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Chapter 6 
Neoclassical Modeling of Bias Induced 
Plasma Flows 
 
6.0 Introduction  

In order to predict the evolution of the plasma flows and electric fields subject to the 

biased electrode, it is necessary to model the behavior of the plasma subject to the jxB force of 

the electrode return current. In this work, a purely neoclassical model of the plasma will be used. 

The continuity and momentum equations are solved to yield the radial conductivity, flow 

directions, and time scales for plasma flow evolution. The damping mechanisms used include 

linear neoclassical parallel viscosity and ion-neutral friction. Two models for the time evolution of 

the flows are presented, corresponding to the plasma response to the turn on and turn off of the 

electrode. 

Section 1 will lay out the fluid equations and provide the steady state solution for the 

plasma flows and radial conductivity. Section 2 provides a review of the calculation of the 

viscosity coefficients. Section 3 provides more details of the neutral particle physics and 

modeling. Section 4 details the two separate time dependent solution of the fluid equations for the 

spin-up and relaxation of the plasma flows. Section 5 presents a brief comparison of the viscous 

damping in the QHS and 10% Mirror configurations. 

A note on units is appropriate at this juncture.  All equations are written in the CGS 

system, so that charge is measured in statCoulombs (1 statCoulomb = 3.3356x10-10 coulombs), 

potentials in statVolts or statCoulombs/cm (1 statVolt = 299.79 volts), flow velocity in cm/sec., 

energies in ergs, and pressures in ergs/cm3. Electric fields are measured in statVolts/cm or 

statCoulombs/cm2. Magnetic fields are measured in Gauss, although they also have the same 

units as electric fields. Magnetic flux has units of statCoulombs or statVolt⋅cm. Current density is 
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measured in statCoulombs/cm2⋅sec, so that conductivity has units of 1/sec. The units of various 

quantities in the modeling will be noted where appropriate. 

 

6.1: Steady State Solutions to the Fluid Equations. 

 The development in this section will follow the method given by Coronado and 

Talmadge.1  The derivation begins with the momentum balance and continuity equations for a 

given species a: 
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Na is the number density of species a, Ua is the flow velocity, pa is the scalar pressure, νan is the 

collision frequency between (assumed stationary) neutrals and species a, Fa is a friction force 

between species a and other plasma species, Πa is the viscosity tensor, and ma is the mass of a 

particle of species a. 

 Some modifications are made in this derivation compared to the original derivation in 

Coronado and Talmadge. The Hamada toroidal angle (ζ) and poloidal angle (α) are allowed to 

vary from 0 to 2π, instead of 0 to 1 in the original work. The expressions are written in terms of a 

general radial variable instead of the volume; the Jacobian (√g) is a flux surface constant which is 

left arbitrary for the moment. 

The term -maNaνanUa represents momentum loss due to collisions with neutrals, and will 

be discussed in more detail below and in Appendix 3. In order to terminate the sequence of fluid 

equations, the heat flux is neglected by setting ∇Ti=0. The exchange of momentum between the 

electron and ion fluids is represented through the friction force 
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with Fe=-Fi by momentum conservation.  For the viscosities, we use the linear parallel 

neoclassical viscosity, as will be discussed in Section 6.2. 

 These moment equations will be expanded in the standard small gyroradius assumption, 

i.e. εa=rL,a/L, where L is the scale length of the system. For HSX, the typical electron gyroradius is 

≈0.1mm, while the ion gyroradius is ≈1mm. Typical scale lengths are a few centimeters in the 

radial direction, implying that the small gyroradius assumption is easily satisfied for both species. 

Furthermore, it is assumed that Ua/vth,a~O(εa) with Ua~EExB=Er/B, where vth,a is the thermal 

velocity of species a. We consider νie/ωci~O(εa), where ωci is the ion gyrofrequency, as well as 

νin/ωci~O(εa). We also take [(1/Ui)(∂Ui/∂t)] /ωci~O(εa), along with (∂Na/∂t)/(∇⋅ NaUa) ~O(εa). 

 With these scalings, the various terms in the momentum balance can be ordered as 

follows2 
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With this ordering of terms, the lowest (0th) order momentum balance is simply given by radial 

force balance 
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and the lowest order continuity equation becomes 
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aa
=!" U .                                                         (6.5) 

Assuming that radial flows can be neglected and that the density is finite, this expression implies 

that the plasma flow is incompressible (∇⋅U=0).  When incompressibility is coupled to the lowest 

order momentum balance, it is found that the contravariant poloidal and toroidal flows can be 

written3  
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In this equation, ρ is an arbitrary flux surface label, Φ is the potential, Bζ is the contravariant 

toroidal magnetic field, Bα is the contravariant poloidal magnetic field, B and λ is the force free 

component of the parallel flow. This constant λ is equivalent to the bootstrap component of the 

flow, and is a function of ρ and time only. These two equations allow the contravariant flows to be 

related to the force free flow and the potential gradient, or vice versa, and will be used repeatedly. 

In Hamada coordinates, the E×B and diamagnetic flows, and the return flows to maintain 

incompressibility, are all contained in a single term in the expression for the poloidal flow. A 

detailed derivation of a similar pair of equations was given in Section 5.4.4, in the context of 

deriving the Pfirsch-Schlueter current. Note that λ has units of  cm2/( statVolt⋅sec). 

The first order momentum balance equation can be written for ions as 
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The inertial term is second order, as shown above, and hence neglected. The first order 

momentum balance for electrons is written as 
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Define the first order current density as 
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and assume low β, so that B(1)=0 and ∂B(0)/∂t=0. The superscript (0) on B(0) will be dropped from 

now on. Taking the scalar product of B with the electron and ion equations, taking a flux surface 

average, and summing the results leads to the parallel momentum equation: 
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 Note that the superscript (0) has been dropped from the densities and flows, as they are all 0th 

order quantities. The same process can be applied using the poloidal magnetic field to derive the 

poloidal momentum balance: 
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 The ion-neutral collision frequency is given by νin=nn<σv>, where <σv> is a rate 

coefficient defined such that the ion-neutral friction term in equation (6.12) works properly. The 

proper calculation of this rate coefficient is discussed in Appendix 3. Unlike the ion and electron 

density, the neutral density is not a flux surface constant. Hence, in the theoretical development 

here, we will write the neutral density as: 
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The inclusion of toroidally asymmetric neutrals is a new development in this dissertation, and the 

determination of fn(α,ζ) will be discussed in Section 6.3. Defining νin0=nno<σv>, we can write the 

fluid equations as  
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In these equations, it is necessary to specify a form for the viscosity. In the limits of low flow 

speed in the plateau or Pfirsch-Schlueter regime, the viscosities can be calculated as 
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The coefficients µ have been calculated for the Pfirsch-Schlueter regime4 and the plateau 

regime.5 This calculation will be discussed in more in Section 6.3. Ions in HSX are generally in 

the plateau regime, as demonstrated in Section 3.4. 

 Radial currents flowing in the plasma need to satisfy the radial component of Ampere’s 

law, given by 
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In this expression, we have used the relationship E=-∇Φ=-(∂Φ/∂ρ)∇ρ. This equation shows that in 

steady state, any externally driven radial current is balanced by a return current, so that the net 

current is zero. 

In this development, it will be convenient to cast the fluid equations in terms of the force 

free parallel flows and potential gradients. In doing so, it is useful to define a set of viscous 

damping frequencies 
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 The radial force balance equations can be solved in steady state to yield an estimate of 

the radial conductivity of the plasma.  By using the (6.6), (6.7), (6.16) and (6.18) in the steady 

state parallel momentum balance, the constant λ can be written as  
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where B⋅µ=Bαµα+Bζµζ, and  
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This expression for λ can be inserted into equations (6.6) and (6.7) to yield expressions for the 

contravariant toroidal and poloidal flow velocities: 
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When U=Uζeζ+ Uαeα and the linear poloidal viscosity are inserted in the poloidal momentum 

balance, the flows can be related to the radial current as 
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Finally, the expressions relating flows to the electric field, (6.21) and (6.22), can be inserted in 

(6.23) to yield the radial current in terms of the electric field as: 
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In deriving this expression, the relationship 
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was used, and the radial conductivity σ⊥ is defined as 
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 Note that when the external current <J⋅∇ψ > is zero, (6.24) implies that the electric field is 

exactly balanced by the pressure gradient. There are both ExB and diamagnetic flows, which 

exactly cancel each other. This then implies from (6.21) and (6.22) that no net plasma flow is 

present in the absence of a radial current. Recall that the ion temperature gradient is not included 

in the modeling. If terms in the viscosity proportional to the heat flux had been kept in the 

modeling, then flow at zero radial current would occur. 

 In anticipation of a comparison between hydrogen and deuterium discharges, it is 

interesting to see how the neoclassical radial conductivity scales with the mass of the ion species. 

In the limit that a toroidally and poloidally uniform ion-neutral frequency dominates all of the 

viscous  frequencies, the expression for the radial conductivity reduces to 
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In this limit, the radial conductivity scales linearly with the ion mass. This expression shows 

scaling similar to the classical Yoshikawa radial conductivity.6 

On the other hand, if the viscous frequency terms in (6.26) dominate all of the neutral 

friction terms, than the radial conductivity reduces to an expression  
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This expression has assumed the results of Section 6.2, where the viscosity coefficients are 

calculated. It suffices for now to note that αT, αC, and αP are purely geometric factors related to 

the magnetic field spectrum. For the plateau regime, the factor κ is given by κ=π1/2PBo/vtaBζ. 

Hence, for all other parameters fixed in a plateau regime plasma with vanishingly small neutral 

density, the radial conductivity should scale like mi
1/2. In the Pfirsch-Schlueter regime, κ=µoP/νii. 

Hence, the radial conductivity should also scale like mi
1/2 in this case. 

 There is a regime intermediate to these two limits, where the ion-neutral collision 

frequency dominates some, but not all, of the viscous frequencies. An example of this situation is 

an axisymmetric tokamak with neutrals, where the toroidal damping is dominated by neutrals but 

the poloidal damping is determined by the poloidal viscosity. It has been shown7 that in the 

plateau regime in this configuration, the combination of poloidal viscosity and neutral friction can 

cause a significant increase in the neoclassical radial conductivity compared to the Yoshikawa 

conductivity. In this case, the scaling of the radial conductivity with ion mass is not perfectly clear; 

it depends on the interplay between a number of terms and no generic answer is possible. The 

equivalent calculation for HSX would be to include only the (n,m)=(4,1) component of the 

magnetic field and ion-neutral friction. Unfortunately, no small and simple formula can be written 

for the radial conductivity in this case; the mass scaling of the radial conductivity has to be 
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calculated for the appropriate plasma parameters. These calculations will be presented in Section 

7.1.4. 

 With expression (6.24) relating the radial current and the electric field, expressions (6.21) 

and (6.22) can be used to solve for the direction of the flow. The result is 
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In these expressions, the constant K is related to the radial current as 
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6.2 Evaluation of the Viscosities in the Plateau and Pfirsch-
Schlueter Regimes. 
 
 Before solving the fluid equations for the time evolution of the flow, it is necessary to 

calculate the viscosity coefficients in equation (6.16). The magnetic field in Hamada coordinates 

can be written as  
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In the case of the plateau regime, the viscosities are given by5 
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where, for j=1-2, 
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and C1=Γ(3), C2=Γ(4)-5Γ(3)/2. Pa is the pressure of the species under consideration, and  
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 In calculations to date, the heat flux has been ignored, which is tantamount to setting the 

ion temperature gradient to zero. As noted above, the inclusion of this term would lead to rotation 

proportional to the ion temperature gradient. This would require solving the heat flux balance 

equation as well as the momentum and continuity equations,8 and is beyond the scope of this 

work. 

 By ignoring the heat flux, the expressions for the viscosity can be simplified considerably 

to a general result of the form 
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with A=BT, BP, or B.  To evaluate this expression, first note that the term in the flux surface 

average can be written as 
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where 
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The next step is to evaluate the flux surface averages in the expression above. As an 

example, the quantity <S1S3/B> will be evaluated below. This quantity can be written as 
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For εn,m<<1, the sum in the denominator can be neglected. Utilizing the definition of the flux 

surface average the yields 
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The orthogonality relationship between sines, 
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allows the flux surface average to be evaluated as 
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Using this expression and the other similar flux surface averages, it is then easy to show that 
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In this expression, the constants are defined as 
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As expected for the plateau regime, these expressions are independent of the collision frequency. 

With these definitions, the plateau linear viscosity is fully defined. 

The viscosity for the Pfirsch-Schlueter regime has been specified as4 
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where µo=4.095 and νii is the ion collision frequency.  This expression can be evaluated using 

techniques similar to those above. The final result will be the same as above but with certain 

coefficients redefined: 
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Finally, the viscosity coefficients needed in the momentum equation can be derived from these 

expressions as 
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6.3 Determination of the Neutral Weighting Function. 
 

The function fn(α,ζ) is determined by a combination of atomic physics and the way that 

HSX is fueled.  For discharges described in this work, gas was allowed into the torus using a puff 

valve with a waveform preprogrammed to maintain a flat density throughout the discharge. This is  

a toroidally and poloidally localized source. In addition, there is some recycling from the wall, 

leading to a more spatially uniform source. 

The rate coefficients for proton and electron impact ionization of a hydrogen atom are 

shown in figure 6.1, where data has been collected from a number of sources as a check on 

consistency.9,10,11,12 Note that for HSX relevant ion temperatures (≈25 eV), proton impact 

ionization is irrelevant. 
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Figure 6.1 Rate coefficient for hydrogen atom ionization. 

 
For HSX electron temperatures of a few hundred electron volts, the rate coefficient for 

electron impact ionization is flat with a value of ≈2.5×10-8 cm3s-1, as illustrated in figure 6.1. For an 

electron density of 1x1012 cm-3, the mean free path for a Frank-Condon (≈3eV) neutral is 
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This is significantly larger than the minor radius of the plasma (≈10 to 15 cm), but smaller than the 

circumference (circumference=πD≈7.5 meters). Hence, it is expected that there should be very 

little variation in the atomic hydrogen density at any fixed toroidal angle, but there can be a large 

toroidal asymmetry due to the localized gas puff.  

 The rate coefficients for processes which eliminate hydrogen molecules are shown in 

figure 6.2, using the data presented by Janeev. Processes which eliminate molecules include 

electron impact dissociation, electron impact ionization, and proton impact ionization. Electron 

impact ionization dominates electron impact dissociation for HSX temperatures, and proton 

impact ionization can be ignored.   
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Figure 6.2 Rate coefficient for hydrogen molecule ionization. 

 
The effective mean free path for molecules in HSX can be calculated as above, with the 

assumption that the molecules are at room temperature: 
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This length is much smaller than the mean free path of atoms, mainly due to the reduced velocity 

of the molecules compared to the atoms. Hence, we can assume that the concentration of 

hydrogen molecules will vary toroidally as well as radially at a given cross section. 

 Data from the Hα arrays have been used in conjunction with the interferometer data as 

input to the DEGAS13 code. There calculations were done by John Canik, and only the results will 

be described here. This combination of measurements and modeling allows the calculation of the 

toroidal variation of the neutral atoms and molecules in HSX. The average neutral density at each 

toroidal angle has been plotted versus toroidal angle in figure 6.3. The data points in these curves 

correspond to the average neutral density in the plane at fixed toroidal angle. The gas puff is 

located at 200°. The left plot shows that the concentration of hydrogen molecules is everywhere 

greater than hydrogen atoms, and that both species have a peak at the gas puffer. The ratio of 
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molecular to atomic density is shown on the right, where the reduction in the ratio on either side 

of the puffer is due to the longer mean free path of atoms compared to molecules. 

 
Figure 6.3: Toroidal distribution of atomic and molecular hydrogen (left) and ratio 

of molecular to atomic hydrogen (right). DEGAS calculations were performed by John 
Canik. 

 
 A detailed discussion of the processes by which ion-neutral interactions damp flows is 

presented in Appendix 3. It is shown there that both elastic scattering and charge exchange 

cause damping of plasma flows due to interactions with neutrals. Further, collisions of protons 

with both hydrogen molecules and atoms must be considered. The effective rate coefficients for 

these processes are shown in figure 6.4. The curve on the left for p+H collisions is dominated by 

charge exchange. For the p+H2 collisions, the peak at low ion temperature is due to elastic 

scattering, while the rise toward higher ion temperature is due to charge exchange. The ratio of 

these curves is shown on the right. At HSX relevant ion temperatures of 20-30 eV, the effective 

rate coefficient for p+H collisions is more than 100 times greater than the rate coefficient for p+H2 

collisions. Looking back at figure 6.3, the molecular hydrogen density exceeds the atomic density 

by at most a factor of 25, and this in only a very small region. Hence, ion neutral friction on 

molecular hydrogen will be ignored in the modeling. 
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Figure 6.4: Effective rate coefficients for momentum scattering from p+H (×) and p+H2 (•) 

collisions (left), and the ratio of the rate coefficients (right). 
 

With this information, it is possible to specify the function fn(α,ζ). The Hamada toroidal 

angle (ζ) and the lab toroidal angle (ϕ) are nearly identical, so they are used interchangeably.  

The toroidal distribution of the hydrogen atoms is fit to a function of the form 

      ( )
( )

!
!

"

#

$
$

%

&

!
!
"

#
$
$
%

& '(
'+=( )

k

2

k

2

k

k0nn

W

C
A1nn exp .                                         (6.52) 

In this expression, Ck is the toroidal angle of the source, and Wk represents the toroidal extend of 

the neutral gas distribution. Here k is an index over the number of discrete sources, and is usually 

restricted to k=1. An example of this fit is shown in figure 6.5. The resulting fit curve is used when 

calculating the flux surface averages, as described in Chapter 5. Note that with this fitting 

function, nn0 represents the density in the wings of the function far from the source, not the 

average atomic hydrogen density around the machine. 
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Figure 6.5: Fit to toroidal variation of atomic hydrogen. 

 

6.4 Different Time Dependent Solutions to the Fluid 
Equation. 
 

This section will describe in detail the solution of the fluid equations for the time evolution 

of the plasma flows. Section 6.4.1 will cast the fluid equations in a form that will be useful for 

calculation. Section 6.4.2 will review the Coronado and Talmadge formulation of the problem. 

This solution is used to study the flow and electric field relaxation when the electrode current is 

terminated. An original model for the flow spin-up will be discussed in Section 6.4.3. Comparisons 

between the two models and their synthesis will be presented in 6.4.4. 

 

6.4.1: Simplification of the Fluid Equations. 

To solve the time dependent problem, the fluid equations are written in terms of the 

bootstrap flow (λ) and the electric field (dΦ/dρ). The poloidal momentum balance equation 

becomes  
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where of the constants are defined as 
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The parallel momentum balance equation can be similarly written as 
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where the constants are written as 
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 In these expressions, a1 and a3 are dimensionless, while a2 and a4 have dimensions of 

statVolt⋅sec/cm3. The dimensions of b1 and b3 are 1/sec, while b2 and b4 have units of 

statVolt/cm3.  

Before solving these equations for the flow and electric field evolution, it is instructive to 

recall a few points from the data presented in Chapter 4. Recall that the floating potential was 

observed to change very quickly when the electrode was energized, but to decay more slowly 

when the power supply was turned off. This asymmetry in the potential evolution leads to different 

methods in modeling the evolution of the plasma flow at the beginning or the end of the bias 

pulse. 

 At the bias turn-on, the first event is the solid state switches in the power supply going 

into conducting state and applying the capacitor bank voltage to the face of the electrode. In the 

data, we observe the floating potential rising on a very fast time scale, and a large spike in the 

electrode current. Given these observations, it appears that the most appropriate model for the 

spin-up of the plasma involves the electric field being defined as the initiating event, with the 

current and flows reacting to that drive. 

 At the electrode turn off, the first event is the solid state switches in the power supply 

breaking the electrode current, which is observed to occur in a ~1-2 µsec. The floating potential 

and plasma flows decay on longer time scale. Hence, the proper modeling of the spin-down 

appears to involve the electrode current termination as the initiating event. 
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6.4.2: Coronado and Talmadge Model. 

 In the Coronado and Talmadge model, the evolution of the external radial current is 

specified as an arbitrary function of time. The coupled fluid equations are solved to find the 

evolution of the force free flow and the potential gradient. This is done in detail in their paper, and 

a more general discussion of the differential equation solution method can be found in books on 

differential equations.14 

 To begin with, the fluid equations (6.53) and (6.55) are written in matrix form as 

                                 CB
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d
A =+ X
X

.                                                      (6.57) 

In this expression, X=[∂Φ/∂ρ; λ], and A, B, and C contain the constants in (6.54) and (6.56) 

above. The determinant of the matrix A is defined by 
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Note that Δ has units of statVolt⋅sec/cm3. Assuming that Δ is not zero, the matrix A can be 

inverted to yield the system of equations 
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with D=A-1B and S=A-1C. From these expressions, it is possible to derive expressions for two 

damping rates, the eigenvalues of the system. These are given by 
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These two damping rates are completely determined by the ion-neutral collision frequency and 

the magnetic geometry of the configuration. They are typically less than zero, corresponding to 

damping of the flow. The rate with larger absolute value is called the “fast rate” and the rate with 

smaller absolute value is called the “slow rate”. 

Consider first the case that the external current is turned on as a step function. Although 

this case is probably not strictly applicable to HSX, it is illustrative to work out the details. The full 
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time evolution of the flows and electric field can be calculated analytically. A series of constants 

need to be defined as: 
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The time evolution of all quantities will be specified through the two functions 
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Utilizing these expressions, the time evolution of the potential gradient and force free flow are 
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Note that G1 and G2 each have units of cm2/(statVolt⋅sec), and F0, F1, and F2 have units of 1/cm. 

The electric field and bootstrap flow each have a two time scale dependence.  
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 These expressions can be used to calculate Uζ and Uα using equations (6.6) and (6.7). 

After defining 
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 the time dependence of the contravariant components of the flow can be written as: 
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The terms V1, V2, BζG1, BζG2 have units of 1/sec. It is also possible to break the flows into a 

component rising on the fast time scales and a component rising on a slow time scale. By using 

U=Uαeα+Uζeζ, the vector flow becomes 
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The first term in parenthesis represents the direction of the fast rising flow, and will be called the 

"fast direction". The second term represents the slow rising flow direction and is called the "slow 

direction". 

 The more HSX relevant use of this formulation involves the decay of the plasma flow and 

electric fields when the electrode current is abruptly terminated. Let the radial current be turned 

off at t=t0, and call Φ0'=∂Φ/∂ρ(t=t0) and λo=λ(t=t0). If the flows have been allowed to achieve 

steady state, then these quantities are simply given by λo=G1+G2 and Φ0'=F0+F1+F2. The time 

evolution of the electric field and parallel flow for t>to can be written as 
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where the following definitions have been used  
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The terms S1 and S2 are evaluated with <Jext⋅∇ρ>=0. With these definitions, the flow evolution at 

bias turn off can be written as  
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 As expected, the two decay time scales each have a direction associated with them. 

Further, it can be shown that the directions associated with the fast time scale are the same for 

the rise and the fall. In this sense, this direction can be considered the direction of fast flow 

change after an abrupt change in the electrode current. The same holds for the slow times 
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scales, and the direction associated with the slow time scales can be considered the direction of 

slow change.  

 

Figure 6.6 Directions of fast, slow, and total flow for the QHS configuration. 
All arrows normalized to unit length in the left frame, but with proper 

relative length in the right frame. 
 

 Figure 6.6 illustrates the directions associated with the two time scales in this model. The 

coordinate system in this figure lies in the plane of the flux surface, with the polar angle rotated 

such that the magnetic field points directly to the right. In making this calculation, the steady state 

quantities V1, V2, G1, and G2 were first calculated. These quantities, coupled with the numerically 

calculated covariant basis vectors, were used with equation (6.69) to project the predicted flows 

into physical space. The calculation is done at the location between coils 1 and 2, where the low 

field side Mach probe resides. The calculations are for the QHS case with a neutral density of 

1x1010 cm-3, a value appropriate for the experimental conditions. 

 The graph on the left shows the neoclassical fast and slow directions with all of the 

arrows normalized to unit length. The graph on the right shows the same directions, but with the 

proper relative lengths. This illustrates that most of the flow is predicted to be in the slow direction 

in the QHS case. The fast and flow directions are insensitive to the neutral density in this regime, 

although the amount of flow in each of the two directions changes with the neutral density.  
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 The graph shows the neoclassical predictions for the fast and slow flow, illustrating that 

most of the flow is predicted to be in the slow direction in the QHS case. The fast and flow 

directions are insensitive to the neutral density in this regime, although the amount of flow in the 

two directions changes with the neutral density.  

 It is interesting to compare the neoclassical slow direction to the direction of symmetry in 

the (n,m)=(4,1) component of the field. This symmetry direction can be found by writing  the 

single term Fourier expansion of |B| in Hamada coordinates: 

( )( )!"#+= mncosb1BB n,mo                                        (6.74) 

where n=4 and m=1 denote that only the main helical component is under consideration. Taking 

the gradient of (6.74) yields the direction on a flux surface of greatest change in |B|: 
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The direction of symmetry can be found by crossing ∇B with ∇ρ. 
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The relationship between the contravariant and covariant basis vectors, equation (5.4), can be 

used to derive 
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This direction can be written in terms of the Hamada toroidal and poloidal fields as 
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After factoring out a factor of 1/Bα
  and neglecting the material in front of the brackets, the 

direction of symmetry can be written as 

                                        
PT
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With the knowledge of the Hamada basis vectors, this direction can be calculated in real space in 

the same manner that the real space flows were calculated. 
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 The slow flow change direction is plotted against the symmetry direction in figure 6.7. The 

figure illustrates quite clearly that the direction of symmetry and the direction of slow flow change 

are exactly parallel to each other. 

 
Figure 6.7 Comparison between the direction of slow flow change and the 

direction of symmetry. 
 

 
Figure 6.8 Comparison between the direction of fast flow change and the 

direction of ∇ |B| on a flux surface. 
 
 A comparison between the direction of fast flow change and the direction of ∇B is 

illustrated in figure 6.8. The lengths of the vectors have been chosen so that they appear visibly 

on the plot; only the directions of these vectors should be considered.  These two directions do 
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not coincide. Consider that there are flows across the direction of symmetry that are damped on a 

fast time scale. To maintain incompressibility, these flows must be accompanied by Pfirsch-

Schlueter type parallel flows. Furthermore, the time changing electric field will lead to some 

change in the force free parallel flow, as indicated by the parallel momentum balance in equation 

6.1. Hence, all of the relevant flow mechanisms are changing on a fast time scale, leading to the 

total direction for the fast changing flows illustrated in figure 6.8. 

 A calculation of the fast and slow damping rates for the QHS configuration will be given at 

the end of the next section, after a final time scale is introduced. 

 
 
6.4.3 “Forced Er” Model. 

 The Coronado and Talmadge model appears to be representative of the relaxation phase 

in the HSX experiments, when the abrupt termination of the electrode current initiates the decay 

of the plasma flows and electric field. As was discussed in Chapter 4, the electric field 

formation/spin-up phase appears to be governed by different dynamics. The electric field goes to 

its steady state value very quickly, while the electrode current has a large transient before settling 

down to its steady state value. These observations have motivated the original modeling which is 

the subject of this subsection. 

 To model the spin-up of the plasma, assume that the potential gradient ∂Φ/∂ρ changes 

very quickly, in a way specified before the equations are solved, i.e. that ∂Φ/∂ρ and (∂/∂t)(∂Φ/∂ρ) 

are both known as a function of time. The parallel momentum balance equation can be cast as an 

equation for the evolution of λ as 
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The equation can be solved in general as 
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subject to the initial condition that λ(t=0)=0. This integral can be solved analytically for simple 

models of the potential gradient evolution, or the differential equation can be solved numerically if 

necessary. Once this equation has been solved, the contravariant components of the velocity can 

be determined from (6.6) and (6.7). With the knowledge of the Hamada coordinate system, the 

lab frame flow velocity can be determined. Once λ and ∂λ/∂t are known from the parallel 

momentum balance, the external current can be specified through the poloidal momentum 

balance as: 
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 As a simple example of an analytic solution to these equations, a potential gradient 

evolution can be specified as 
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The potential gradient for t<0 is set to balance the pressure gradient, as described in Section 6.1. 

The growth time of the potential gradient is τ, and should be set very fast (≈1 µs for the HSX 

electrode system). The increase in the potential gradient at steady state is given by κE (units of 

1/cm), and is a free parameter in the model. This function can be differentiated to yield. 
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Plugging these expressions into the differential equation for λ yields an equation of the form 
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This differential equation can be written 
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which has an analytic solution 
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After some algebra, it is possible to simplify this equation for the λ evolution to read 
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The constants are defined in terms of the viscous frequencies and the ion-neutral collision 

frequency as 
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Q1 has units of cm3/(statVolt⋅sec), while Q2 is dimensionless and νF has units of 1/sec. In general, 

the quantity Q2 is much less than one.  

 Based on this analytic solution for λ, the flow evolution for t>0 can be calculated as 
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In this equation, the fast change in the poloidal flow due to the electric field increment is given by 
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Having written the contravariant components of the flow in this simplified form, the vector flow can 

be written simply as 
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An analytic form for the external radial current can be derived from the poloidal force 

balance. By defining a further set of constants 
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the external current can be calculated as 
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 At steady state, the electric field increment is related to the external current through the 

expression 
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6.4.4 Comparison and Synthesis of the Two Models. 

A calculation of the three different damping rates (γ1,γ2, and νF) for the QHS configuration 

is shown in figure 6.9, where the neutral density has been set to zero. The damping in this plot is 

solely due to symmetry breaking ripples in the magnetic field. All other parameters in the 

calculation are similar to those realized in experiments in HSX.  



 

 

192 

 

Figure 6.9: The three damping rates γ1, γ2, and νF, for the QHS configuration. 

 The slow neoclassical damping rate (γ1) is from two to three orders of magnitude slower 

than the fast neoclassical damping rate (γ2). The forced response rate, νF, is intermediate to the 

two rates. This rate contains information about damping both along and across the direction of 

symmetry.  

 An interpretations of the relationship between the three different time scales (γ1, γ2, and 

νF) is as follows. There are two variables necessary to define the neoclassical response on a flux 

surface, because the flux surface is a two dimensional structure. Possible choices for these 

variables include any two of the contravariant flow speeds Uα and Uζ, the "bootstrap flow" λ, and 

the potential gradient ∂Φ/∂ρ. These variables appear in the time derivatives in the momentum 

equations. In the spin-down solution, the external current is shut off. This represents a change in 

the driving term, and two time scales are observed. These time scales and directions are the 

"normal modes" of the system, as evident in the eigenvalue solution surrounding equation (6.60).  

For the flow rise solution, one of the inherent system variables (∂Φ/∂ρ) is externally driven by the 
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electrode turn on. There is only one time scale left for the system to respond with; this time scale 

is thus a hybrid of the normal modes of the system. 

 An example of the time evolution of the flux surface quantities is shown in figure 6.10. 

The calculation is for the QHS case, on a surface at r/a≈0.75, assuming an electrode current of 

7.5 A in steady state. The "Forced-Er" model is used to model the evolution of the plasma when 

the electrode voltage is applied, while the Coronado and Talmadge formulation is applied to the 

plasma relaxation. The most important features to observe are the asymmetries between the rise 

and decay of the various quantities. This asymmetry mirrors that in the measurements. As an 

example, note the similarities in the external current evolution in this figure and the measurement 

in figure 4.23. 

 
Figure 6.10 The evolution of the flux surface quantities throughout a 25ms long  

bias pulse. 
 
 

As a caveat, it should be noted that the modeling assumes a pure electron-proton 

plasma. It is not clear to what extent this approximation holds in HSX. In discharges where 

probes are inserted too far into the plasma and density control is lost, substantial boron 

contamination of the plasma is known to occur. While the density was well controlled during the 
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discharges in this dissertation, there may be some boron or other impurities contaminating the 

plasma. In general, the Zeff=1 approximation may not be fully appropriate for HSX plasmas.  

 

6.5: A Comparison of Viscous Damping in the QHS and 10% 
Mirror Configurations. 
 

 To finish this chapter, a brief comparison between the 10% Mirror and QHS 

configurations is provided. These two configurations are special, in that nearly all of the data in 

this dissertation was taken in these two configurations. The theory/experiment comparisons in 

Chapter 7 will concentrate on these two cases. Detailed calculations of the viscous damping in 

other configurations of HSX are to be found in Appendix 5. 

These calculations are done with the neutral density set to zero, so that the differences in 

neoclassical viscous damping between the two configurations are most apparent. The other 

parameters in the calculation are similar to those in the experiment.  

 
Figure 6.11 Comparison of the viscous damping time scales between the QHS and 10% 

Mirror configurations. Note the different scales. 
 

 The slower damping rate (γ1) is shown in the left frame of figure 6.11. The difference in 

the slow damping rate is approximately two orders of magnitude in the core, and is reduced to a 
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factor of 5-10 towards the edge. The large difference in this time scale is due to the (n,m)=(4,0) 

symmetry breaking term in the magnetic field spectrum of the Mirror configuration. 

 The faster damping rate (γ2) is illustrated in the center frame of the figure. The difference 

between the two configurations is not large. This illustrates that the damping of flows across the 

direction of symmetry is comparable for the two cases. 

 The hybrid rate (νF) is illustrated in the right frame. The difference between the hybrid 

rates is larger than the difference between the fast rates, but smaller than the difference between 

the slow rates. Towards the edge, the difference in this νF between the two configurations is 

about a factor of 2. This is approximately the difference in the slow flow rise rates illustrated in 

Section 4.5. 

  

6.6: Summary 

 The neoclassical damping formalism has been presented in detail in this chapter. The 

method involves simultaneously solving two projections of the momentum balance equation on a 

flux surface. Neoclassical parallel viscosity and ion-neutral friction (with toroidally asymmetric 

neutrals) are allowed as damping mechanisms. Steady state solutions of the fluid equations are 

found, leading to the neoclassical prediction of the radial conductivity. 

To model the spin-up of the plasma when the electrode voltage is applied, we assume 

that the electric field is quickly applied to the plasma. This assumption is based on experimental 

observations, and leads to the result that the ExB and compensating Pfirsch-Schlueter like flows 

grow on the same time scale of the electrode voltage. The bootstrap-like component of the 

parallel flow grows on a hybrid time scale which involves the damping rates in the toroidal and 

poloidal directions. 

 At electrode bias turn off, the external current is broken and the electrode voltage is 

allowed to decay. Modeling this leads to a two time scale flow decay; the two time scales 
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correspond to two directions on a flux surface. It was shown that the while the slow time scale 

corresponds to the damping of flows along the direction of symmetry. The fast time scale 

corresponds to the damping of flows across the direction of symmetry, as well as the 

accompanying Pfirsch-Schlueter and force-free flows.  
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