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The moment equation approach to neoclassical transport is used to calculate neoclassical particle
and heat fluxes, impurity transport, the ambipolar electric field, and momentum damping rates.
These equations are often written in Hamada coordinates which makes it easier to obtain analytic
solutions. However, previous simplifying assumptions used to evaluate the basis vectors analytically
are often invalid for advanced stellarator configurations. In this paper, a numerical method is
presented by which the Hamada basis set can be determined for an arbitrary three dimensional
toroidal confinement device by integrating along a magnetic field line. The method is applied to the
magnetic configuration in the Helically Symmetric Experiment �F. S. B. Anderson, A. F. Almagri,
D. T. Anderson, P. G. Matthews, J. N. Talmadge, and J. L. Shohet, Fusion Technol. 27, 273 �1995��
and compared to the large-aspect-ratio tokamak approximation to the basis set. The results indicate
that the numerical technique is a more accurate method to specify the basis vectors, especially in a
device with negligible toroidal curvature. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1938507�

I. INTRODUCTION

The moment equation approach to neoclassical theory is
often used in toroidal systems to determine the neoclassical
particle and heat fluxes, radial current, impurity transport as
well as the time dependence and steady-state limit of the
plasma rotation velocity, and ambipolar electric field.1–3 For
plasmas in which the magnetic field is fully three dimen-
sional, it is natural to write such equations using a flux co-
ordinate system, such as Boozer4 or Hamada,5 in which the
volume or toroidal flux acts as a radial coordinate and the
other two coordinates are angles on the flux surface. Since it
is often desired to compare the results of such a calculation
with the results of an experiment, it has frequently been the
case that some simplifying assumptions have been made re-
garding the nature of the basis vectors. In one paper, for
example, the Hamada coordinates were approximated by cy-
lindrical coordinates.6 Subsequently, Coronado and Galindo
Trejo derived analytic expressions for the basis vectors that
are appropriate for a large-aspect-ratio tokamak.7 These ex-
pressions were then used to calculate the rotation damping
rates and radial conductivity for an arbitrary three-
dimensional toroidal geometry that includes the effects of
both parallel viscosity and ion-neutral collisions.8

However, the validity of applying Hamada basis vectors
derived for a tokamak directly to a three-dimensional stellar-
ator needs to be investigated. Furthermore, knowledge of
how the Hamada basis vectors relate to a laboratory coordi-
nate system is necessary to understand the direction of
plasma flow and momentum damping rates when subject to
an external momentum source. It is one goal of a new gen-
eration of quasisymmetric stellarators with reduced parallel
viscous damping to achieve improved confinement param-

eters. Such configurations may even have very little toroidal
curvature such as a quasihelically symmetric configuration or
a quasipoloidal device. This makes the suitability of the basis
vectors derived for a tokamak even more problematic. The
method outlined here has been used to demonstrate that par-
allel viscous damping in the Helically Symmetric
Experiment9 �HSX� is reduced compared to a configuration
in which the quasisymmetry is intentionally broken.10

In this paper, we present a numerical technique for cal-
culating the Hamada basis vectors for an arbitrary toroidal
geometry. The technique employed is based, in part, on using
the method of Nemov11 to calculate the gradient of a mag-
netic surface function in a complex magnetic geometry like a
stellarator. This allows us the ability to integrate a set of
differential equations along a magnetic field line using a re-
alistic representation of the magnetic field components pro-
duced by a set of magnet coils as calculated from a Biot–
Savart code. We then apply this method to a calculation of
the basis vectors for HSX. This is an interesting test of the
tokamak approximation to the Hamada basis vectors because
HSX is unique in being a toroidal stellarator with negligible
toroidal curvature.12 Our paper is organized as follows: in
Sec. II we present the general method for calculating numeri-
cally the Hamada basis vectors. Section III describes the
method to obtain the initial conditions for the integration.
Section IV summarizes the results of the analytic large-
aspect-ratio tokamak approximation to the basis vectors,
while in Sec. V we compare these results to the numerical
calculation. Finally, in Sec. VI, we discuss the results and
summarize the conclusions.

II. EQUATIONS FOR THE HAMADA BASIS VECTORS

The Hamada coordinates are given as �� ,� ,�� where �
is the toroidal flux through a magnetic surface, � is the Ha-
mada poloidal angle, and � is the Hamada toroidal angle. A
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vector field A, where A can be the magnetic field B or the
fluid velocity U, for example, can be written in the Hamada
coordinate system as

A = �A · � ��e� + �A · � ��e� + �A · � ��e�

= A�e� + A�e� + A�e� �1a�

or alternatively as

A = �A · e�� � � + �A · e�� � � + �A · e�� � �

= A� � � + A� � � + A� � � . �1b�

In the equations above A�=A · ��, A�=A ·e�, and similar
definitions exist for the other components of the vector. It is
customary to call �e� ,e� ,e�� the covariant basis set and
��� , �� , ��� the contravariant basis set. The two sets are
reciprocal in that e� · ��=1, e� · ��=0, e� · ��=0, etc.,
from which it follows that

e1 = �g��u2 � � u3� �2�

and cyclic permutations of this relation exist to obtain the
other covariant basis vectors. In Hamada coordinates, the
Jacobian, given by �g in the expression above, is a flux-
surface constant and is given by

�g = ��� · ��� � � ��� =
1

4�2

dV

d�
. �3�

Here V is the volume enclosed by the flux-surface and the
angular coordinates go from 0 to 2�. In the Hamada coordi-
nate system, both the magnetic field lines and the current
density lines are straight.13

In this paper, we wish to derive a set of differential equa-
tions that can be used to solve for the components of the
Hamada basis set. The contravariant basis set is given by the
following three equations:13

B� = B · � � = 0, �4a�

B� = B · � � =
�–

2��g
, �4b�

B� = B · � � =
1

2��g
, �4c�

where �– is the rotational transform. The equations for the
contravariant basis set are of the form

Bf = B · � f = Sf��� , �5�

where f = �� ,� ,�� and Sf = �0, �–/2��g ,1 /2��g�.
For a right-handed Hamada coordinate system, � in-

creases in the radial direction, � increases poloidally in the
counterclockwise direction, and � then increases clockwise
in the toroidal direction looking down. We want to solve for
the components of �f in a cylindrical coordinate system that
can be compared to measurements in a laboratory. The coor-
dinates �R ,Z ,�� describe such a right-handed system where
R and Z are the usual cylindrical coordinates and the toroidal
angle � is in the same direction as the Hamada toroidal angle
�. Following Nemov, and using similar notation, we define
the components of �f as

Pf =
�f

�R
, Gf =

�f

�Z
, Qf =

�f

��
�6�

so that Eq. �5� can be written as

BRPf + BZGf +
B�

R
Qf = Sf��� . �7�

Taking the derivative of Eq. �7� with respect to R, Z, and
� we obtain the following magnetic differential equations for
the components of �f:

BR
�Pf

�R
+ BZ

�Pf

�Z
+

B�

R

�Pf

��

=
�Sf

�R
− � �BR

�R
Pf +

�BZ

�R
Gf +

�

�R
	B�

R

Qf� , �8a�

BR
�Gf

�R
+ BZ

�Gf

�Z
+

B�

R

�Gf

��

=
�Sf

�Z
− � �BR

�Z
Pf +

�BZ

�Z
Gf +

�

�Z
	B�

R

Qf� , �8b�

BR
�Qf

�R
+ BZ

�Qf

�Z
+

B�

R

�Qf

��

=
�Sf

��
− � �BR

��
Pf +

�BZ

��
Gf +

�

��
	B�

R

Qf� , �8c�

where we have used the following relationships:

�Qf

�R
=

�Pf

��
,

�Gf

�R
=

�Pf

�Z
,

�Gf

��
=

�Qf

�Z
. �9�

For each of the Hamada coordinates, f = �� ,� ,��, there are
three equations that can be put in the form of Eqs. �8a�–�8c�
for a total of nine equations that need to be solved.

Derivatives of the right-hand side of Eq. �7�, �Sf /�R,
�Sf /�Z, and �Sf /��, can be obtained in the following man-
ner, using S� as an example:

�S�

�R
=

1

2��g
� d�–

d�
−

�–
�g

d�g

d�
�P�, �10�

where we have used the fact that the rotational transform and
Jacobian are flux-surface functions and P�=�� /�R. Similar
equations can be derived for the partial derivatives �S� /��,
�S� /�Z, �S� /�R, �S� /�Z, and �S� /��. The derivatives of S�

are all zero. The Jacobian, given in Eq. �3�, is evaluated from
the expression given by Solov’ev and Shafranov,14

dV

d�
= lim

N→	

1

N
� dl

B
, �11�

where N is the number of toroidal transits of a field line.
Equations �8� and �11� can be cast in the form

B · � A = D , �12�

which can be solved from a set of three coupled ordinary
differential equations11
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dR

d�
=

RBR

B�

, �13a�

dZ

d�
=

RBZ

B�

, �13b�

dA

d�
=

R

B�

D . �13c�

The first two expressions above are just the equations for
a magnetic field line. Thus using the derivatives of the trans-
form and the Jacobian with respect to flux, the nine equations
corresponding to Eq. �10� �three of which are identically
zero�, and the set of nine differential equations of Eq. �8�
recast in the form of Eqs. �13�, the entire Hamada basis set
can be computed. What remains is to obtain a set of initial
conditions for the basis vectors.

III. INITIAL CONDITIONS

Each of the components of the contravariant angle coor-
dinates must be periodic on a flux surface. For magnetic
differential equations of the form given in Eq. �12�, B · �A
=D, it was shown by Newcomb15 that for A to be single
valued, on every closed field line on a rational surface the
condition �dl /B�D=0 must be satisfied. Because of the lack
of symmetry in a stellarator, this condition may not be satis-
fied. However, for the purpose of this calculation, which is to
help make comparisons between experimental results and a
theoretical model, we are interested in flux surfaces where
the rotational transform is irrational. Therefore, a condition
necessary for solvability will be applied, �B · �A�= �D�=0,
where the brackets indicate an average over the flux surface.
This condition has been used previously to ensure that the
potential derived from the Pfirsch–Schlüter current is a
single-valued function of position.16,17 In this paper we will
use this same condition to force the contravariant compo-
nents to be single valued after first obtaining a set of con-
straints on the initial conditions and then a relation between
the basis vectors and the Pfirsch–Schlüter current.

There are nine initial conditions that have to be satisfied
to obtain the basis vectors: P�=�� /�R, G�=�� /�Z, Q�

=�� /��, P�=�� /�R, G�=�� /�Z, Q�=�� /��, P�=�� /�R,
G�=�� /�Z, Q�=�� /��. A simplifying set of initial conditions
can be specified if we take advantage of the two locations in
each field period where the magnetic surfaces are symmetric
about the R axis. At these locations, along Z=0, the radial
component of the magnetic field BR=0 and the normal to the

surface points in the R̂ direction. Thus we can calculate nu-
merically the derivative of the toroidal flux with respect to R,
P�, and set Q�=G�=0. Again, invoking the symmetry along
the line Z=0, we can set the initial values of � and � to be
constant on the axis so that P�= P�=0. All together, we have
the first five initial conditions:

P� =
��

�R
, Q� = G� = P� = P� = 0. �14�

Three additional initial conditions come from the con-
straints on B · ��, B · ��, and the Jacobian �g from Eqs. �3�,
�4b�, and �4c�. Making use of Eq. �14� and the fact that BR

=0 along Z=0 at the symmetry plane then

BZG� + B�

Q�

R
=

2��–

dV

d�

, �15a�

BZG� + B�

Q�

R
=

2�

dV

d�

, �15b�

G�Q� − Q�G� =

R
dV

d�

4�P�

. �15c�

One more initial condition is needed; this condition en-
sures that the Hamada angle basis vectors are periodic. It
follows from a correspondence between one of the basis vec-
tors and the Pfirsch–Schlüter current and a numerical calcu-
lation of this current as given by Nemov.17 The Pfirsch–
Schlüter current can be written as

J� = hB
dp

d�
, �16�

where h is obtained by solving the magnetic differential
equation

B · � h =
2

B3 �B � � �� · � B . �17�

The initial condition h0 for h is obtained by requiring
that the potential defined by −�
=J� /�� be single valued.
This is equivalent to having

�B · � 
� = −
dp

d�

1

��

��h0 + h�B2� = 0, �18�

where the brackets indicate an average over the flux surface.
If we write 
=
1+h0
2, then the single-valued nature of
the potential is forced when the initial condition satisfies h0

=−
1 /
2, where 
1 and 
2 are calculated from

B · � 
1 = − hB2, �19a�

B · � 
2 = − B2. �19b�

The initial condition for h then allows for the final initial
condition for the basis vectors when we use the expression
obtained by Coronado and Wobig18 for the parallel current

J� =
B�B

B�B2�g

dp

d�
+ ����B . �20�

In the equation above, ���� is a constant that represents the
plasma currents whose flux-surface average is not equal to
zero, such as the bootstrap or ohmic current, and the first
term represents the Pfirsch–Schlüter current.

If we equate Eq. �16� to the first term in Eq. �20� then we
can obtain the following equation:
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B� = B · e� = hB�B2�g = 2�hB2, �21�

where we have made use of Eq. �4c�. Using e�=�g���
� ���, inserting Eq. �14� into Eq. �21� and noting again that
BR=0 at the symmetry plane, we can obtain the final initial
condition for the basis vectors

BZ
Q�

R
− B�G� =

h0B2

P�

2�

dV

d�

. �22�

Here h0 is the initial condition on h, as defined by Eqs. �19a�
and �19b�. Using Eq. �15b� along with Eq. �22�, we have two
simultaneous equations for Q� and G�. With those results, we
can then solve for Q� and G� using Eqs. �15a� and �15c� to
finally derive

Q� = �h0RBZ

P�

+
RB�

B2 � 2�

dV

d�

, �23a�

G� = �BZ

B2 −
B�h0

P�
� 2�

dV

d�

, �23b�

Q� = �Q��– − 2�BZ/P�

BZG� + B�Q�/R
� 2�

dV

d�

, �23c�

G� = �G��– + 2�B�/P�

BZG� + B�Q�/R
� 2�

dV

d�

. �23d�

To summarize, the procedure that we use to obtain the
contravariant basis vectors is first to numerically calculate,
using a Biot–Savart code, the toroidal flux �, the rotational
transform �–, and the specific flux volume dV /d� using Eq.
�11�. This is done for a set of neighboring flux surfaces in
order to compute P�=d� /dR for Eq. �14� as well as d�–/d�
and d /d��dV /d�� for the right-hand side of Eq. �8� as in the
example of Eq. �10�. The set of equations given by Eqs.
�19a� and �19b� are then solved to obtain the initial condition
h0. With h0, P�, and dV /d� and the components of the mag-
netic field on a flux surface at the symmetry plane, we can
then compute the initial conditions given by Eqs.
�23a�–�23d�. It is then a matter of integrating the nine equa-
tions represented by Eqs. �8� for f = �� ,� ,��. Furthermore,
we can compute the covariant basis set from Eq. �2�. One last
quantity that is very useful is the flux-surface average of the
dot product of two basis vectors, where the flux-surface av-
erage of a function A is defined by

�A� =
� dl

B
A

� dl

B

. �24�

These surface averages are obtained by solving for
Y1 /Y2, where B · �Y1=A and B · �Y2=1. In the following

section we summarize the results of the large-aspect-ratio
tokamak approximation to the Hamada basis set to which we
want to compare the numerical calculation.

IV. LARGE-ASPECT-RATIO TOKAMAK
APPROXIMATION

The numerically calculated basis vectors for HSX will
be compared to analytic expressions obtained by Coronado
and Galindo Trejo7 using a large-aspect-ratio tokamak ap-
proximation. They assume a magnetic field in the form

B =
B0

1 +  cos �
���r��̂ + �̂� , �25�

where r is the minor radius, � is the poloidal angle, and � is
the toroidal angle. The function �= /q�r�, where =r /R0 is
the inverse aspect ratio and q�r��1/ �– is the safety factor. In
this paper, we define the poloidal and toroidal Hamada coor-
dinates � and �, to vary between 0 and 2�, not between 0
and 1 as in Ref. 7. Also, we use the flux function � as the
Hamada radial coordinate rather than the volume. This sets
the Jacobian on each flux surface to be the same as in Eq.
�3�. Finally, we convert the results in Ref. 7 to the same R, Z,
� coordinate system in which the basis vectors for HSX are
calculated, rather than the original r, �, �. The toroidal angle
� in both coordinate systems increases in the clockwise di-
rection, looking down. Using this convention, the rotational
transform in HSX is negative and ranges from −1.05 on the
plasma axis to −1.12 at the edge.

If we keep only terms up to order , then the Jacobian
for the magnetic field given by Eq. �25� is R0 /2�B0 and the
basis vectors from Ref. 7 can be rewritten in the following
form:

�� = 2B0�r�cos �R̂ + sin �Ẑ� , �26a�

�� =
1

r
�− sin �R̂ + �cos � + �Ẑ� , �26b�

�� =
1

R0
��2

r

q

dq

dr
cos � −



2
	1 +

r

q

dq

dr
cos2 �
�q sin �R̂

+ �2	1 +
r

q

dq

dr
sin2 �
 −



2
cos �	1 +

r

q

dq

dr
sin2 �
�qẐ

+ �1 −  cos ���̂� , �26c�

e� =
1

2�B0r
��cos � +  sin2 ��R̂ + �sin � −  sin � cos ��Ẑ

− �2	1 +
r

q

dq

dr

 − 	1 −

3

2

r

q

dq

dr

 cos ��q sin ��̂� ,

�26d�

e� = r��− �1 −  cos ��sin ��R̂ + ��1 −  cos ��cos ��Ẑ

− �2 cos � + /2�1 − 2 cos2 ���q�̂� , �26e�
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e� = R0�1 +  cos ���̂ . �26f�

In the moment approach, the first-order momentum bal-
ance equation is simplified by averaging over a flux surface
the dot product of the equation with the magnetic field. A
number of terms then drop out since for any scalar s, the
quantity �B · �s�=0. However, this also results in terms such
as �e� ·e��, �e� ·e��, etc.8 In the large-aspect-ratio tokamak
approximation, where the flux surfaces are defined by r
=const, the surface average of a function F�� ,�� is given by

�F� =
1

4�2�
0

2�

d��
0

2�

d� F��,��	1 +
r

R0
cos �
 . �27�

To order , the flux-surface averages of the dot products
of the covariant and contravariant basis vectors are

��� · � �� = �2B0�r�2, �28a�

��� · � �� =
1

r2 , �28b�

��� · � �� =
1

R0
2�1 + 4q2	1 +

r

q

dq

dr
+

1

2
� r

q

dq

dr
�2
� ,

�28c�

�e� · e�� =
1

4�2B0r2	1 + 2q2�1 +
r

q

dq

dr
�
 , �28d�

�e� · e�� = r2�1 + 2q2� , �28e�

�e� · e�� = R0
2, �28f�

�e� · e�� = − 2qr2. �28g�

Also of interest when calculating plasma flow damping, for
example, are the contravariant components of the magnetic
field, B�=B · �� and B�=B · �� which are constant on a
magnetic surface, and the flux-surface average of the cova-
riant components �B��= �B ·e�� and �B��= �B ·e��,

B� =
B0

qR0
, �29a�

B� =
B0

R0
, �29b�

�B�� =
r2B0

R0q
, �29c�

�B�� = R0B0. �29d�

In the following section we will compare the numerical
calculation of the Hamada basis vectors with the large-
aspect-ratio tokamak approximation.

V. CALCULATION OF THE HAMADA BASIS VECTORS
FOR HSX

HSX is a quasihelically symmetric stellarator, which to a
good approximation means that the magnetic field is domi-
nated by a single helical component �n ,m�= �4,1� in the
magnetic field spectrum in addition to the �0,0� term

B = B0�1 − �4,1 cos�4� − 1��� . �30�

There are also smaller amplitude symmetry-breaking terms
in the spectrum, not shown in Eq. �30�, that are less than 1%
of the main field at the plasma edge, but included in the
numerical calculation of the basis vectors nevertheless. Note
that at �=0°, the magnitude of B varies as in a tokamak,
with the high field on the inboard side and the low field on
the outboard side. However, at the half-field period location,
�=45°, the high field side is on the outboard side of the
torus. To compare the basis vectors in HSX to the equivalent
tokamak, we assume a rotational transform profile for the
tokamak that is identical to that in HSX. Also, we define the
equivalent flux surface in the tokamak as r=�� /�B0, where
� is the toroidal flux through a magnetic surface in HSX.
Figure 1 shows a comparison between the components of the
contravariant Hamada basis set, ��, ��, �� in HSX at the
two toroidal locations �=0° and �=45°, with the values in
an axisymmetric tokamak. This is for a flux surface at r /a
�0.5 and the components are plotted as a function of the
Hamada poloidal angle �.

Each of the components is single valued, validating the
method for finding the initial conditions based on the
Pfirsch–Schlüter current. Note that there is a significant dif-
ference in the components of the basis vectors for the two
locations in HSX and that these components are also differ-
ent from the large-aspect-ratio approximation. One readily
apparent difference is that the components of the basis vec-
tors in the toroidal direction, Q� /R and Q� /R, are identically
zero for the tokamak approximation, but nonzero for the
HSX numerical calculation. Furthermore, Q� /R changes sign
over one-half field period in HSX. Some terms, such as P�

and Q� /R agree reasonably well with the tokamak approxi-
mation, while other terms such as P�, G�, and G� show a
substantial variation as a function of toroidal angle.

Figure 2 shows the components of the covariant basis
set, e�, e�, e� in HSX compared to the analytic tokamak
calculation. From the figure it can be seen that for the toka-

mak approximation, the components of e� in the R̂ and Ẑ
directions are zero, whereas for HSX, these components are
nonzero and change sign over one-half field period. Similarly
for the e� vector, the component in the �̂ direction also re-
verses in HSX at the two toroidal locations. Figure 3 shows
more clearly how the numerical calculation of the basis vec-
tors differs in magnitude and direction from each other at the
two toroidal locations as well as from the analytic tokamak
approximation. These plots are in the Z-� plane at the out-
board location on the midplane. Often the basis vectors do
not even point in the same Z or � direction as the tokamak
approximation. It is interesting to observe that at the plane in
HSX for which the high magnetic field is on the outboard
side of the device, the covariant basis vector e� is actually
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closer in magnitude and direction to the tokamak approxima-
tion than for the toroidal location in HSX where �B� is more
tokamak-like.

Figure 4 shows the radial profile of the surface average
dot product of the basis vectors in HSX compared to the
tokamak approximation from Eqs. �28a�–�28g�. While the
numerically calculated local basis vector may be pointing in

a different direction from the analytic result, the surface av-
erage of the basis vectors are similar in profile and differ at
most by about 50%. The analytic quantity ��� · ��� de-
creases with radius while the numerical calculation shows
the opposite trend. The surface average �e� ·e�� is negative
for both the numerical and analytic calculations. Numerically

FIG. 1. The components of the contra-
variant basis set in HSX for a flux sur-
face with r /a�0.5 at toroidal loca-
tions �=0° and �=45°, as well as for
the equivalent tokamak based on the
large-aspect-ratio approximation given
in Ref. 7. The curves correspond to
the component of the vector in the

R̂ �P, solid line�, Ẑ �G, dotted line�,
and �̂ �Q /R, dashed line� directions,
and are plotted as a function of the
Hamada poloidal angle �.

FIG. 2. The components of the cova-
riant basis set in HSX at �=0° and
�=45° compared to the tokamak ap-
proximation. The curves correspond to

the components of the vector in the R̂

�solid line�, Ẑ �dotted line�, and �̂
�dashed line� directions.
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calculated terms such as ��� · ��� and �e� ·e�� show the
1/r2 dependence of the analytic calculation. Finally Fig. 5
shows the radial profile of the contravariant components B�

and B� as well as the surface average values �B�� and �B��.
Note that there are substantial differences between the nu-
merical and the analytic calculations. Another striking dis-
similarity is that �B�� is identically equal to zero in the nu-
merical calculation, but finite and increasing with radius in

the analytic approximation. We will discuss why this is so, as
well as some other interesting features of the calculations in
the following section.

VI. DISCUSSION AND CONCLUSIONS

It can be seen from Eq. �21� that the basis vector e� is
related to B�=B ·e� and the Pfirsch–Schlüter current. Also,
from Fig. 3 it can be seen that the large-aspect-ratio tokamak
approximation to this basis vector fits the magnitude and
direction of the numerically calculated value at the half-field
period better than at �=0°. In this section, we will discuss
these results further and make some summarizing conclu-
sions.

In Fig. 6, B� as well as the Pfirsch–Schlüter current �nor-
malized to the pressure gradient, J� /dp /d�= �2�B� /B�� are
plotted as a function of the Hamada poloidal angle �. Both
B� and J� reverse sign going from �=0° to �=45°, whereas
the tokamak result is independent of toroidal angle. This re-
flects the dominance of the �4,1� component in the magnetic
field spectrum for HSX, compared to �0,1� term for the to-
kamak. In HSX, the dipole Pfirsch–Schlüter current rotates
as a function of toroidal angle.

It should be noted that when we make comparisons be-
tween HSX and a tokamak, we are not comparing devices
with the same amplitude of the dominant magnetic field
component �besides the �0,0� term�. We have defined the
equivalent flux surface in a tokamak to have a minor radius
r=�� /�B0, where � is the toroidal flux through a surface in
HSX. For the surface at r /a�0.5, �=0.005 34 Wb, corre-
sponding to an effective radius of 0.0583 m. With a major
radius of 1.2 m, this corresponds to a toroidal curvature com-

FIG. 3. Comparison in the Z-� plane of the numerical calculation of the
basis vectors at the outboard midplane at �=0° �thick solid line� and �
=45° �thick dotted line� with the analytic tokamak approximation �thin solid
line�.

FIG. 4. Radial profile of the surface
average dot product of the Hamada ba-
sis vectors computed numerically for
HSX �solid circles� and compared to
the analytic tokamak approximation
�solid line�.
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ponent �0,1� in a tokamak with amplitude 0.0486. However,
in HSX the amplitude of the dominant �4,1� spectral compo-
nent is 0.0734, about 50% higher than the tokamak compo-
nent.

Further insight can be gained if we write the Pfirsch–
Schlüter current as a summation of terms with respect to the
Boozer toroidal and poloidal angles �B and �B. As shown by

Boozer,19 if we expand the quantity 1 /B2 on a flux surface so
that

1

B2 =
1

B0
2	1 + �

n,m
�nm cos�n�B − m�B�
 , �31�

then

FIG. 5. Comparison of the radial pro-
files of the contravariant components
of the magnetic field B� and B� and the
surface average of the covariant com-
ponents �B�� and �B�� for the numeri-
cal calculation �closed circles� with
the analytic tokamak approximation
�solid line�.

FIG. 6. Numerical calculation of B�

and J� /dp /d�= �2�B� /B� for HSX at
�=0° and �=45° compared to the
analytic tokamak approximation.
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J� =
2�B

B0
2

dp

d�
�
n,m

nI + mg

n − m�–
�nm cos�n�B − m�B� , �32�

where 2�I /�0 is the toroidal current within a flux surface
and 2�g /�0 is the poloidal current outside a flux surface.
For a net current-free device like HSX, the Boozer I factor is
identically zero. In Eq. �32� we have kept the definition of �
to be the total toroidal flux though a magnetic surface, com-
pared to Ref. 17 where it is defined as the flux divided by
2�. Note that there is a singularity in Eq. �32� on a rational
flux surface when �–=n /m, but we avoid this difficulty by
considering only surfaces where the transform is irrational.

The advantage of writing the Pfirsch–Schlüter current in
the form of Eq. �32� is that it becomes immediately apparent
that the phase of the current in a quasihelically symmetric
stellarator with a dominant �4, 1� component at the toroidal
location �=� /4 will be the same as in a tokamak with a
�0,1� magnetic field spectrum. This accounts for the similar-
ity in the vector e� at �=45° with the tokamak approxima-
tion. Given the same amplitude �nm, magnetic field, and ro-
tational transform, the amplitude of the current will then
scale as g / �n−m�–�. The factor g for HSX is 1.2 times larger
than for a tokamak.

The normalized current is plotted in Fig. 7 for HSX at
toroidal angles 0° and 45°. For HSX, we plot the normalized
current using only the dominant term in the spectrum �dotted
line� as well as with the full magnetic field spectrum �solid
line�. In contrast to Fig. 6 where the mode amplitudes were
different, we have taken the amplitude of the toroidal curva-
ture term in Eq. �32�, �01, equal to the helical term for HSX
�41 to show more clearly the reduction of the equilibrium
current in a quasihelically symmetric stellarator because of
the n−m�– factor. Note that Figs. 6 and 7 are not exactly
equivalent because in Fig. 6, the current is plotted at constant
cylindrical angle � as a function of the Hamada angle �,
whereas in Fig. 7 the current is plotted at a constant Boozer
toroidal angle �B as a function of the Boozer poloidal angle
�B.

One other interesting feature of these calculations is that
�B�� and �B�� are identically equal to the Boozer I and g
factors. It is shown in Ref. 16 that �B�� is proportional to the
toroidal current within a flux surface. For a device such as
HSX with no ohmic current and sufficiently low � that we

can neglect the bootstrap current, then only the vacuum mag-
netic field needs to be considered. In this case, �B�� is iden-
tically equal to zero, whereas from Eq. �29c�, the tokamak
analytic approximation is clearly not zero. It can be shown in
a similar manner as in Ref. 16 that �B�� is proportional to the
poloidal current outside a flux surface. Simple use of Am-
pere’s law for the tokamak field defined by Eq. �25� shows
that the Boozer I and g factors defined below Eq. �32� will
yield the exact same results as �B�� and �B�� in Eqs. �29c�
and �29d�.

In conclusion, we have developed a numerical technique
to obtain the Hamada basis vectors in a three-dimensional
toroidal magnetic field. We have used Nemov’s method to
obtain a single-valued Pfirsch–Schlüter current which en-
sures that the basis vectors are also single valued. The basis
vectors calculated for HSX differ substantially from the
large-aspect-ratio tokamak approximation simply because
the magnetic field spectrum is very different between the two
configurations. Differences in the surface average of the dot
product of two basis vectors exist between the numerical
calculations and the analytic approximation, but they are not
large. One large difference, however, is in the value of �B��
which is identically zero in a net current-free stellarator. We
have also shown that the vector e� is related to the Pfirsch–
Schlüter current and that �B�� and �B�� are identical to the
Boozer I and g factors. Finally, we wish to emphasize again
the importance of using an accurate calculation of the Ha-
mada basis vectors in order to compare plasma rotation mea-
surements in an experiment to the neoclassical model.
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