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Appendix 6 
Plasma Flows, Radial Electric Fields, and 
Radial Currents in a 3D Electron-Ion Plasma. 
 
A6.0: Introduction  

This appendix lays out the method of calculating the neoclassical heat and particle flows 

in an unbiased plasma. The development is based on the works by Shaing1, Shaing and Callen,2 

and Coronado and Talmadge,3 but most closely follows the work of Coronado and Wobig.4,5 

Indeed, reference 4 specifies the solution to the problem in very general terms. Easily computed 

expressions for the viscosity are found in Shaing, Hirshman, and Callen.6  

The purpose of this discussion is to specify the derivation for an electron-ion plasma in 

HSX, and cast the equations in a form that can be easily computed and compared to 

measurements. Some further points regarding neoclassical theory will be clarified ion the 

process. It is assumed that the gradients in the plasma potential, electron and ion pressure, and 

electron and ion temperature are all measured quantities; the modeling predicts the particle and 

heat flows based upon these measured gradients. It is also assumed that the Hamada spectrum 

and basis vectors are known for the configurations of interest, so that calculation of the 

contravariant components of the flow is sufficient to specify the flows. 

This section is laid out as follows. Section A6.1 details the consequences of 

incompressibility of the heat and particle flows; the contravariant flows are written in terms of ExB 

and diamagnetic parts, and unknown force free parallel parts. Section A6.2 specifies the forms of 

the viscosity and collisional friction. Section A6.3 solves the parallel momentum and heat flux 

balance equations to derive a set of coupled differential equations for the force free flows. These 

equations can be solved for the force free parallel flows, solving the problem. Section A6.5 

provides the relationship between the gradients and radial currents. Sections A6.5 calculates the 

viscosity coefficients needed in the formulation. 
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The previous developments on this subject have generally used the volume as a flux 

surface label and let the Hamada toroidal (ζ) and poloidal (α) angles vary from zero to one. The 

development here will leave the flux surface label as an arbitrary ρ, and allow the angle to vary as 

0<α,ζ<2π. It will be assumed throughout that the neutral density is a flux surface constant. This 

restriction could presumably be removed via the techniques described in chapter 6. This 

derivation will assume that the reader is familiar with Hamada coordinates and the manipulations 

that were performed in the chapters 5 and 6. 

 

A6.1: Source of the Force Free Heat and Particle Flows. 

For any given species ‘a’, the lowest order heat and particle flows are determined by the lowest 

order components of the continuity, momentum balance, pressure, and heat flux equations1,2,4 
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The terms on the left of these equations are the flows; the terms on the right are the driving 

gradients. It can be shown4,5 that these expressions lead to poloidal and toroidal heat and particle 

fluxes of the form 
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A set of equations very similar to these was derived in Section 5.4.4. In general, one is free to 

pick any value for A1, A2, B1, and B2, as long as A1+A2≠0 and B1+B2≠0. Coronado suggests the 

following choice,4 which will be used throughout this derivation: 
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Note that this choice is not unique. In particular, the Coronado and Talmadge development uses 

A1=1 and A2=0. With the choice made in (A6.7) and collapsing the gradients into the constants 
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the heat and particles fluxes are given by 
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These expressions will be used throughout this derivation. Note that all of the terms are known 

except for the force free parts λi, λe, σi, and σe.  

To solve for these terms, it is necessary to look at the next order terms in the fluid 

equations. Consider the 1st order momentum and heat balance equations: 4,1 
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The required parallel momentum and heat balance equations can be derived by 

calculating the scalar products of (A6.11) and (A6.12) with B and taking a flux surface average, 

assuming that there is no inductive electric field. After this has been done, the steady state 

version of these equations becomes 
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For the electron-ion plasma being considered here, there are the four unknowns (λi, λe, σi, and 

σe) and four equations ((A6.13) and (A6.14), for both electrons and ions). The task is to write the 

equations (A6.13) and (A6.14) in terms of the unknown variables. To do this, it is necessary to 

specify the friction and viscous forces. 

A6.2: Specification of the Friction Forces and Viscosities. 

 This section specifies the form of the friction and viscous forces needed to solve 

equations (A6.13) and (A6.14) for the parallel heat and particle flows.  

 To begin with, the viscosities can be written in general as 
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The forms for the heat and particle flows given in (A6.9) and (A6.10) can be substituted into these 

expressions, yielding 
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These expressions show that the viscosities can be written as a term directly proportional to the 

gradients and a term proportional to the force free heat and particle flows. In the future, these 

expressions will be written as  
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The terms V and H are geometric factors related to the viscosity coefficients that can be found by 

comparing the different expressions above. 

 The complete expressions for the collisional friction are given by Coronado and Wobig.4 

The friction is given by 
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The quantities l can be calculated as 
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where xab=vth,a/vth,b is the ratio of thermal velocities, νa=Σkνak
*,  Γa=ΣkΓak

*, and δab is the usual 

Kronecker delta. The remaining quantities are defined as 
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A6.3: Solution for the Parallel Flows and Heat Fluxes. 

The next step in the derivation is to write down the coupled linear algebraic equations for 

the parallel heat and particle flows. In evaluating the parallel heat flux and momentum balance 

equations, it will be necessary to evaluate the <B⋅U> and <B⋅q>. These can be calculated by first 

noticing that 
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Substituting in expressions for the flows in (A6.9) and (A6.10) allows (A6.28) to be simplified as 
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In a similar manner, the term <B⋅q> can be written as 
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With these expressions, the friction terms in the parallel equations (A6.11) and (A6.12) can be 

written as 
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The electron-neutral collision frequency will be neglected in this development, but charge 

exchange collisions will be considered in the ion equations. Hence, the charge exchange terms in 

the ion momentum and heat flux equations will be written as 
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 With all of these pieces now assembled, it is possible to derive the coupled linear 

equations for the force free particle and heat flows. In particular, the parallel ion momentum 

balance equation becomes 
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Collecting terms yields a final form for the ion momentum balance equation 
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In a similar manner, the electron momentum balance can be written as 
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The ion parallel heat balance equation can be simplified to read 
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The electron parallel heat balance equation can be simplified to read 
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Combining equation (A6.38)-( A6.42) yields a system of four coupled equations of the form 
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The equations here are, from top to bottom, ion momentum, electron momentum, ion 

heat balance, and electron heat balance. The constants ai and Si can be determined by 

comparing equations (A6.38)-( A6.41) to the expressions above. These constants are geometric 

quantities which can be calculated if the Hamada spectrum and basis vectors are known. The 

term on the far right hand side are the forces that drive the flows. When these coupled linear 

equations are solved for the parallel heat and particle flows, the problem is essentially solved. 

 While it is possible to analytically invert this system of equations and derive expressions 

for each of the flows in terms of the forces, the algebra is daunting. Rather, it will be assumed for 

now that some method, either analytic or numerical, is used to invert this matrix. 

 It is interesting to clarify which terms of these expressions are kept in the Coronado and 

Talmadge model presented and tested in this work. This ion parallel momentum equation is given 

by (A6.38) with the heat fluxes and temperature gradients neglected, yielding 
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The electron parallel momentum balance is given by (A6.39) with the electron viscosity and the 

heat fluxes neglected, yielding an expression 
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The heat flux balance equations are not considered in this limit. The coupled differential 

equations then reduce to  
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These equations can be solved by simply adding them, yielding the single equation 
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Then noting that the friction terms cancel, the force free parallel ion flows can be found as 
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This expression is different than that in Coronado and Talmadge. The difference can be traced 

back to the different choice of A1 and A2 made in this derivation compared to their model. Indeed, 

if expressions (A6.9) are used in the direct Coronado and Talmadge development, then 

expression (A6.47) results. This ambiguity in the contravariant flow definition has been discussed 

in detail by Coronado and Wobig.5 

 The electron force free flow in this limit can be derived from (44) as  
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The electron bootstrap current does not appear because the electron viscosity has been 

neglected. Instead, the electrons are simply dragged along by the ions. 
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A6.4: Relationship Between the Gradients and Radial 
Fluxes. 
 
 At this point, the force free heat and particle flows have been completely solved for in 

terms of the electric field, pressure gradients, and temperature gradients. All of the plasma heat 

and particle flows can now be calculated from these expressions. The remaining task is to relate 

these potential, pressure, and temperature gradients to the radial current flowing through the 

plasma.  

As noted by Shaing and Callen,2 taking the scalar product of the 1st order momentum 

equation (A6.11) with BP (or BT) and flux surface averaging gives rise to expressions for the radial 

flux of particles. These expressions are known as the flux friction relationships. Specifying to the 

poloidal component of the momentum equation and defining Γa=Na<Ua⋅∇ρ>, the radial flux of 

species ‘a’ can be calculated as 
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Defining the radial current as <Ja⋅∇ρ>=ΣeaΓa and neglecting electron-neutral collisions, the radial 

current can be calculated as  
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 The term in parenthesis on the right hand side is exactly zero, due to conservation of 

momentum between the ion and electron fluids (or, alternatively, because the classical and 

Pfirsch-Schlueter fluxes are intrinsically ambipolar2). Hence, we derive  
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Expression (A6.51) is exactly that used in Coronado and Talmadge, except that the electron 

viscosity is neglected in that model. 

 To evaluate this expression, note that  
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Using (A6.9) and (A6.10) allows this term to be written simply as 
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In the interest of simplification, this expression will be written as 
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Using (A6.54) and (A6.17b) in (A6.51), an expression relating the radial current to the electric 

field and thermodynamic gradients can be derived. 
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 This expression relates the radial current to the gradients in the potential, pressure, and 

temperature. Note that the force free components of the flow are explicitly written in this 

expression. It is necessary to solve (A6.42) for the force free flows and insert them into (A6.56) to 

write the radial current in term of the gradients only. 

In the limit of the Coronado and Talmadge formulation, the terms that go like the heat flux 

and the electron viscosity are eliminated and this expression simply becomes. 
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Using the definition for λ given in expressions (A6.45) allows this expression to be written as 
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Hence, just as in the basic Coronado and Talmadge formulation, a relationship is derived 

between the radial current and the electric field. The radial conductivity in this case is given by 
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This can be rewritten in terms of viscous frequencies3 to yield 
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This expression is entirely equivalent to the radial conductivity derived in the Coronado and 

Talmadge model, although the arrangement of the terms is somewhat different. 

 

A6.5: Evaluation of the Viscosities Coefficients in the Plateau 
Regime. 
 

The development here requires a more complicated treatment of the viscosities than is 

necessary for the Coronado and Talmadge model. To derive expressions for the viscosity 

coefficients, the plateau expressions in Shaing, Hirshman and Callen6 can be used.  
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In that reference, the viscosities are written as 
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 Using the definitions of the µ coefficients presented in the paper, these expressions can 

be simplified to read    
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with A equal to B, Bp, or BT, and 
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The factors Ci are given by C1=Γ(3)=2, C2=Γ(4)-5Γ(3)/2, and C3= Γ(5)-5Γ(4)-(25/4)Γ(3), and vta is 

the thermal velocity of species ‘a’. 

To evaluate these expressions, first note that the terms in the flux surface average can 

be written as 
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where 
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The next step is to evaluate the flux surface averages in the expression above. As an 

example, the quantity <S1S3/B> will be evaluated below. This quantity can be written as 
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For εn,m<<1, the sum in the denominator can be neglected. Utilizing the definition of the flux 

surface average the yields 
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The orthogonality relationship between sines, 
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allows the flux surface average to be evaluated as 
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The other terms in brackets on the RHS of (A6.65) yield 
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These expressions are to be inserted into (A6.67), taking care of the flux surface averages. After 

the following definitions are made,  
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it is found that the viscosities can be written as 
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The constants κ are defined as 
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Comparing equations (A6.15) and (A6.16) to (A6.72) and (A6.73) shows that the viscosities have 

now been calculated. In particular, the viscosity coefficients can be found by comparing the 

expressions. 

 The viscosity coefficients in the Pfirsch-Schlueter regime can be calculated using very 

similar techniques based on the expressions in Shaing and Callen.2 
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