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Various configurations can be realized in the LHD configurations by changing coil currents.
In the typical LHD experiments, the density profile shows hollow profiles.
However recent experiments gradually show the configuration dependence on the density profiles
| typical LHD, for example R=3.75m ⇒HOLLOW | R=3.53m⇒FLAT | with some exceptions

LHD experiments
(Tanaka, Michael et al.)



OUTLINE

○ Linear electrostatic gyrokinetic equation is solved by GOBLIN code.
Linear Frequencies and quasi-linear (QL) fluxes are estimated.
Concentration is on the particle flux by the ITG modes in this study

○ The neoclassical fluxes are also estimated by GSRAKE code
[Beidler et al., PPCF 1994], which is valid for 1/ν regime (bounce-average type)

R=3.53m is found to be neoclassically optimized configuration
due to reducing the effective helical ripples [Murakami et.al., NF, 2002]
Gyrokinetic studies have been done [Rewoldt et al., NF, 2002],
and configuration(B) dependence was relatively weak
(profile effects are stronger than the configuration effects)
Experimental results have showed that the typical density profiles in LHD are hollow,
while flat profile is observed in R=3.53m configuration

Method

From these we have some questions.
Density shows configuration dependence which should be relevant to anomalous transport.
Nevertheless linear GK did not show strong configuration dependence.
⇒ Why is density profile typically hollow in the LHD?
⇒ What does determine experimental density profiles? neoclassical or anomalous?
⇒ Is the situation different from usual tokamak?

Early studies
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GyrOkinetic Ballooning LINear equation solver (GOBLIN)

[1] J.B.Taylor, et al., Plasma Physics 10, 479 (1968)
[2] G.Rewoldt, et al., Phys. Fluids 25, 480 (1982)
[3] S.P.Hirshman, Phys. Fluids 26, 3553 (1983)

• Kinetic integrals are very exact [2]
(for both circulating/trapped particles)

• Some approximations:
- Ballooning representation
- Collisionless
- F0=FM,  E0=0

• Equilibrium quantities are estimated
by VMEC [3], which are entered  
through ωd, k⊥, B,  and so on

• Linear frequencies, eigenfunction,
quasi-linear fluxes are obtained
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In this study electrostatic
assumption is used



Quasi-linear flux (electro-static)

( )

( )
∑∫∫ ∑

∑∫∫ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
==Γ

l
l

jthj
l

ll
j

j

e

e

Boz
srjj

l
l

j
l

ll
je

e

Boz
srjj

fvvvdhhdi
Z
T

T
ne

drd
k

B
Bg

V
VPQ

fvdhhdi
ZT

ne
drd

k
B
Bg

V
Vn

2

2
23

'
''2

0

2

2

2
3

'
''2

0

2

||
||)/(Re||

/''
'

2
3

||
||Re1||

/''
'

φ
δφδφθ

χχ
χδδ

φ
δφδφθ

χχ
χδδ

α

α

2
0

21
1

B/B
θς

r
B

BE
∇⋅

×
2

δ

Recent GK simulations [Jenko, PPCF 2005: Dannert, PoP 2005]
showed that the QL fluxes can give good agreement with the nonlinear fluxes
because the phase between the δΦ and δn or δp is not so different
in the linear and nonlinear phase.

The absolute value is undetermined.
|δΦ| is sometimes estimated by mixing length assumption, but not used here.
If |δΦ| is given from experiments, the absolute value can be obtained

[Rewoldt, PoF 1987]
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If so, QL flux is very useful to obtain physics insight



BENCH MARK

(Dimits et al., Phys. Plasmas 7,969(2000), Fig.1) 
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Electron is assumed to be adiabatic.
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Temperature is fixed (Ti=Te), and density profiles are changed from peaky
to hollow.

Profiles



MHD equilibrium is calculated by VMEC code:

magnetic configurations

Translate to 
Boozer 
Coordinates
(NEWBOZ code)

Two largest
R=3.75mR=3.53m

(Murakami, NF 2002)
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BLM is not so different
but effective helical ripple
is sufficiently small
at R=3.53m.
εeff estimated is defined
in (Nemov, PoP 1999)
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Quasi-linear anomalous



ITG frequencies as a function of krho
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The linear peak is at k⊥ρi ~ 0.6.
In the following, we take k⊥ρi=0.5 fixed
Also θk=α=0 fixed

(ρ=0.8 :hollow density case)
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ITG frequencies in LHD k⊥ρi = 0.5: fixed

hollow

peaked
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Heuristic stabilizing condition γlin(Er=0) ≦ ωE [Hahm, Burrell, PoP (1995)]
To estimate ωE, neoclassical ambipolar Er from GSRAKE code is used.

Neoclassical Er shear is insufficient to stabilize γITG

Linear growth rate and real frequencies in both configurations are similar.
Profile effect is stronger than the magnetic configuration effect.
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Axisymmetric: almost B1 only like
B=B0(1-r/R cosθ)=B0+B1cosθ
LHD: large helical component(2,10)

1) LHD-like: last closed surface (Rmn ,Zmn)
2) Axisymmetric: drop n/=0 components of LHD

MHD equilibrium is calculated by VMEC code:

magnetic configurations
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magnetic field strength along a field line

surface magnetic field spectrum
R~3.75m
a~0.6m

• Net current free is assumed for LHD (iota is determined)
• The iota profile obtained for the LHD is given for Axisymmetric case

Since the configuration dependence of linear GK is too weak in LHD,
We also consider a tokamak with comparable aspect ratio

Translate to 
Boozer 
Coordinates
(NEWBOZ code)



hollow

peaked

Comparison with tokamak

• In all cases, growth rate becomes large as ρ increases.
• Growth rate is larger in peaked profile case.
• Real frequency becomes positive (TEM-drive becomes strong) for peaked case due to 1/Ln.

-LHD

-Axisymmetric
• Growth rate becomes large as ρ increases for hollow profile case,

while it becomes small in the peaked case (TEM-drive does not connect with ITG-drive well). 

Helical ripple amplify the growth rate through the TEM-ITG hybrid mechanism
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Quasi-linear particle flux

○Tendency is the same in the LHD and axysmmetric case;
the flux tends to be negative as density profile tends to be hollow

○This result cannot be explained by only the sign of 1/Ln,
because sign of Γ does not completely correspond to sign of 1/Ln

○The flux in LHD is more negative than the tokamak (for example in green)

What makes the flux negative? ⇒ hollow (positive ∇n) profile + helical ripple?

LHD Tokamak
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ρ
Axisymmetric

0 0.5 1
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ρ
R=3.75m



particle flux
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(k⊥ρi=0.5)

○ Particle flux changes from negative to positive with increasing 1/Ln.
The change of sign occurs at some positive 1/Ln value.

○ In the core, flux tends to be small at 1/Ln~0.
○ Near the edge where trapped particles fraction becomes large,

sufficiently negative flux remains even at small 1/Ln.

frequencies

If Γ= –D(dn/dr) + nV ⇒ Γ/n=D(1/Ln)+V=0 at 1/Ln~1.5  ⇒ V/D~ –1.5
Not only diffusive flux but also convective flux exists near the edge.
In the core Γ seems to be diffusive.

1/Ln change in LHD (artificial)
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(k⊥ρi=0.5)1/Ln change (artificial)
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Γtot>0

1/Ln=-0.5:
Γtot <0

∫ Γ+Γ=Γ+Γ=Γ ][   trapgcirculatin  trapgcirculatintotal EEdE

○ Slow (fast) particles compared to vth tend to contribute the negative (positive) Flux.
○ Increase of 1/Ln reduce the negative ΓE region in E, making the total flux more positive.
○ Γtrap are more affected by 1/Ln, while circulating Γcirc is not sensitive.

Trapped particles contribution change the sign of Γ through 1/Ln value

In order to see what makes the flux negative, flux is plotted as a function of E



Helical ripple effect

- Multiply a factor to n≠0 components of LHD surface in VMEC
- q,T,n are assumed as the same as original case (multiplier=1)

- Circulating flux is independent of the helical ripples.
- Trapped flux is strongly changed with helical ripples,

which tends to make Γ more negative (ion/electron are similar).

k⊥ρi = 0.5: ρ=0.8
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Neoclassical
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- Neoclassical ambipolar particle flux is determined 
together with ambipolar Er, in the absolute unit.

- The configuration effect is very strong, in contrast to QL flux.
The reason is responsible for the reduction of effective ripple.

- The profile effect is weak,  in contrast to the QL flux.
- These are not explained by Er,

as they does not show strong configuration dependence.

R=3.53mR=3.75m

Neoclassical particle flux (GSRAKE)
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Strong configuration dependence can be explained by the difference of 
effective ripples in R=3.75m and 3.53m (thus R=3.53m is found optimum)

Neoclassical particle flux

Why profile (density profile change) effect is weak for fixed T profile? 
Even in the hollow profile, Γnc is positive, 
which indicates the Fick’s law is not satisfied at all.
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d
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ρ
φ

ρρ

What is main contribution can be seen by separate Γnc as,

Γ2
nc proportional to dT/dr

is large positive, 
which determine the flux
dominantly.

In this study dT/dr is fixed,
which is also the experimental case.
Thus, positive Γnc is robust for
changing density profile.
Its absolute value is affected by εeff

0 0.5 1

0

1

[×10+19]
Γ

neo [m−2s−1]

ρ

R=3.75m

Γ

Γ

Γ

Γ

1
neo

3
neo

2
neo

tot
neo



Why Γ2
nc is dominant in 1/ν regime?
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SUMMARY: R=3.75m
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In the steady state, in the core where particle source is negligible,
the particle balance               imposes ΓNC+ΓQL=0, indicating that
the density profile should be hollow to make ΓQL negative!
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Then, the particle balance ΓNC+ΓQL=0, indicating ΓQL=0.
This situation maybe resemble to the usual tokamak. 
We saw that the QL flux disappears at positive 1/Ln

(and also it is larger toward edge due to the increasing trapped particle’s effect)

indicating the density profile should be FLAT or PEAKY 
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