p, aT,
a, a; a, agl|A, _ 0 0 S, S, 2e, dp (A6.42)
9 8y 8y A (|0 Ss S¢ 0 O @_,__1 IPe
a,; a, 855 ag]l0, 0 0 S, S,||9 €N, dp
P ITe.
2e, dp

The equations here are, from top to bottom, ion momentum, electron momentum, ion
heat balance, and electron heat balance. The constants a; and S; can be determined by
comparing equations (A6.38)-( A6.41) to the expressions above. These constants are geometric
quantities which can be calculated if the Hamada spectrum and basis vectors are known. The
term on the far right hand side are the forces that drive the flows. When these coupled linear
equations are solved for the parallel heat and particle flows, the problem is essentially solved.

While it is possible to analytically invert this system of equations and derive expressions
for each of the flows in terms of the forces, the algebra is daunting. Rather, it will be assumed for
now that some method, either analytic or numerical, is used to invert this matrix.

It is interesting to clarify which terms of these expressions are kept in the Coronado and
Talmadge model presented and tested in this work. This ion parallel momentum equation is given

by (A6.38) with the heat fluxes and temperature gradients neglected, yielding

V. (AB.43)

E [

A B-l(B-BY+mnuy, <B-B>)-1 (% (B-B) = -G,



408

The electron parallel momentum balance is given by (A6.39) with the electron viscosity and the

heat fluxes neglected, yielding an expression
150(B-B) + (531 (B-B) =0 (A6.44)
The heat flux balance equations are not considered in this limit. The coupled differential

equations then reduce to

'i1'B_€11<B'B>+ —fif1<B-B> A, _ivi 0 @_,_L%
mn,v,, <B-B > [}\ } =| Jo op en, dp (AB.45)
1%,(B-B) (53(B-B) [L'° 0 0 0

These equations can be solved by simply adding them, yielding the single equation

' B=(1(B-B)+mnuv, <B-B>)., - (B B\, +%(B-BM, +

[ I s 1|

. (A6.46)
(8B, =_ivi(acp 1 ap.)

Then noting that the friction terms cancel, the force free parallel ion flows can be found as

Watq <B'BT> _ Mar <B'BP>
€ . « .
Y =_L(@+ 1 api) B° (B-B) B" (B'B) (AB.47)
p en;, ap w-B+mnuv, <B-B >)

g

This expression is different than that in Coronado and Talmadge. The difference can be traced

back to the different choice of A; and A, made in this derivation compared to their model. Indeed,
if expressions (A6.9) are used in the direct Coronado and Talmadge development, then
expression (A6.47) results. This ambiguity in the contravariant flow definition has been discussed
in detail by Coronado and Wobig.5

The electron force free flow in this limit can be derived from (44) as

A = —%)\e =A, (A6.48)
511

The electron bootstrap current does not appear because the electron viscosity has been

neglected. Instead, the electrons are simply dragged along by the ions.
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A6.4: Relationship Between the Gradients and Radial
Fluxes.

At this point, the force free heat and particle flows have been completely solved for in
terms of the electric field, pressure gradients, and temperature gradients. All of the plasma heat
and particle flows can now be calculated from these expressions. The remaining task is to relate
these potential, pressure, and temperature gradients to the radial current flowing through the
plasma.

As noted by Shaing and Callen,’ taking the scalar product of the 1% order momentum
equation (A6.11) with Bp (or Bt) and flux surface averaging gives rise to expressions for the radial
flux of particles. These expressions are known as the flux friction relationships. Specifying to the
poloidal component of the momentum equation and defining I',=N,<U,-Vp>, the radial flux of

species ‘a’ can be calculated as

CmaNaUan
e,B°B*,/g
<B; ‘F,, >

al

<B,-V-D, >+ <B,-U, >+

C
tpo
e,B8" g (A6.49)

Cc
e,B°B*,g

Defining the radial current as <J,-Vp>=Ze,I'; and neglecting electron-neutral collisions, the radial

current can be calculated as

C C
<JVp>=————<B,-V'-D,>+———<B,-V-D,_ >
BB BB
Vo Vo (A6.50)
cmn.v.; C
— 2 <B,'U>+—=B,-F,>+<B,-F,, >
BCBQ_\/E P B?;Ba\/g( P 1 P 1 )

The term in parenthesis on the right hand side is exactly zero, due to conservation of
momentum between the ion and electron fluids (or, alternatively, because the classical and

Pfirsch-Schlueter fluxes are intrinsically ambipolarz). Hence, we derive
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JJgB"B*
——F<J-Vp>=<B, VD, >+<B,-V:-D, >+mnv,, <B,-U, > (A6.51)
C

i'i~in

Expression (A6.51) is exactly that used in Coronado and Talmadge, except that the electron
viscosity is neglected in that model.

To evaluate this expression, note that

imhiin il in

a c
mnuv,, <B, -U>=mnu, (EG<BP-BP>+%<BP-BT>) (A6.52)

Using (A6.9) and (A6.10) allows this term to be written simply as

Gc ((Br-By)(B-By) (B, B;)BB;)
mnuv,, <B, -U>=mnu,, BuBC@( (B-B) B (B-B) )+ (A6.53)
7(B-B;)

In the interest of simplification, this expression will be written as

m;n;v;, < B ‘U>= m,”,Um(B.E—iCC\/aF+>\.i<B‘BP>] (A6.54)
with
= <BP 'BP><B'BT> _ <BP 'BT><B'BP> (A6.55)
(B-B) (B-B)

Using (A6.54) and (A6.17b) in (A6.51), an expression relating the radial current to the electric

field and thermodynamic gradients can be derived.

N TN [ RRVEP ¥ )+__v.
Vs
A5 B G,

G C
'+o G‘P) B)+ V(P> (AB.56)
\/9
Gc

mn,,| ———F +1,(B-B,)

IImBB_\/_
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This expression relates the radial current to the gradients in the potential, pressure, and
temperature. Note that the force free components of the flow are explicitly written in this
expression. It is necessary to solve (A6.42) for the force free flows and insert them into (A6.56) to
write the radial current in term of the gradients only.

In the limit of the Coronado and Talmadge formulation, the terms that go like the heat flux
and the electron viscosity are eliminated and this expression simply becomes.

260 B+ m,n,vm<B-BP>)+

<J:-Vp>=
P G|-S —V® +mnwv,

|5V ...naBg\/—

Using the definition for A given in expressions (A6.45) allows this expression to be written as

B‘B*
_NEE (AB.57)

Watq <B'BT>_“a1c <B'BP>
¢ B° (B'B) B" (B'B)
- X
( ): \/5 ﬁi1-B+minivin<B-B>)
Vo oo [ 0P P, ) -1 ) . :
<J-Vp> (ap + _— J\/—B@B“ 6 ‘B+mnyv, (B BP>)+ (A6.58)
C (Mm <B B > M;F;% <B'BP>

+

Ja| Bf <B-B> B* (B-B)

m.n.v

IIInBBCJ—

Hence, just as in the basic Coronado and Talmadge formulation, a relationship is derived

between the radial current and the electric field. The radial conductivity in this case is given by



I )

- \/aBCB“<Vp-Vp>

€L

Watg <B'BT> Hare <B'BP>

¢ B° (B'B) B" (B'B)

Jg @, -B+mny, <B-B>)

rmn

6 i 'B+minivin<B'BP>)+
¢ (nG (B'Br) w (BBp)
B <B-B>

Ja| B¢ (B'B)

" 1in BGBC’JE

This can be rewritten in terms of viscous frequencies3 to yield

1k"mn (82)

T (56 f (ve Vo)l

X
+UC + U,

_("Ua (B-B;) v, <B'BP>){ULP) ® b, <B'BP>J+

<B?> <B?> <B§,>
. <B'BT>_,U(P) <B'BP>+’U- <B BT>_<Bp BT><B-BP> (w
“Ee e BE e
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(AB.59)

(AB.60)

This expression is entirely equivalent to the radial conductivity derived in the Coronado and

Talmadge model, although the arrangement of the terms is somewhat different.

A6.5: Evaluation of the Viscosities Coefficients in the Plateau

Regime.

The development here requires a more complicated treatment of the viscosities than is

necessary for the Coronado and Talmadge model. To derive expressions for the viscosity

coefficients, the plateau expressions in Shaing, Hirshman and Callen® can be used.
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In that reference, the viscosities are written as

2 , Q¢ 2 ;Q;
B-V-D,)=3ul,Ud +ulUS +=ul, "2+ =ul, -2, A6.61
< a> (Ma1 a T Ua a+5u‘a2 P +5Ma2 D ( a)
; 2 p 42 21 G
(Bp-V:D,)= 3(M§a1ua + oy +§“Ea2?+guga2? ’ (A6.61b)
s o 2 » 93 2 1 Q
(Bp-V'E,)= 3(MZ1Ua + oy +§“Ea2?+guga2? ’ (A6.62)

Using the definitions of the u coefficients presented in the paper, these expressions can

be simplified to read

<A'V'Da>= '\/EPBC‘IB() 1 /A.VBUa'VBnm>+
v,B® &ph-md\ B 663
24/nC B, 1 _[A-VB o > (A%
5v,B° &ojn-myd\ B Ba " ¥ B0

with A equal to B, B, or By, and

(A-V-E,)- JnP,C,B, 1 /A-VBUa.VBnm>+
v, B° n,m,éon—mjc|\ B 664
24/nC,B, 1 _[A-VB o > o4
5v,B° &oln-md\ B " ¥ B

The factors C; are given by C1=I'(3)=2, C,=I'(4)-5I'(3)/2, and C3= I'(5)-5I'(4)-(25/4)I'(3), and v, is
the thermal velocity of species ‘a’.
To evaluate these expressions, first note that the terms in the flux surface average can

be written as

<A VB
(A6.65)

U-VBnm>=B
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where
S, = n;()nsnrﬁ sin(ma - ng), (AB.66a)
S, = Yy me,, sin(mo. - n¢), (AB.66b)
S, =n'e,..sin(ma-n'c), (AB.66¢)
S, =m'e_..sin(ma-n'C). (AB.66d)

The next step is to evaluate the flux surface averages in the expression above. As an

example, the quantity <S;S3/B> will be evaluated below. This quantity can be written as

ss Ensnm sin(mo.—-nZ h'e .. sin(m'a.=n't)
< 1B 3> = . (A6.67)
80(1 + 2 € v COS(M" 0 = N"'T)

n",m"=0

For &, m<<1, the sum in the denominator can be neglected. Utilizing the definition of the flux

surface average the yields

2n2n
<S§3 > = 45;80 -Mn,mzons”m sin(ma. -nTh'e,,. sin(m'o. —n'C Htda.  (A6.68)

The orthogonality relationship between sines,

0

fnfsin(ma -n¢)sin(m'a.-n'C)= {23 , (A6.69)

allows the flux surface average to be evaluated as

S,S;\ n%e?,
5 )" s (A6.70a)

o

The other terms in brackets on the RHS of (A6.65) yield

S.S,\ nme2
- . (A6.70b)
B 2B

o
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S,S,\ nmeZ
)= (A6.70c)
S,S,\ m??,
) =g (A6.70d)

These expressions are to be inserted into (A6.67), taking care of the flux surface averages. After

the following definitions are made,

2.2
o; = nﬂ (A6.71a)
nimeo [N = mb|
nme?
ag =- —nm (A6.71b)
nimeo [N = m"|
2.2
Op = M (AB.71c)
n,m=0 n- m"|
it is found that the viscosities can be written as
<A'V : Da> = Kq (U;‘ (ACOLT +A%ac )"‘ U; (Aaap +Aag )J
ot " o~ . (AB.72)
KZa(qa@ 0LT +A OLC)'I‘qa(A‘ OLP +A OLC))
(A-V-E,) = Kk, (UeA%0 +A%ag JUS(A“a, + Afag )
ol " o~ . (AB.73)
K4a(cla (A Or +A OLC)-"qa(A‘ Op +A O('C))
The constants k are defined as
Ky = \/EL&‘BCO (A6.74a)
v,.B
2a =—\/50ch° : (AB.74b)
5v, B
Ky, = m (AB.74c)

2vB°
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JaC,B,
4a =" ot (AB.74d)
5v, B
Comparing equations (A6.15) and (A6.16) to (A6.72) and (A6.73) shows that the viscosities have
now been calculated. In particular, the viscosity coefficients can be found by comparing the
expressions.

The viscosity coefficients in the Pfirsch-Schlueter regime can be calculated using very

similar techniques based on the expressions in Shaing and Callen.”
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