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PIES "Princeton Iterative Equilibrium Solver" - solves the MHD equilibrium 
equations with no assumptions about nested surfaces 
 
PIES solves the equation:  

J B P× = ∇  
 

by Picard iteration by solving this equation for J  and then solving for B  from 
 

0
B J

B
∇× =
∇⋅ =

 

 
 

When solving for , is found from the equilibrium equation and  is found by 

demanding that .  

J J ⊥ J
0J∇⋅ =



 
 
 

Thus, given  one finds for 
nB nJ , and then 

1n
tempB +

 and then the Picard blend step 
is made: 
 
 

1 1 (1 )n n n
tempB B Bα α+ += + −  

 
Where α  is the blend or acceleration parameter. 

 

PIES uses two grids. One is the background coordinates, on which 
1n

tempB +
 is found. 

The background coordinates are usually generated by the VMEC code. The other 
grid is the magnetic coordinate grid, on which J  is found. 

 
 
 



 
 
 
 
PIES temporal convergence - convergence with iteration number 
 
We have been able to reduce the maximum correction from iteration to iteration  

810− 910− 310to  to . Previously, we had been able to get 
−

 to 
510−
, sometimes 

leading to bistable states. 
 
What was done to get this improvement?



1) PIES now uses background coordinates directly to map   from magnetic 
coordinates to the background coordinates.  

J

 
Previously, we had used 
 ( , )b bX r θ  and ( , )m mX r θ

r

  
to find  
r r ( , )m m b bθ= r and b( , )m m bθ θ θ=  
by an iteration method. The iteration often failed to converge to a low tolerance and 
this spoiled the overall convergence of the PIES code. 
 
PIES now use  

( , )b b m mr r r θ=  and m( , )b b mrθ θ θ=   
to find 
r r ( , )m m b br  and b( , )m m br= θ θ θ θ=  
This lead to significant improvement in the convergence of the iterative algorithm. It 
also lead to a more faithful representation of the flux surfaces on the background 
coordinates.



 
2) PIES now uses splines to invert  ( , )b b m mr r r θ=  and m( , )b b mrθ θ θ=  
directly. 
 
First, for each magnetic coordinate 

jmr we evaluate  and br bθ  for a grid of 
imθ  

,
( , )

i j j ib b m mr r r θ=
r

 

,
( , )

i j j ib b m mθ θ θ=
r r r

 

This then allows us to calculate the spline b( , )
jb b m θ= .  

We then evaluate  on an br ,
j im br θ  grid. We can now construct a spline for  

( , )m m b br r r θ=

r

 
 
We do a similar calculation to find 
 

( , )m m b bθ θ θ=  



 
 
 
 
 
3) PIES now uses an irregular grid for the radial magnetic coordinate. Previously, 
PIES used a grid regularly spaced in the background coordinates. This caused a 
problem whenever the edge of the island crossed a grid point. The irregular grid is 
constructed to have grid points (guard points) just outside the island and one grid 
point inside the island to define the quasi-magnetic coordinates. Currently, the 
magnetic grid is equally spaced between islands, but we are now in the process of 
choosing the grid points to be at the most irrational surfaces. 



 
 
PIES convergence - m, n, k convergence. Here m and n are the poloidal and 
toroidal mode numbers and k is the radial grid number. 
 
We test the convergence of the improve algorithm on a Furth, Rutherford, Selberg 
like profile  
 

2
331.5(1 ( /.635) )q r= +  

 
This is intermediate between a peaked and rounded profile having a q=2 surface near 
r=.5 and a q at the edge of 4.3. The saturated island width is around 10%. Beta is 
zero. 
 
This was run with the new algorithm for 8,12,16m =  and 

40,60,80,100k =  
 
 



 
 
 
Resulting in the following plot of convergence in mode number: 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
The plot of the results converged in mode number verses number of radial zones shows good convergence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Effects of a model bootstrap current. 
 
A simple model to simulate the effect of a bootstrap current by increasing or 
decreasing the current in side the island has been implemented . The island width is 
very sensitive to the bootstrap effect for the equilibrium described above.  
 
A 10% decrease in the current inside the island causes the island to increase by more 
that a factor of 2. 
 
An increase in the island size is expected since 0q′ > . 
 
A 2% increase in the current inside the island causes the island to decrease by a 
factor of 2. A 3% increase makes the equilibrium oscillate between a tiny island and 
a zero width island. 
 
When the current in the island is increase by 10% the perturbed current effect is so 
large it causes the island to change phase as seen in the following plots. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flux contours on background coordinates 
when current is flattened in island and 
island width has reached saturation 

Flux contours after one iteration when 
current is the island is increased by 10% 
starting from the saturated island case at 
the left 

 
 



 
 
 
 
Plans  
 
1) Compare with PIES results with a code that solves the helical Grad-Shafranov 
equation. 
 
2) Do finite beta - probably need to use iota profile for selection of magnetic 
coordinates 
 
3) Improve PIES temporal convergence by using Jacobian-free Newton-Krylov 
methods. 
 
4) Explore using model bootstrap current to stabilize m=1 in tokamaks . 
 
 



5) Explore using model bootstrap current to find delta-function currents for equilibria 
without islands. 
 

current 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


