Equilibrium and Stability of Oblate Free-Boundary FRCs in MRX

S. P. Gerhardt, E. Belova, M. Inomoto*, M. Yamada, H. Ji, Y. Ren

Princeton Plasma Physics Laboratory * Osaka University

Outline

- Introduction
 - Brief overview of relevant FRC issues
 - Introduction to the MRX facility & spheromak merging
- Overview of FRC Stability Results in MRX
- Systematic Studies of FRC Stability
 - n=1 tilt/shift instabilities without passive stabilization
 - First experimental observation of co-interchange modes.
 - n≥2 modes often limit lifetime after passive stabilizer is installed
- Modeling of Equilibrium and Stability Properties
 - Equilibrium reconstruction with new Grad-Shafranov code
 - Oblate Plasmas are Tilt Stable from a Rigid-Body Model
 - HYM calculations of Improved Stability Regime at Very Low Elongation

-E. Belova

Conclusions

FRC Stability is an Unresolved Issue

Internal Tilt Mode in Prolate FRC (n=1)

- Plasma current ring tilts to align its magnetic moment with the external field.
- Growth rate is the Alfven transit time.
- Essentially always unstable in MHD.
- Never conclusively identified in experiments
- FLR/non-linear saturation effects almost certainly important. (Belova, 2004)

Oblate FRC: Internal Tilt→External Tilt (n=1)

- For E<1, tilt becomes an external mode
- Can be stabilized by nearby conducting structures, or by very low elongation.
- Radial shifting mode may become destabilized.
- Observed in oblate FRC experiments, avoided with passive stabilizers.

Co-Interchange Modes

- n≥2 cousins of tilt/shift modes
- For $n \rightarrow \infty$, these are ballooning-like modes
- Low n co-interchange modes (1<n<9) computed to be destructive to oblate FRCs (Belova, 2001).
- Never experimentally identified.

Pressure isosurface for n=2 axial co-interchange, calculated by HYM code

MRX is a Flexible Facility for Oblate FRC Studies

- Spheromak merging scheme for FRC formation.
- FRC shape control via flexible external field (EF) set.

•Describe EF by Mirror Ratio (MR)

- Extensive internal magnetic diagnostics.
- Passive stabilization via a conducting center column (sometimes).
- First experiments in spring 2005.

Comprehensive Diagnostics For Stability Studies

- 90 Channel Probe: 6x5 Array of Coil Triplets, 4cm Resolution, Scannable
- 105 Channel Toroidal Array: 7 Probes 5 coil triplets
 - ✓Toroidal Mode Number n=0,1,2,3 in B_Z, B_R, B_T
- T_i through Doppler Spectroscopy (He⁺¹ @ 468.6nm)
- Copper Center Column for Passive Stabilization
 - •10cm radius, .5 cm thick, axial cut

FRC Formation By Spheromak Merging

2: Spheromak Formation

Technique developed at TS-3, utilized on TS-4 and SSX

Passive Stabilizer and Shape Control Extend the Plasma Lifetime

Systematic Instability Studies Have Been Performed

- The instabilities have the characteristic of tilt/shift and cointerchange modes.
- The center column reduces the n=1 tilt/shift amplitude.
- Co-interchange ($n \ge 2$) modes reduced by shaping.
- Co-interchange modes can be as deadly as tilting.

Axial Polarized Mode Appears Strongly n=2 Axial _______ in B_R

Calculated for MRX equilibria from HYM code

X (m)

Radial Polarized Mode Appears Strongly in B_z

Center Column Reduces Tilt Signature

n=1 (tilt) reduced with center column

n=2&3 axial modes reduced at large mirror ratio

Helium

n=1 Shifting Signature Largely Suppressed with Center Column

B₇, n=3

 B_{z} , n=1 B_{z} , n=2

- n=1 reduced by center column
- n=2 & 3 not changed by the passive stabilizer

Helium

Lifetime is Strongly Correlated with B_R Perturbations

Fields Calculated From Axisymmetric Model With Flux Conserving Vessel

*J.K. Anderson et.al. Nuclear Fusion 44, 162 (2004)

MRXFIT Code Finds MHD Equilibria Consistent with Magnetics Data

- Iterative free-boundary Grad-Shafranov solver.
- Flexible Plasma Boundary
 - Center Column Limited
 - SF Coil Limited
 - X-points
- P'(ψ) & FF'(ψ) optimized for solution matching measured magnetics.

$$p'(\psi) = \sum C_{i} \widehat{\psi}^{\alpha_{i}}$$
$$FF'(\psi) = C_{F} \widehat{\psi}^{\gamma_{F}}$$

Equilibria interfaced to HYM stability code.

Equilibrium Properties Respond to the External Field

*S.B. Zheng, A.J. Wooten, & E. R. Solano, Phys. Plasmas 3,1176 (1996)

Pink region: Caution! Large Non-axisymmetries!

Rigid-Body Model Used to Estimate Tilt/Shift Stability

Current Profile :
$$J_{\phi} = J_{\phi}(R,Z)$$

Equilibrium Field :
$$\begin{cases} B_Z = B_Z(R,Z) \\ B_R = B_R(R,Z) \end{cases}$$

Tilting

$$n_{decay}(R,Z) = -\frac{R}{B_{Z}} \left[\frac{\partial B_{Z}}{\partial R} - \frac{Z}{R^{2}} \frac{\partial}{\partial R} (2RB_{R} + ZB_{Z}) \right]$$
$$N_{X} = \theta_{X} \left[\iint \pi R^{2} J_{\phi} B_{Z} (1 - n_{decay}) dA \right]$$
$$Torque$$

$$n_{\rm shift}(R,Z) = -\frac{R}{B_Z} \frac{\partial B_Z}{\partial R}$$

Shifting

$$F_{X} = -\xi_{X} \left[\iint \pi R^{2} J_{\phi} B_{Z} n_{shift} dA \right]$$

Force

Tilting Stable: n>1 Radial Shifting Stable: n<0

H. Ji, et al, Phys. Plasmas 5, 3685 (1998)

MRX Plasmas Transition to the Tilt Stable Regime

- Plasmas with MR>2.5 predicted to be in the tilt-stable regime.
- Simple model for center-column m=1 eddy currents used.
- Marginal comparison: Tilt often develops during merging phase.

Rigid Body Shift Often Present, But May Be Benign

HYM Calculations Indicate Reduced Growth Rates at Larger Mirror Ratio

Local Mode Stability Improves At High Mirror Ratio

Similar Shift Saturation Observed in Simulation

• Simulation without center-column.

•Radial velocity oscillates, preventing fast growth of the shift mode.

•Compression of Strong B_Z field prevents growth of the radial shift mode.

FRC Capabilities Recently Upgraded, Including Ohmic Solenoid

- Thin Inconel Liner allows Ohmic Flux To Escape
- New shaping coils encased in .007" thick formed bellows eliminates previous ceramic breaks, with two independent turns per coil.
- Newly expanded 2D probe array extends coverage by a factor of six.
- Three capacitor banks to share between 4 coils (TF, PF, SF, Ohmic).
- Ohmic return flux trapped by vessel...decreases effective EF
- First plasma during week of 10/3/2006

Ohmic Sustainment Demonstrated

Without Ohmic

Flux Sustained for Substantially Longer With Ohmic

Ohmic Successful Only In Plasmas with Good Shaping

Shot 64169

Shot 63988

Ohmic Successful Only In Plasmas with Good Shaping

Shaping Field in Series With PF Coils

No Shaping Field With PF Coils

Shot 64169

Equilibrium field shaping Eliminates Instabilities, Allowing Flux Ramp-Up

PF With SF

Outward Drift Partially Compensated by SF in Series with Ohmic

Equilibrium Field Differences With Vertical Field Cancellation

Results Supportive of Proposed SPIRIT* Program

(*Self-organized Plasma with Induction, Reconnection, and Injection Techniques)

- Merging spheromaks for formation of oblate FRC.
 - \checkmark Process has been demonstrated in MRX.
- Shaping and passive conductors to stabilize n=1 modes.
 - \checkmark Demonstrated to work with a center column.
 - SPIRIT program calls for conducting shells.
- Transformer to increase B and heat the plasma.
 - ✓ Initial results illustrate current sustainment
 - Significant optimization yet to be done
- Neutral beam to stabilize dangerous n≥2 modes.
 - Need for beam is clearly demonstrated, especially at larger elongation.
 - Well on the way to a suitable target plasma.

Conclusions

- FRCs formed in MRX under a variety of conditions, including the unique E<0.5 regime.
- Large n=1 tilt/shift instabilities observed in MRX plasmas without passive stabilization.
- Co-interchange mode has been identified for the first time, and show to be as deadly as tilting.
- A regime with small elongation demonstrates improved stability to n≥2 axial modes and extended lifetime.
- Equilibrium reconstruction technique has been demonstrated, illustrating FRC boundary control.
- Initial experiments illustrate Ohmic sustainment.

The End

 $\begin{array}{c} \overrightarrow{\xi} = \xi_{\psi} \overrightarrow{e}_{\psi} + \xi_{\phi} \overrightarrow{e}_{\phi} + \xi_{\chi} \overrightarrow{e}_{\chi} \\ \xrightarrow{P1} & X(\psi, \chi) = RB\xi_{\psi} \\ Y(\psi, \chi) = \frac{in}{R}\xi_{\phi} & \xrightarrow{P2} & X = rB\cos(\theta - \theta_{0}) \\ Z(\psi, \chi) = \frac{\xi_{\chi}}{B} \end{array}$

$$T = \iiint Mn |\xi|^2 d^3x = 2\pi \int d\psi \int J d\chi Mn \left(\frac{X^2}{R^2 B^2} + \frac{Y^2 R^2}{n^2} + B^2 Z^2 \right) \xrightarrow{P2 \& P3} T' = 2\pi \oint nM \frac{dI}{B}$$

$$\partial W = \iiint d^3 x \left\{ \left| \vec{Q} \right|^2 - \vec{J} \cdot \vec{Q} \times \vec{\xi} - \gamma p \left(\nabla \cdot \vec{\xi} \right)^2 + \left(\nabla \cdot \vec{\xi} \right) \left(\vec{\xi} \cdot \nabla p \right) \right\} \qquad \xrightarrow{P2} \qquad W' < -\frac{1}{2} \frac{\partial}{\partial \psi} \oint \kappa RB^2 dl$$

$$\omega^{2} = \frac{W'}{T'} = \frac{-\frac{1}{2}\frac{\partial}{\partial\psi}\oint\kappa RB^{2}dl}{2\pi\oint nM\frac{dl}{B}}$$

First Written Explicitly in Ishida, Shibata, and Steinhauer, Phys. Plasmas 3, 4278 (1996)
Approximate agreement with Variational Analysis for Prolate FRCs in P4

P1: I. B. Bernstein, E.A. Frieman, M.D. Kruskal, and R.M. Kulsrud, Proc. Royal Society A 244, 17 (1958)
P2: J.R. Cary, Phys. Fluids 24, 2239 (1981)
P3: A. Ishida, N. Shibata, and L.C. Steinhauer, Phys. Plasmas 3, 4278 (1996)
P4: A. Ishida, N. Shibata, and L.C. Steinhauer, Phys. Plasmas 1, 4022 (1994)

Plasma Parameters

	D ₂	Helium	Neon
Fill Pressure (mTorr, molecules/cm ⁻³)	8-10, 3x10 ¹⁴	7-9.5, 2x10 ¹⁴	3.5-5, 1.3x10 ¹⁴
n _e , T _e	1x10 ¹⁴ , 10	(1-2)x10 ¹⁴ ,10-14	(2-3)x10 ¹⁴ , 10
B _{Z,Sep} (Gauss)	.0302	.0302	.0302
V _A (m/s)	3-2x10 ⁴	2-3x10 ⁴	1x10 ⁴
Z _S (m)			
τ _Α (μS)	3-7	5-10	10-30
λ _{i,mfp} (cm)	4	3	2
$\omega_{ci} \tau_{i}$	1	1	0.5
$\overline{\mathbf{S}}$		3-1	1.5-1
E		.63	.63
īs/Ε		7-4	2-3

Plasma Lifetime Longest At Large Mirror Ratio

- Lifetime increases with larger mirror ratio.
- Center column does not substantially increase the lifetime.

Condition For Kinetic Effects

Kinetic effects matter when: $\gamma = C \frac{V_A}{Z_S} = C \frac{V_A}{ER_S} < \omega^*$

The Diamagnetic drift Frequency is: $\omega^* = \vec{k} \cdot \vec{V}_D = \frac{T}{eBL_p}k = \frac{kv_{th}^2}{2L_p\omega_{ci}}$

Note that for $\beta \sim 1$: $V_{th} \sim V_A$

The wavenumber is related to the Major radius as: $k = \frac{n}{R_{null}}$

Combine these as:

The separatrix radius is related to the null radius by: $R_0 = 1.4R_{null}$

$$\gamma < \omega^{*}$$

$$C \frac{V_{A}}{ER_{s}} < \frac{kv_{th}^{2}}{2L_{p}\omega_{ci}}$$

$$\frac{C}{1.4E} < \frac{n\rho_{i}}{2L_{p}}$$

$$\frac{\bar{s}}{E} < \left(\frac{1.4}{2}\right)n$$

Neon Tilting Suppressed With Center Column

 B_R , n=1 B_R , n=2 B_R , n=3

Neon

Center Column Reduces Rigid Body Shift Signature

Neon

Analytic Equilibrium Model by Zheng Provides **Approximation to Current Profile**

6 Fit parameters in Model:

 4 Parameters determine the Plasma shape

 2 Parameters determine Pressure and Toroidal field:

$$-(2\pi)^{2}\mu_{0}\frac{dp}{d\psi} = A_{1}$$
$$(2\pi\mu_{0})^{2}F\frac{dF}{d\psi} = A_{2}$$

R_n= 0.33957, κ=1.0834, δ=-0.14801. a=0.1814, Aspect Ratio=1.8719. $(0, R_{0})$

Poloidal flux specified as:

$$\Psi = c_1 + c_2 R^2 + c_3 (R^4 - 4R^2 Z^2) + c_4 \left[R^2 \ln(R) - Z^2 \right] + \frac{A_1}{8} R^4 - \frac{A_2}{2} Z^2$$

Magnetic Field:

$$\mathbf{B} = F\nabla\phi + \frac{1}{2\pi}\nabla\psi\times\nabla\phi$$

Used to Generate Initial Equilibrium for MRXFIT

S.B. Zheng, A.J. Wooten, & E. R. Solano, Phys. Plasmas 3,1176 (1996)

Spheromak Tilt is Dominated

Strong n=1 during Tilting Spheromak

Transformers Used to Sustain Future FRC Plasmas

- Two transformers, one inserted from each end of MRX.
- Total flux of 100mWb at 100kA.
- 10T on axis at 100kA.
- Only vacuum jacke remains to be completed

Lifetime is Strongly Correlated with B_R Perturbations

MRXFIT¹ Solves G-S Eqn. Subject to Magnetic Constraints

1) J.K. Anderson et.al. Nuclear Fusion 44, 162 (2004)

2) S.B. Zheng, A.J. Wooten, & E. R. Solano, Phys. Plasmas 3,1176 (1996)

HYM Calculations Indicate Reduced Growth Rates at Larger Mirror Ratio

Fields Calculated From Axisymmetric Model With Flux Conserving Vessel

*J.K. Anderson et.al. Nuclear Fusion 44, 162 (2004)

FRCs have Potential Advantages as Fusion Reactors

FRC→toroidal plasma configuration, with toroidal current, but minimal toroidal field.

H. Guo, Phys. Rev. Lett. 92, 245001

- Intrinsically high β (β ~1)
- Natural divertor structure
- Only circular axisymmetric coils
- No material objects linking plasma column (ideally)
- Translatable (formation and fusion in different places)

FRCs have Potential Advantages as Fusion Reactors

FRC→toroidal plasma configuration, with toroidal current, but minimal toroidal field.

H. Guo, Phys. Rev. Lett. 92, 245001

Problem: Predicted to Be MHD Unstable

t=12

Pressure Contours, Disruptive Internal Tilt Belova et al, Phys. Plasmas 2000