
Oculus: The Eye into Chaos

Dr. S.R. Hudson∗

Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543, USA

Prof. Y. Suzuki†

National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292, Japan

(Dated: November 30, 2016)

The Oculus package is a continually-under-development suite of diagnostic subroutines for non-
integrable, toroidal magnetic fields used in the numerical simulation of magnetic confinement of
fusion-research plasmas. Oculus is freely distributed, with the expectation that users will promptly
inform the developer(s) of any errors.

Suggestions and requests are welcome, indeed encouraged! Subroutines, expanded documentation
etc. will be developed on demand.

documentation for oculus version 16

Contents

I. user supplied magnetic field 2

II. user supplied coil description 2

III. macro expansion and compilation 3

IV. error flag 3

V. Biot-Savart subroutines 4
A. bs00aa : compute the magnetic field produced by a filamentary current loop of arbitrary shape; 5

VI. “cylindrical” subroutines 7
A. ga00aa : find the magnetic axis; 8
B. ho00aa : find the homoclinic points (of the stable/unstable manifold); 12
C. ec00aa : find action extremizing curves using global integration; 15
D. tr00aa : measure rotational-transform; 18
E. pp00aa : fieldline tracing for Poincaré plot, calculate Lyapunov exponent; 20
F. gc00aa : follow guiding center; 22
G. rz00aa : construct cylindrical Fourier harmonics of flux surface using fieldline tracing; 23
H. ad00aa : anisotropic diffusion using locally-field-aligned coordinates; 24
I. bn00aa : compute (B · n)m,n on a given toroidal surface; 28

VII. toroidal-cylindrical coordinate-vector transformation 30
A. bc00aa : interpolation of toroidal surfaces; construction; 31
B. bc00ab : interpolation of toroidal surfaces; evaluation; 33

VIII. “toroidal” subroutines 34
A. aa00aa : construct vector potential in toroidal coordinates; 35
B. aa00ba : evaluate vector potential (in toroidal coordinates); 37
C. ir00aa : construct irrational flux-surface (incomplete); 38
D. qf00aa : construct quadratic-flux minimizing surface using pseudo fieldline following algorithm; 39

IX. miscellaneous/auxilliary subroutines 42

∗Electronic address: shudson@pppl.gov
†Electronic address: suzuki.yasuhiro@lhd.nifs.ac.jp

http://w3.pppl.gov/~shudson/
mailto:shudson@pppl.gov
mailto:suzuki.yasuhiro@lhd.nifs.ac.jp

2

I. USER SUPPLIED MAGNETIC FIELD

The user must provide a subroutine, bfield(RpZ, itangent, BRpZ, ifail), which returns the magnetic field,
B, in cylindrical coordinates, (R,φ, Z).

1. RpZ(1:3) is real*8; input;

i. contains the R, φ and Z coordinates at which the field, and possibly the derivatives, are required.

2. itangent is integer; input;

i. if itangent=0 then only B is required;

ii. if itangent=1 then both B and its derivatives are required.

3. BRpZ(1:3,0:3) is real*8; output;

i. The contravariant components of the magnetic field, namely BR ≡ B · ∇R, Bφ ≡ B · ∇φ, and BZ ≡ B · ∇Z.

ii. The required format is

BRpZ(1,0) = BR, BRpZ(1,1) = ∂RBR, BRpZ(1,2) = ∂φBR, BRpZ(1,3) = ∂ZBR,

BRpZ(2,0) = Bφ, BRpZ(2,1) = ∂RBφ, BRpZ(2,2) = ∂φBφ, BRpZ(2,3) = ∂ZBφ,

BRpZ(3,0) = BZ , BRpZ(3,1) = ∂RBZ , BRpZ(3,2) = ∂φBZ , BRpZ(3,3) = ∂ZBZ .

!!! Note that Bφ = B · φ̂/R, and ∂RBφ = (∂RB · φ̂ − Bφ)/R !!!

4. ifail is integer; output;

i. returns an error flag;

ii. ifail=0 indicates that the calculation of B was successful.

For many of the following subroutines, the periodicity of the field will be exploited, by which it is meant that the
magnetic field must satisfy

B(R,φ + ∆φ,Z) = B(R,φ, Z), (1)

where ∆φ ≡ 2π/Nfp, and Nfp is an integer that must be provided as required.

II. USER SUPPLIED COIL DESCRIPTION

The user must provide a subroutine, iccoil(t, x, y, z, ifail), which returns the geometry of a closed curve
embedded in three-dimensional space, i.e. x = x(t)i + y(t)j + z(t)k; where t is input (real), and x(0 : 1), y(0 : 1) and
z(0 : 1) are output (real). This routine is only used by bs00aa, and if bs00aa is not called a dummy routine can be
provided.

3

III. MACRO EXPANSION AND COMPILATION

1. The Oculus package is available at http://w3.pppl.gov/~shudson/Oculus/oculus.XX.tar, where 20XX indicates
the year (verson).

2. The oculus.h file is converted to oculus.F90 via m4 -P oculus.macros oculus.h > oculus.F90.

3. On compilation, it is required to convert single precision to double precision.

4. Presently, the NAG library is required. (Replacement routines are presently being implemented.)

5. At some time in the future, the routines will be kept under version control (perhaps under github).

6. Please inform shudson@pppl.gov of any errors; and suggestions and requests are very welcome!

IV. ERROR FLAG

1. Each subroutine has an input integer ifail.

2. On input: ifail controls the degree of screen output;

for ifail.ge.0, operation is “quiet”;

for ifail.eq.0, screen output is “terse”;

for increasingly negative ifail the screen output is increasingly “noisy”, which may be useful for debugging.

for maximum screen output set ifail=-9.

3. On output, ifail=0 for normal execution.

4

V. BIOT-SAVART SUBROUTINES

In this section are described subroutines for computing the magnetic field produced by a current distribution.

5

A. bs00aa : compute the magnetic field produced by a filamentary current loop of arbitrary shape;

1. Given a closed (i.e. periodic), one-dimensional loop embedded in three-dimensional space, with position described
by x̄(t) ≡ x̄(t)i + ȳ(t)j + z̄(t)k, with the arbitrary curve parameter t ∈ [0, 2π], and x̄(t + 2π) = x̄(t), assumed to
carry unit current, i.e. I = 1, the magnetic field at x ≡ xi + yj + zk is given by the Biot-Savart integral,

B ≡
∫

C

dl × r

r3
, (2)

where r ≡ x − x̄.

2. In component form, Eq. (2) is

Bx ≡
∫ 2π

0

˙̄y(z − z̄) − ˙̄z(y − ȳ)

r3
dt, (3)

By ≡
∫ 2π

0

˙̄z(x − x̄) − ˙̄x(z − z̄)

r3
dt, (4)

Bz ≡
∫ 2π

0

˙̄x(y − ȳ) − ˙̄y(x − x̄)

r3
dt, (5)

where ˙̄x ≡ dx̄/dt, etc.

3. The magnetic vector potential is

A ≡
∫

C

dl

r
. (6)

4. The total length of the curve is

L ≡
∫

C

dl, (7)

where dl ≡ (˙̄x2 + ˙̄y2 + ˙̄z2)1/2.

5. The user must supply a subroutine, iccoil, that returns x̄, ȳ & z̄, and dx̄/dt, dȳ/dt & dz̄/dt, given t:
subroutine iccoil(t, x(0:1), y(0:1), z(0:1), ifail)
where t, x(0:1), y(0:1) and z(0:1) are real and ifail is an integer, x(0)≡ x̄(t) and x(1)≡ ˙̄x(t), and similarly for
y and z.

6. The integration is performed using NAG:D01AJF. (This routine is based upon the QUADPACK routine QAGS,
which is freely available.)

7. The user must include

use oculus, only : biotsavart, bs00aa

type(biotsavart) :: bsfield

in their source that calls bs00aa, where biotsavart is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, bsfield, is arbitrary.

8. Required inputs

bsfield%x : real ;

bsfield%y : real ;

bsfield%z : real ;

i. position x ≡ x i + y j + z k at which magnetic field is required;

bsfield%tol : real ;

bsfield%N : integer ;

i. integration accuracy parameters provided to D01AJF; (EPSABS=tol, EPSREL=zero and LW=4*N);

bsfield%LB : logical ;

http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/D01/d01ajf_fl19.pdf

6

i. set LB = .true. to compute the magnetic field;

bsfield%LA : logical ;

i. set LA = .true. to compute the magnetic vector potential;

bsfield%LL : logical ;

i. set LL = .true. to compute the length of the curve;

9. Execution

call bs00aa(bsfield, ifail)

10. Outputs

bsfield%Bx : real ;

bsfield%By : real ;

bsfield%Bz : real ;

i. only if LB = .true.;

bsfield%Ax : real ;

bsfield%Ay : real ;

bsfield%Az : real ;

i. only if LA = .true.;

bsfield%length : real ;

i. only if LL = .true.;

ifail : integer ;

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : D01AJF encountered a divide-by-zero; this is only possible if ∃t ∈ [0, 2π] such that x = x̄(t).

7

VI. “CYLINDRICAL” SUBROUTINES

In this section are described subroutines that do not depend explicitly on a pre-defined, ‘background’, toroidal
coordinate framework.

8

A. ga00aa : find the magnetic axis;

1. Iterative fieldline tracing methods are used to find the magnetic axis, defined as the magnetic fieldline that closes
on itself after a toroidal distance of ∆φ = 2π/Nfp, i.e. x(∆φ) = x(0), where Nfp is the field periodicity.

* The fieldline mapping is defined by integrating along the magnetic field, and is constructed numerically in cylindrical
coordinates by integrating the o.d.e.’s

dR(φ)

dφ
=

BR(R,φ, Z)

Bφ(R,φ, Z)
≡ Ṙ(R,φ, Z), (8)

dZ(φ)

dφ
=

BZ(R,φ, Z)

Bφ(R,φ, Z)
≡ Ż(R,φ, Z), (9)

from an initial, user-supplied starting point, (R0, 0, Z0). The toroidal angle, φ, is used as the integration parameter,
and so Bφ cannot be zero. Upon request, this routine will be modified in order to follow field lines in regions where
Bφ = 0.

* A Newton-iterative method is used to find the zero of

f

(
R0

Z0

)

≡
(

R1 − R0

Z1 − Z0

)

(10)

where R1 ≡ R(∆φ) and Z1 ≡ Z(∆φ).

* Given an initial guess, x ≡ (R0, Z0)
T , a better guess for the location of the axis, (R0, Z0)

T + (δR, δZ)T , is given by
the linear approximation

f

(
R0 + δR0

Z0 + δZ0

)

= f

(
R0

Z0

)

+

(
∂R0

R1 − 1 , ∂Z0
R1

∂R0
Z1 , ∂Z0

Z1 − 1

)

︸ ︷︷ ︸

∇f

·
(

δR0

δZ0

)

+ O(δ2) = 0, (11)

and the correction is given by δx = −(∇f)−1 · f(x).

* The derivatives, ∂R0
R1, ∂Z0

R1, etc. are determined by fieldline integration,

d

dφ

(
∂R0

R(φ), ∂Z0
R(φ)

∂R0
Z(φ), ∂Z0

Z(φ)

)

=

(
∂RṘ, ∂ZṘ

∂RŻ, ∂ZŻ

)

·
(

∂R0
R(φ), ∂Z0

R(φ)
∂R0

Z(φ), ∂Z0
Z(φ)

)

, (12)

from an initial starting point being the identity matrix,
(

∂R0
R(0), ∂Z0

R(0)
∂R0

Z(0), ∂Z0
Z(0)

)

=

(
1, 0
0, 1

)

. (13)

* The iterative search is enabled by NAG:C05PBF.

* If ifail=-4, then instead the axis search is provided by NAG:C05NBF, which does not require derivatives. Note
that for this option, the tangent map, the transform on axis, and the residue will not be calculated.

* The above definition of the magnetic axis does not have a unique solution: an ι- = 1/1 fieldline also satisfies this
definition, as does the ι- = 2/1, 3/1, etc., as also does the “X” point at the separatrix. Furthermore, during a
sawteeth cycle, the ι- = 1/1 fieldline and the original magnetic axis swap places. If there is a continuous family
of “magnetic axes”, e.g. there exists an intact q = 1 surface, then ∇f will not be invertible (unless singular value
decomposition methods are used). Thus, this routine should be used with care. Which closed field line that ga00aa
locates is determined by the initial guess provided.

* The returned information includes:

i. the Fourier representation of R(φ) and Z(φ);

ii. the tangent-mapping near the axis, which allows the rotational-transform on axis to be determined;

iii. Greene’s residue [Greene, J. Math. Phys. 20, 1183 (1979)] calculated at the magnetic axis (determines stabil-
ity).

2. The user must include

use oculus, only : magneticaxis, ga00aa

type(magneticaxis) :: axis

in their source that calls ga00aa, where axis is a derived type (i.e. structure) that contains both the
required input and output information. The variable name, axis, is arbitrary.

http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://http://www.nag.co.uk/numeric/FL/manual19/pdf/C05/c05pbf_fl19.pdf
http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://http://www.nag.co.uk/numeric/FL/manual19/pdf/C05/c05nbf_fl19.pdf
http://dx.doi.org/10.1063/1.524170

9

3. Required inputs

axis%Nfp : integer ;

i. the toroidal periodicity of the magnetic field, e.g. Nfp=1;

axis%Ntor : integer ;

i. the desired Fourier resolution of the magnetic axis,

ii. if it is not required to have a Fourier decomposition of the magnetic axis, or the magnetic field is axisymmetric,
choose Ntor=0;

axis%R : real ;

i. guess for the R location of the magnetic axis on the φ = 0 plane;

axis%Z : real ;

i. guess for the Z location of the magnetic axis on the φ = 0 plane;

axis%maxits : integer ;

i. max. iterations allowed in search;

ii. e.g. maxits=16;

axis%tol : real ;

i. required accuracy to which the position of the magnetic axis on the φ = 0 plane is required

ii. e.g. tol=1.0e-06;

axis%odetol : real ;

i. o.d.e. integration tolerance;

ii. e.g. odetol=1.0e-08;

ifail : integer ;

i. if ifail.ge. 1 : there is no screen output, except if there is an input error;

ii. if ifail.le. 0 : a one-line summary is provided, giving the (R,Z) location of the axis, ι-axis, etc.

iii. if ifail.le.-1 : the Fourier harmonics of the magnetic axis are displayed;

iv. if ifail.le.-2 : the eigenvalues and eigenvectors of the tangent map at the axis are displayed;

iv. if ifail.le.-3 : information detailing the progress of the iterative search is provided;

iv. if ifail.le.-4 : C05NBF (which does not require derivatives) is used instead of C05PBF;

4. Execution

call ga00aa(axis, ifail)

5. Outputs

axis%R : real ;

i. updated;

axis%Z : real ;

i. updated;

axis%tangent(1:2,1:2) : real ;

i. the tangent mapping at axis;

ii. if the eigenvalues of the tangent map are imaginary, e.g. λ ≡ α + βi, then the rotational-transform on axis
satisfies tan(||ι-||) = β/α, where ||ι-|| ≡ ι- mod 2π.

iii. if the eigenvalues of the tangent map are real, then the eigenvalues give the direction of the stable and unstable
manifolds.

axis%wr(1:2) : real ;

axis%wi(1:2) : real ;

10

axis%vr(1:2,1:2) : real ;

axis%vi(1:2,1:2) : real ;

i. the eigenvalues and eigenvectors of the tangent mapping at axis;

axis%iota : real ;

i. rotational-transform on axis

ii. will only be meaningful if axis is stable, which is indicated by both (i) the sign of residue, and (ii) whether the
eigenvalues and eigenvectors are real or imaginary.

axis%Lallocated : integer ;

i. if Lallocated=1, the Ri, Zi, Rnc, Rns, Zns, Znc have been allocated;

ii. if Lallocated=0, the Ri, Zi, Rnc, Rns, Zns, Znc have not been allocated;

axis%Ri(0:4*Ntor) : real ;

i. the magnetic axis, R(i∆ϕ), for i = 0, 4∗Ntor, where ∆ϕ = ∆φ/(4∗Ntor);
ii. Ri is allocated internally; if on input Ri is already allocated it will first be deallocated; similarly for Zi

axis%Zi(0:4*Ntor) : real ;

i. the magnetic axis, Z(i∆ϕ), for i = 0, 4∗Ntor, where ∆ϕ = ∆φ/(4∗Ntor);

axis%Rnc(0:Ntor) : real ;

i. the Fourier harmonics, R(φ) =
∑

n[Rn,c cos(−nφ) + Rn,s sin(−nφ)];

ii. Rnc is allocated internally; if on input Rnc is already allocated it will first be deallocated; similarly for Zns,
Rns and Znc.

axis%Zns(0:Ntor) : real ;

i. the Fourier harmonics, Z(φ) =
∑

n[Zn,c cos(−nφ) + Zn,s sin(−nφ)];

axis%Rns(0:Ntor) : real ;

i. the Fourier harmonics, R(φ) =
∑

n[Rn,c cos(−nφ) + Rn,s sin(−nφ)];

axis%Znc(0:Ntor) : real ;

i. the Fourier harmonics, Z(φ) =
∑

n[Zn,c cos(−nφ) + Zn,s sin(−nφ)];

axis%error : real ;

i. the error,
√

∆R2 + ∆Z2, where ∆R ≡ R(∆φ) − R0 and ∆Z ≡ Z(∆φ) − Z0.

axis%its : integer ;

i. the number of iterations required;

axis%residue : real ;

i. Greene’s residue of the magnetic axis; [Greene, J. Math. Phys. 20, 1183 (1979)];

axis%rzf(0:2,0:31) : real ;

i. Information regarding the progress of the iterations;

ii. Ri = axis%rzf(0,0:axis%its) are the R values used in the iterations;

ii. Zi = axis%rzf(1,0:axis%its) are the Z values used in the iterations;

ii. Fi = axis%rzf(2,0:axis%its) are the |f | at each iteration;

ifail : integer ;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the routine NAG:C05PBF failed to locate the zero of the function, perhaps because of a failure
in integrating along the fieldlines;

http://dx.doi.org/10.1063/1.524170
http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/C05/c05pbf_fl19.pdf

11

ifail=3 : the NAG routine C06EAF failed to construct the Fourier harmonics of the axis, for either R or
Z;

ifail=4 : the NAG routine F02EBF failed to construct the eigenvalues/vectors of the tangent mapping;

6. Comments:

* The NAG routine NAG:C05PBF is used for the nonlinear root find, and tol is given directly to NAG:C05PBF.

* The NAG routine D02BJF is used for the o.d.e. integration, and odetol is supplied directly to D02BJF.

* If a good initial guess is given, this number should be small, as Newton methods should converge rapidly; however,
if there are multiple magnetic axes (as during a sawtooth event) then the Newton method may encounter problems;
also, numerical errors in the magnetic field (perhaps ∇ ·B is not exactly zero) can cause the fieldline integration to
be inaccurate, and so it may be difficult to find the solution to the desired accuracy.

* Please also consider using ec00aa;

http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/C05/c05pbf_fl19.pdf
http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/C05/c05pbf_fl19.pdf

12

B. ho00aa : find the homoclinic points (of the stable/unstable manifold);

1. This subroutine performs two iterative searches.

* The first search is for the unstable fixed point, x̄. Iterative fieldline tracing methods are used, and the numerical
method is identical to that used in ga00aa, see Sec. VIA.

* The second search is to find the homoclinic points. Homoclinic points are defined as those points that approach the
unstable fixed point forwards in time and backwards in time, i.e. Tn(x) → x̄ as n → ±∞, where T (x) is the image
of x under the Poincaré map, and T−1(x) is the pre-image, and where time is analogous to the toroidal angle.

* The tangent mapping at the fixed point is constructed. The unstable manifold is identified by the unstable eigenvec-
tor, vu, which is that eigenvector with a real eigenvalue, λu, with magnitude greater than unity. The stable manifold
is identified by the stable eigenvector, vs, which is that eigenvector with a real eigenvalue, λs, with magnitude less
than unity. Note that λuλs = 1.

* The numerical task is then to find (du, ds) such that

f(du, ds) ≡ T+i(x̄ + duvu) − T−j(x̄ + dsvs) = 0, (14)

where the (du, ds) must be sufficiently small so that the linear approximation is valid (required as the eigenvectors
of the tangent map are used to identify the stable and unstable manifolds).

* There are a countable infinity of homoclinic points (and they come in families, and they are increasingly close
together near the unstable fixed point). The integers i and j are used to identify which homoclinic points are
located and are determined as part of the calculation. The solution for (du, ds) depends on the i and j.

2. The user must include

use oculus, only : homoclinictangle, ho00aa

type(homoclinictangle) :: tangle

in their source that calls ho00aa, where tangle is a derived type (i.e. structure) that contains both the
required input and output information. The variable name, tangle, is arbitrary.

3. Required inputs

tangle%Nfp : integer ;

i. the toroidal periodicity of the magnetic field,

ii. e.g. Nfp=1;

tangle%R : real ;

i. guess for the R location of the unstable fixed point on the φ = 0 plane;

tangle%Z : real ;

i. guess for the Z location of the unstable on the φ = 0 plane;

tangle%maxits : integer ;

i. max. iterations allowed in search;

ii. e.g. maxits=16;

tangle%xtol : real ;

i. required accuracy to which the position of the unstable fixed point on the φ = 0 plane is required

ii. e.g. xtol=1.0e-06;

tangle%odetol : real ;

i. o.d.e. integration tolerance;

ii. e.g. odetol=1.0e-08;

tangle%dU : real ;

i. guess for the displacement along the unstable manifold of a homoclinic point;

ii. e.g. dU = 10−2;

13

tangle%dS : real ;

i. guess for the displacement along the stable manifold of a homoclinic point;

ii. e.g. dS = 10−2;

tangle%htol : real ;

i. required accuracy to which the homoclinic point is required;

ii. e.g. htol=1.0e-05;

tangle%ltol : real ;

i. required accuracy to which the linear approximation is required;

ii. e.g. ltol=1.0e-03;

ifail : integer ;

4. Execution

call ho00aa(tangle, ifail)

5. Outputs

tangle%R : real ;

i. updated;

tangle%Z : real ;

i. updated;

tangle%tangent(1:2,1:2) : real ;

i. the tangent mapping at unstable fixed point;

ii. if the eigenvalues of the tangent map are imaginary, e.g. λ ≡ α + βi, then the rotational-transform on tangle
satisfies tan(||ι-||) = β/α, where ||ι-|| ≡ ι- mod 2π.

iii. if the eigenvalues of the tangent map are real, then the eigenvalues give the direction of the stable and unstable
manifolds.

tangle%wr(1:2) : real ;

tangle%wi(1:2) : real ;

tangle%vr(1:2,1:2) : real ;

tangle%vi(1:2,1:2) : real ;

i. the eigenvalues and eigenvectors of the tangent mapping at the fixed point;

tangle%xerror : real ;

i. the error,
√

∆R2 + ∆Z2, where ∆R ≡ R(∆φ) − RX and ∆Z ≡ Z(∆φ) − ZX .

tangle%xits : integer ;

i. the number of iterations required;

tangle%residue : real ;

i. Greene’s residue of the fixed point; [Greene, J. Math. Phys. 20, 1183 (1979)];

tangle%hits : integer ;

i. the number of iterations required to locate the homoclinic points;

tangle%herror : real ;

i. the error in locating the homoclinic points;

tangle%ilobe(1:2) : integer ;

i. the i and j as defined above, Eq. (14);

http://dx.doi.org/10.1063/1.524170

14

tangle%maxilobe : integer ;

i. just for convenience; maxilobe=max(ilobe(1:2));

tangle%Lallocated : integer ;

i. if Lallocated=1, the hpoints array has been allocated;

ii. if Lallocated=0, the hpoints array has not been allocated;

tangle%hpoints(1:2,0:ltangle%maxilobe,1:2) : real ;

i. the locations of the homoclinic points;

ii. the homoclinic points on the unstable branch are Ri,u ≡ hpoints(1,i,1) and Zi,u ≡ hpoints(2,i,1), for
i = 0, ilobe(1);

iii. the homoclinic points on the stable branch are Ri,s ≡ hpoints(1,i,1) and Zi,s ≡ hpoints(2,i,2), for i = 0,
ilobe(2);

iv. hpoints need not be allocated on input; if it is, it is immediately deallocated;

tangle%lerror(1:2) : real ;

i. the error in the linear approximation;

ifail : integer ;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the NAG routine C05PBF failed to locate the zero of the ‘fixed-point’ function, perhaps because
of a failure in integrating along the fieldlines;

ifail=3 : the fixed point is not ‘unstable’: the residue must be negative;

ifail=4 : the NAG routine F02EBF failed to construct the eigenvalues/vectors of the tangent mapping;

ifail=5 : the fixed point is not ‘unstable’: the eigenvalues must be real;

ifail=6 : at least one eigenvector has illegal magnitude;

ifail=7 : failed to fieldline integration to determine ilobe;

ifail=8 : ilobe(1).le.0 or ilobe(2).eq.0 ;

ifail=9 : failed to locate the homoclinic points;

6. Comments:

* The NAG routine C05PBF is used for the nonlinear root find, and tol is given directly to C05PBF.

* The NAG routine D02BJF is used for the o.d.e. integration, and odetol is supplied directly to D02BJF.

* If a good initial guess is given, this number should be small, as Newton methods should converge rapidly; however,
if there are multiple magnetic axes (as during a sawtooth event) then the Newton method may encounter problems;
also, numerical errors in the magnetic field (perhaps ∇ ·B is not exactly zero) can cause the fieldline integration to
be inaccurate, and so it may be difficult to find the solution to the desired accuracy.

* Please also consider using ec00aa to find the unstable fixed point;

15

C. ec00aa : find action extremizing curves using global integration;

1. Find curves that extremize the action integral,

S[C] ≡
∫

C

A · dl. (15)

Note: for a given vector potential, B = ∇× A, the action, S, is considered to be a function of the ‘trial-curve’, C.

* From variational calculus, the variation in S due to variations, δdl, in the curve is

δS =

∫

C

B × dl · δdl, (16)

from which we see that curves that extremize S satisfy B × dl = 0, i.e. the extremal curves are parallel to B.

* This method of detemining magnetic fieldlines is called Lagrangian or global integration.

* Working in cylindrical coordinates, an arbitrary trial curve is represented by

x(φ) = R(φ)eR(φ) + Z(φ)eZ , (17)

where eR(φ) ≡ cos(φ)i + sin(φ)j and eZ ≡ k.

* The infinitesimal change in x due to an infinitesimal increase in φ is

dl =
(

Ṙ eR + eφ + Ż eZ

)

dφ, (18)

where the ‘dot’ denotes the derivative with respect to φ.

* It is assumed that the magnetic vector potential is in the form

A ≡ AR∇R + Aφ∇φ + AZ∇Z. (19)

Interestingly, and fortunately, only the curl of the vector potential will be required.

* The ‘Lagrangian’, i.e. the integrand A · dl/dφ, is ARṘ + Aφ + AZŻ.

* A Fourier representation for R(φ) and Z(φ) is employed:

R ≡
N∑

n=0

[Rn,c cos(nφ) + Rn,c sin(nφ)] , (20)

Z ≡
N∑

n=0

[Zn,c cos(nφ) + Zn,c sin(nφ)] . (21)

* Extremal curves are curves for which the derivative of S with respect to to the Rn,c, Rn,s etc. are zero. We have,
for example,

∂S

∂Rn,c
=

∫ 2π

0

(
∂AR

∂R

∂R

∂Rn,c
Ṙ + AR

∂

∂Rn,c
Ṙ +

∂Aφ

∂R

∂R

∂Rn,c
+

∂AZ

∂R

∂R

∂Rn,c
Ż

)

dφ. (22)

* Consider the term

AR
∂

∂Rn,c
Ṙ = AR

∂

∂Rn,c

d

dφ
R = AR

d

dφ

∂

∂Rn,c
R = AR

d

dφ
cos(nφ) (23)

Rather than writing dφ cos(nφ) = −n sin(nφ), a very neat trick is to to instead use integration-by-parts to write

AR dφ cos(nφ) ≡ −dφAR cos(nφ). Note that dφ is the total derivative with respect to φ, so that dφAR ≡ ∂RAR Ṙ+

∂φAR + ∂ZAR Ż. Several terms cancel, and only the derivatives of A are now required, rather than A itself; in
fact, it is the components of ∇× A that appear!

* The derivatives of the action with respect to the parameters defining the curve are

∂S

∂Rn,c
=

∫ 2π

0

cos(nφ)
(

BZ − BφŻ
)

R dφ, (24)

∂S

∂Rn,s
=

∫ 2π

0

sin(nφ)
(

BZ − BφŻ
)

R dφ, (25)

∂S

∂Zn,c
=

∫ 2π

0

cos(nφ)
(

BφṘ − BR
)

R dφ, (26)

∂S

∂Zn,s
=

∫ 2π

0

sin(nφ)
(

BφṘ − BR
)

R dφ. (27)

16

* Various numerical methods may be employed to find FR ≡
(

BZ − BφŻ
)

R = 0 and FZ ≡
(

BφṘ − BR
)

R = 0.

2. The user must include

use oculus, only : extremizingcurve, ec00aa

type(extremizingcurve) :: curve

in their source that calls ec00aa. The variable name, curve, is arbitrary.

3. Required inputs

curve%Nfp : integer ;

i. the toroidal periodicity of the magnetic field,

ii. e.g. Nfp=1;

curve%Ntor : integer ;

i. the required Fourier resolution in the toroidal direction;

ii. constraint: Ntor.ge.0;

curve%Rnc(0:Ntor) : real ;

curve%Rns(0:Ntor) : real ;

curve%Znc(0:Ntor) : real ;

curve%Zns(0:Ntor) : real ;

i. an initial guess for the Fourier harmonics of the extremizing curve;

ii. these are allocatable, and must be allocated before calling ec00aa;

curve%etol : real ;

i. the accuracy to which the extremal curve is required;

ii. e.g. etol= 10−6;

curve%ftol : real ;

i. the accuracy to which the extremal curve is required; only if gradient flow is used;

ii. e.g. ftol= 10−3;

curve%maxits : integer ;

i. maximum number of iterations allowed;

curve%emethod : integer ;

i. determines the numerical method used to locate extremal curves:

ii. emethod = 0 : uses Newton method to find FR = 0 and FZ = 0;

curve%odetol : real ;

i. the o.d.e. integration tolerance;

ii. e.g. odetol=10−6;

iii. only used if emethod=1,2,3,4;

curve%tauend : real ;

i. the upper limit on the o.d.e. integration;

ii. e.g. tauend=1.00;

iii. only used if emethod=1,2,3,4;

curve%dtau : real ;

i. the intermediate output on the o.d.e. integration;

ii. e.g. dtau=0.05;

17

iii. only used if emethod=1,2,3,4;

ifail : integer ;

4. Execution

call ec00aa(curve, ifail)

5. Outputs

curve%Rnc(0:Ntor) : real ;

curve%Rns(0:Ntor) : real ;

curve%Znc(0:Ntor) : real ;

curve%Zns(0:Ntor) : real ;

i. updated;

curve%its : integer ;

i. required iterations;

curve%err : real ;

i. accuracy achieved;

ifail : integer ;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the routine C05NBF failed to find a solution;

6. Comments:

* The NAG routine C05NBF is used;

18

D. tr00aa : measure rotational-transform;

1. Fieldline tracing methods are used to determine the relative rotational-transform of one fieldline about a given
“reference” fieldline, which will usually be a magnetic axis.

* The equations governing the fieldlines are the same as that given in Eq. (8) and Eq. (9).

* The user must supply two starting points, (Ra, Za) and (R,Z). The location of the magnetic axis, (Ra, Za), can be
obtained from a previous call to ga00aa, see Sec. VIA. however, the values of (Ra, Za) and (R,Z) are completely
arbitrary. What is really measured by this routine is average “linking” of one fieldline about the other.

* A poloidal angle, θ(φ), is introduced as

tan θ(φ) =
δZ(φ)

δR(φ)
, (28)

where δR(φ) = R(φ) − Ra(φ) and δZ(φ) = Z(φ) − Za(φ).

* This angle varies with φ according to

dθ

dφ
=

δR (Z ′ − Z ′
a) − δZ (R′ − R′

a)

δR2 + δZ2
, (29)

where ′ denotes total derivative with respect to φ.

* The o.d.e. integration defined in Eq. (29) may be initialized with θ(0) = 0, and after a sufficiently large distance,
∆φ, this angle satisfies ∆θ ≈ ι-∆φ, where ι- is the rotational-transform.

* A more accurate calculation of ι- is enabled by fitting a straight line to θ(φ), rather than just subtracting the
endpoints. This will be implemented in time, upon request, . . .

* Formally, the rotational-transform is defined as the limit

ι- ≡ lim
∆φ→∞

∆θ

∆φ
. (30)

This limit only converges on regular fieldlines. For irregular, or chaotic, fieldlines, this limit does not converge and
the rotational-transform is not defined!

* Note that Eq. (29) requires knowledge of Ra(φ) and Za(φ), and R(φ) and Z(φ), and these are obtained by integrating
Eq. (8) and Eq. (9). So, in total there are 5 coupled o.d.e.s.

2. The user must include

use oculus, only : transformdata, tr00aa

type(transformdata) :: transform

in their source that calls tr00aa, where transform is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, transform, is arbitrary.

3. Required inputs

transform%Nfp : integer ;

i. the toroidal periodicity of the magnetic field, e.g. Nfp=1 for tokamaks, Nfp=5 for LHD, . . ;

transform%Ppts : integer ;

i. the number of toroidal transits that the fieldlines will be followed, e.g. Ppts>100;

transform%odetol : real ;

i. o.d.e. integration tolerance; e.g. odetol=1.0e-08;

transform%Ra : real ;

transform%Za : real ;

transform%R : real ;

transform%Z : real ;

19

i. starting points for fieldline integrations;

ii. usually, (Ra, Za) will be the location of the magnetic axis on the φ = 0 plane, and (R,Z) is arbitrary.

iii. the starting points must be distinct: in particular, length ≡ (R − Ra)2 + (Z − Za)2 must exceed 10−12.

4. Execution

call tr00aa(transform, ifail)

5. Outputs

transform%iota : real ;

i. the “rotational-transform” of the fieldline starting at (R,Z) relative to the fieldline starting at (Ra, Za).

transform%Lallocated : integer ;

i. if Lallocated=1, the transform%RZ array has been allocated;

ii. if Lallocated=0, the transform%RZ array has not been allocated;

transform%RZ(1:2,0:Ppts) : real ;

i. the Poincaré plot data: Ri ≡transform%RZ(1,i), Zi ≡transform%RZ(2,i)
ii. the transform%RZ need not be allocated on input; if it is, it is first deallocated;

ifail : integer ;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the NAG routine D02BJF failed to integrate along the fieldline. perhaps because the fieldline
left the computational domain, . . .

20

E. pp00aa : fieldline tracing for Poincaré plot, calculate Lyapunov exponent;

1. This subroutine follows a magnetic fieldline from a given starting point, for a given number of toroidal periods,
either forwards or backwards in the toroidal angle, φ. The intersection points of the fieldline with the Poincaré
section φ = 0 are returned.

* The (maximum) Lyapunov exponent, λ, may also be calculated [Benettin, Galgani & Strelcyn,
Phys. Rev. A, 14:2338 (1976)]. This measures the average exponential rate of separation of a nearby trajectory,

|δx(φ)| = eλφ|δx(0)|, (31)

as φ → ∞ and as |δx(0)| → 0.

* The limit |δx(0)| → 0 is best treated by linearizing the fieldline equations about the given reference fieldline, as is
herafter assumed.

* To calculate λ, assuming that δx lies in the tangent space and |δx(0)| = 1, as

λ(φ) =
1

φ
log(|δx(φ)|). (32)

* In Eq. (32), λ has been expressed as a function of φ so that the user may examine whether the limit limφ→∞ λ(φ)
has converged.

* If λ > 0, the long-time trajectory of the fieldline is infinitesimally sensitive to the initial position, and this is a
defining characteristic of chaos; however, not all fieldlines are chaotic. Consider a nearby fieldline that separates
linearly, i.e. |δx(φ)| = 1 + cφ for some constant, c; for example, a fieldline that lies on a nearby flux surface with
slightly-different rotational-transform. The value of λ given by Eq. (32) gives

λ ≈ log c

φ
+

log φ

φ
. (33)

* To distinguish a weakly-exponentially-separating fieldline from a linearly-separating fieldline may require a very
long integration in φ. It is recommended to plot log(|λ(φ)|) against log(φ) to determine if λ(φ) is approaching a
non-zero value as φ → ∞; and it may be useful to compare this to what would be expected, Eq. (33), for linearly
separating fieldlines.

* Also, there maybe nearby fieldlines that neither exponentially separate nor linearly separate, but instead oscillate
about the reference fieldline. Such behavior is displayed by fieldlines in the vicinity of a stable fixed point.

2. The user must include

use oculus, only : poincaredata, pp00aa

type(poincaredata) :: poincare

in their source that calls pp00aa, where poincaredata is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, poincare, is arbitrary.

3. Required inputs

poincare%Nfp : integer ;

i. the toroidal periodicity of the magnetic field,

ii. e.g. Nfp=1;

poincare%R : real ;

i. starting point;

poincare%Z : real ;

i. starting point;

poincare%Ppts : integer ;

i. toroidal periods / iterations;

poincare%idirection : integer ;

http://dx.doi.org/10.1103/PhysRevA.14.2338

21

i. idirection= 1 : follow fieldline in increasing toroidal direction;

i. idirection=-1 : follow fieldline in decreasing toroidal direction;

poincare%flparameter : integer ;

i. flparameter=0 : use toroidal angle to parameterize distance along fieldline; i.e. divide equations by Bζ ;

i. flparameter=1 : use length to parameterize distance along fieldline; i.e. divide equations by |B|; under
construction;

poincare%iLyapunov : integer ;

i. iLyapunov = 0 : the Lyapunov exponent will not be calculated;

ii. iLyapunov = 1 : the Lyapunov exponent not be calculated; note that this will slow the fieldline integration,
as additional o.d.e.s that define the tangent mapping need to be integrated;

poincare%Ltol : real ;

i. tolerance required for calculation of Lyapunov exponent;

ii. e.g. Ltol=1.0e-03;

iii. under construction: I plan to automatically adjust the integration length (i.e. Ppts) to ensure that λ is
converged to within Ltol.

poincare%odetol : real ;

i. o.d.e. integration tolerance;

ii. e.g. odetol=1.0e-08;

ifail : integer ;

4. Execution

call pp00aa(poincare, ifail)

5. Outputs

poincare%RZ(1:2,0:Ppts) : real ;

i. Poincaré data;

ii. Ri = RZ(1,0:Ppts); Zi = RZ(2,0:Ppts);

i1i. RZ need not be allocated on input; if it is, it is immediately deallocated;

poincare%Ly(1:Ppts) : real ;

i. “evolution” of Lyapunov exponent; i.e. the estimate of the Lyapunov exponent as a function of iteration;

iv. Ly need not be allocated on input; if it is, it is immediately deallocated;

poincare%Lallocated : integer ;

i. if Lallocated=1, the RZ and Ly arrays have been allocated;

ii. if Lallocated=0, the RZ and Ly arrays have not been allocated;

poincare%Lyapunov : real ;

i. the Lyapunov exponent;

poincare%ipts : integer ;

i. toroidal periods actually followed: if an error is encountered (e.g. the fieldline leaves the computational domain,
the fieldline integration is terminated;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

6. Comments:

* The NAG routine NAG:D02BJF is used to perform the o.d.e. integration.

http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/D02/d02bjf_fl19.pdf

22

F. gc00aa : follow guiding center;

1. This is under construction. Contact shudson@pppl.gov.

23

G. rz00aa : construct cylindrical Fourier harmonics of flux surface using fieldline tracing;

1. This subroutine follows a magnetic fieldline from a given starting point, for a given number of toroidal periods, to
construct the Fourier coefficients that satisfy

R =
∑

i

Ri cos(miθ − niζ) (34)

Z =
∑

i

Zi sin(miθ − niζ) (35)

2. The user must include

use oculus, only : poincaredata, rz00aa

type(poincaredata) :: poincare

in their source that calls rz00aa, where poincaredata is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, poincare, is arbitrary.

3. Required inputs

poincare%Nfp : integer ;

i. the toroidal periodicity of the magnetic field,

ii. e.g. Nfp=1;

poincare%R : real ;

i. starting point;

poincare%Z : real ;

i. starting point;

poincare%Ppts : integer ;

i. toroidal periods / iterations;

poincare%odetol : real ;

i. o.d.e. integration tolerance;

ii. e.g. odetol=1.0e-08;

ifail : integer ;

4. Execution

call rz00aa(poincare, ifail)

5. Outputs

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

6. Comments:

*

24

H. ad00aa : anisotropic diffusion using locally-field-aligned coordinates;

1. This subroutine integrates in time the anisotropic-diffusion equation,

∂p

∂t
= ∇ ·

(
κ‖∇‖p + κ⊥∇⊥p

)
+ S, (36)

where p is a scalar function of position, e.g. the pressure; S is a scalar function of position, e.g. a source; t is an
arbitrary integration parameter, e.g. time; the directional derivative along the magnetic field is ∇‖p ≡ bb · ∇p;
and ∇⊥p ≡ ∇p −∇‖p.

* This equation may be re-written as ∂tp = ∇ · [(κ‖ − κ⊥)∇‖p + κ⊥∇p) + S, and hereafter will use κ̄‖ ≡ κ‖ − κ⊥.

* [Presently, κ̄ = κ‖, i.e. the κ⊥∇‖p term is ignored.]

* It is more transparent to write the anisotropic-diffusion equation as

∂p

∂t
= κ̄‖ B · ∇ 1

B2
B · ∇ p + κ⊥ ∇ · ∇p + S. (37)

* The operator B · ∇ reduces to Bφ∂φ if coordinates, (α, β, φ), can be constructed so that B = ∇α × ∇β and
∇α×∇β · ∇φ = Bφ. Such coordinates can always be constructed locally by fieldline integration, provided Bφ 6= 0.
The benefit of this approach is to minimize the “parallel-pollution” of the perpendicular diffusion.

* A regular, cylindrical grid is employed, R ∈ [Rmin, Rmax], φ ∈ [0, 2π/NP] and Z ∈ [Zmin, Zmax], where NP ≡ Nfp
is the field periodicity; with grid resolution NR, Nφ and NZ . The location of each grid point, xi,j,k = RieR + ZjeZ

is given by Ri ≡ Rmin + i∆R, Zj ≡ Zmin + j∆Z and φk = k∆φ; where ∆R = (Rmax − Rmin)/NR, ∆Z =
(Zmax − Zmin)/NZ and ∆φ = (2π/NP)/Nφ.

* A second-order discretization of the second parallel derivative is obtained by differencing the first parallel derivatives
on the “forward half-∆φ” and the “backward half-∆φ” grids as follows:

∇2
‖p|i,j,k ≡ Bφ

∆φ

∣
∣
∣
∣
0

(

Bφ

B2

∣
∣
∣
∣
+1/2

p+1 − p0

∆φ
− Bφ

B2

∣
∣
∣
∣
−1/2

p0 − p−1

∆φ

)

, (38)

where p0 ≡ p(xi,j,k) = pi,j,k and p±1 ≡ p(M±1(xi,j,k)), where M1(xi,j,k) is the image of xi,j,k under the “forward”
fieldline mapping from φ = k∆φ to φ = (k + 1)∆φ, and M−1(xi,j,k) is the image of xi,j,k under the “backward”
fieldline mapping from φ = k∆φ to φ = (k − 1)∆φ; and the factors Bφ/B2 are evaluated on the forward and
backward half-∆φ grids.

* [Presently, Bφ = 1 and Bφ/B2 = 1, i.e. the “metric” information is ignored.]

* The M±1(xi,j,k) do not generally coincide with grid points, so p(M±1(xi,j,k)) must be determined by interpolation.
Given that the M±1(xi,j,k) do however lie on the toroidal planes (k + 1)∆φ and (k − 1)∆φ, an interpolation in φ
is not required. The simplest interpolation is the second-order, bi-linear interpolation, e.g.

p+1 ≡ (1 − y) [(1 − x) pI,J,k+1 + x pI+1,J,k+1] + y [(1 − x) pI,J+1,k+1 + x pI+1,J+1,k+1], (39)

where the I and J label the left-lower grid point, i.e. RI ≤ R̄ < RI+1 and ZJ ≤ Z̄ < ZJ+1; and x ≡ (R̄ −RI)/∆R
and y ≡ (Z̄ − ZJ)/∆Z,

* The bi-linear interpolation is used near the computational boundary, and a fourth-order, bi-cubic interpolation is
used in the interior domain.

* The fieldline tracing information is contained in the I±1,i,j,k, J±1,i,j,k, x±1,i,j,k and the y±1,i,j,k arrays; and the
Bφ|0 and Bφ/B2|±1/2 information is contained in B−1:1,,i,j,k.

* The discretization of the second, parallel derivative given in Eq. (38) is only possible if Bφ 6= 0; as the equations
defining the fieldline mapping are dφR ≡ BR/Bφ and dφZ ≡ BZ/Bφ, and the Jacobian of the locally-field-aligned
coordinates is 1/Bφ. An additional logical array, Fi,j,k indicates whether the fieldline tracing construction of the
locally-field-aligned coordinates was successful. For all points where the fieldline tracing was not successful the
pressure at the “mapped” points is set to zero, i.e. p± = 0.

* All of these arrays, i.e. the I, J , x, y, B and F , are returned by ad00aa. Note that these arrays depend only
on the magnetic field and the computational grid. If the user wishes to continue to relax the pressure with the

same magnetic field and with the same computational grid, then this information can be passed back to ad00aa
on a subsequent call, and this will eliminate the computational cost of re-constructing the locally-field-aligned
coordinates. (Some computational savings can also be made if the user wishes to refine the grid in only the R and
Z directions for the same magnetic field, but this option is not yet implemented.)

25

* If, however, on a subsequent call to ad00aa, the magnetic field has changed, the I, J , x, y, B and F arrays will not
be consistent with the new magnetic field. The input flag Lcontrol determines how this information is to be used.

* The “non-directional diffusion” term, ∇ · ∇p, is given in cylindrical coordinates as

∇ · ∇p =
1

R

[
∂

∂R

(

R
∂p

∂R

)

+
∂

∂φ

(
1

R

∂p

∂R

)

+
∂

∂Z

(

R
∂p

∂Z

)]

. (40)

* This is simplified to

∇ · ∇p =
∂2p

∂R2
+

∂2p

∂Z2
, (41)

i.e., metric information is ignored.

* A fourth-order discretization of Eq. (41) is employed.

* After constructing the parallel and perpendicular derivatives, the pressure is advanced explicitly via

pn+1

i,j,k = pn
i,j,k + ∆t

(

κ̄‖∇2
‖p|ni,j,k + κ⊥∇ · ∇p|ni,j,k + Si,j,k

)

(42)

for n = 1, N time-steps.

* It is possible, upon request, to implement an implicit time advance.

* The boundary condition is that p = 0 on the computational boundary defined by Rmin, Rmax, and Zmin, Zmax,
and this boundary condition is enforced internally.

* The iterations will terminate if p becomes either too small or too large, which presumably indicate that the CFL
condition on the explicit integration timestep has been violated. It is assumed that p will be order unity.

2. The user must include

use oculus, only : pressurerelax, ad00aa

type(pressurerelax) :: pressure

in their source that calls ad00aa, where pressurerelax is a derived type (i.e. structure) that contains
both the required input and output information. The variable name, pressure, is arbitrary.

3. Required inputs

pressure%Nfp : integer ;

i. the toroidal periodicity of the magnetic field, e.g. Nfp=1;

pressure%NR : integer ;

pressure%Np : integer ;

pressure%NZ : integer ;

i. grid resolution in R; constraint NR ≥ 4;

ii. grid resolution in φ; constraint Np ≥ 1;

iii. grid resolution in Z; constraint NZ ≥ 4;

pressure%Rmin : real ;

pressure%Rmax : real ;

pressure%Zmin : real ;

pressure%Zmax : real ;

i. calculation domain in R; constraint Rmax>Rmin; Rmin> ǫ;

ii. calculation domain in Z; constraint Zmax>Zmin;

pressure%Lcontrol : integer ;

26

i. if Lcontrol = 1, : only construct the locally-field-aligned coordinates by fieldline tracing;
the information describing the locally-field-aligned coordinates are returned in arrays x, y, I, J, B and F;
if these arrays are allocated on input, they are first de-allocated;
note that the pressure and source are not referenced, and so they need not be allocated;

ii. if Lcontrol = 2, : relax pressure by integrating Eq. (42), assuming that the locally-field-aligned coordinate
information is provided;
the x, y, I, J, B and F arrays returned by a previous call to ad00aa must be provided;
note that these arrays depend on the magnetic field and the computational grid, so this option should only be
used if these have not changed since the last call to ad00aa;
the pressure and the source must be allocated on input;

iii. if Lcontrol = 3, : first construct the locally-field-aligned coordinates as for Lcontrol=1, then relax the
pressure as for Lcontrol=2;
only the pressure and source must be allocated on input;

pressure%Lode : integer ;

i. Lode = 0 : a single 4-th order, Runge-Kutta o.d.e. integration step will be perfomed to construct the field-
aligned coordinates between adjacent toroidal planes;
this will invariably be faster than using option Lode=1 (i.e. require fewer evaluations of the magnetic field)
but this option will only be reliable if ∆φ is sufficiently small, i.e. Np is sufficiently large;

ii. Lode = 1 : the NAG routine D02BFJ will be used to more-accurately integrate along the magnetic field to
construct the field-aligned coordinates;

pressure%odetol : real ;

i. o.d.e. integration tolerance provided to D02BJF for integrating along the magnetic field;

ii. only used if Lode = 1;

iii. the accuracy of the calculation is limited by NR and NZ , so odetol need not be too small; suggested odetol=
10−5.

pressure%p(0:NR,0:NZ,-1:Np) : real ;

i. initial state for the pressure, where p(i,j,k)≡ p(Rmin + i∆R, k∆φ,Zmin + j∆Z);

ii. this must be allocated before calling ad00aa if Lcontrol=2,3;

iii. a suitable initization is

p = (1 − x2)(1 − y2), (43)

where x ≡ 2(R−Rmid)/(Rmax −Rmin) where Rmid ≡ (Rmin + Rmax)/2; and similarly for y; or, more simply,
p = 1.

iv. on exit, this array will be updated;

pressure%s(0:NR,0:NZ, 0:Np-1) : real ;

i. source, where s(i,j,k)≡ s(Rmin + i∆R, k∆φ,Zmin + j∆Z);

ii. this must be allocated before calling ad00aa if Lcontrol=2,3;

pressure%Ntime : integer ;

i. number of time steps taken; only if Lcontrol=2,3 ; e.g. Ntime=10000;

pressure%dtime : real ;

i. dtime≡ ∆t appearing in Eq. (42); only if Lcontrol=2,3;

pressure%kpara : real ;

pressure%kperp : real ;

i. the parallel and perpendicular diffusion coefficients;

ifail : integer ;

i. if ifail = 1, quiet mode;

i. if ifail = 0, screen output is terse;

i. if ifail = -1,

27

i. if ifail = -2, some information regarding the relaxation will be shown at every 10000 timesteps;

i. if ifail = -3, some information regarding the relaxation will be shown at every 1000 timesteps;

i. if ifail = -4, some information regarding the relaxation will be shown at every 100 timesteps;

i. if ifail = -5, some information regarding the relaxation will be shown at every 10 timesteps;

i. if ifail = -6, some information regarding the relaxation will be shown at every 1 timesteps;

4. Execution

call ad00aa(pressure, ifail)

5. Outputs

pressure%x(0:1,1:NR,1:NZ,0:Np-1) : real ;

pressure%y(0:1,1:NR,1:NZ,0:Np-1) : real ;

pressure%I(0:1,1:NR,1:NZ,0:Np-1) : integer ;

pressure%J(0:1,1:NR,1:NZ,0:Np-1) : integer ;

pressure%B(-1:1,1:NR,1:NZ,0:Np-1) : real ;

pressure%F(1:NR,1:NZ,0:Np-1) : logical ;

i. information describing the locally-field-aligned coordinates;

ii. if on a subsequent call to ad00aa the user chooses to set Lcontrol= 2, then these arrays are required on input
to the subsequent call of ad00aa;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the pressure has exploded, probably because the CFL condition on the timestep has been violated;

6. Comments:

* The steady state solution has O(p/S) ∼ O(κ̄‖/κ⊥), where S is the source; so that if p ∼ O(κ‖) then S ∼ O(κ⊥).

* This subroutine is not yet parallelized, but it is easy to do so.

28

I. bn00aa : compute (B · n)
m,n

on a given toroidal surface;

• Given a toroidal, ‘control’ surface,

x(θ, ζ) ≡ R(θ, ζ) cos ζ i + R(θ, ζ) sin ζ j + Z(θ, ζ)k, (44)

we may compute

Bn(θ, ζ) ≡ B · eθ × eζ . (45)

• With the magnetic field given in cylindrical coordinates, B ≡ BReR + Bφeφ + BZeZ ,

B · eθ × eζ =
[
BR(−ZθR) + Bφ(ZθRζ − RθZζ) + BZ(RθR)

]
R. (46)

• The routine also returns the toroidal and poloidal currents, defined as surface integrals through appropriate surfaces,

I ≡
∫

S

j · ds =

∫

∂S

B · dl =

∫ 2π

0

Bθdθ, (47)

G ≡
∫

S

j · ds =

∫

∂S

B · dl =

∫ 2π

0

Bζdζ. (48)

These integrals are calculated using NAG:D01AHF.

7. The user must include

use oculus, only : bnormal, bn00aa

type(bnormal) :: bn

in their source that calls bn00aa, where bn is a derived type (i.e. structure) that contains both the required input
and output information. The variable name, bn, is arbitrary.

3. Required inputs

bn%cmn : integer ;

i. total number of Fourier harmonics that describe the input control surface;

bn%cim(1:cmn) : integer array ;

bn%cin(1:cmn) : integer array ;

i. Fourier mode identification;

bn%Rcc(1:cmn) : real array;

bn%Rcs(1:cmn) : real array;

bn%Zcc(1:cmn) : real array;

bn%Zcs(1:cmn) : real array;

i. Fourier harmonics of control surface;

bn%Mpol : integer;

bn%Ntor : integer;

bn%Nfp : integer;

i. Poloidal and toroidal Fourier resolution, and field-periodicity;

bn%tol : real;

i. Relative accuracy required; tol ≡ EPSR provided to NAG:D01AHF.

ifail : integer ;

i. if ifail = 1, quiet mode;

i. if ifail = 0, screen output is terse;

http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/D01/d01ahf_fl19.pdf
http://www.nag.co.uk/numeric/FL/manual19/html/mark18.html
http://www.nag.co.uk/numeric/FL/manual19/pdf/D01/d01ahf_fl19.pdf

29

i. if ifail = -1,

4. Execution

call bn00aa(bn, ifail)

5. Outputs

bn%mn : integer ;

bn%im(1:mn) : integer array;

bn%in(1:mn) : integer array;

bn%gBc(1:mn) : real array;

bn%gBs(1:mn) : real array;

i. Fourier harmonics of normal field to control surface;

bn%Itor : real;

bn%Gpol : real;

i. enclosed currents;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the integration of the toroidal current failed;

ifail=3 : the integration of the linking current failed;

30

VII. TOROIDAL-CYLINDRICAL COORDINATE-VECTOR TRANSFORMATION

1. Specializing to coordinate transformations of the form

R = R(ρ, θ, ζ),
φ = ζ,
Z = Z(ρ, θ, ζ),

(49)

where position is given x ≡ R cos ζ i + R sin ζ j + Z k, the induced vector transformation is





BR

Bφ

BZ



 =





Rρ, Rθ, Rζ

0, 0, 1
Zρ, Zθ, Zζ









Bρ

Bθ

Bζ



 . (50)

2. This matrix is invertible if ∆ ≡ RθZρ − RρZθ 6= 0, and the coordinate Jacobian is
√

g ≡ R(RθZρ − RρZθ) = R∆.

3. The coordinate transformation is written:

R =
∑

m,n

[Rm,n(0) + λm,n(ρ) Xm,n(ρ)] cos(mθ − nζ),

Z =
∑

m,n

[Zm,n(0) + λm,n(ρ) Ym,n(ρ)] sin(mθ − nζ);
(51)

where the Xm,n(ρ) and Ym,n(ρ) are cubic-splines (see Oculus:nr00aa and Oculus:nr00ab for details on the cubic-
spline interpolation).

4. The regularization factors are given by

λm,n(ρ) =

{
1 , if m = 0,
ρ̄m , if m > 0,

(52)

where e.g. m ≡ min(m, 2); and ρ̄ ≡ ρ/V , where V is a normalization factor, e.g. V ≡ total volume. The following
constraints must be enforced:

i. for m 6= 0: Rm,n(0) = 0 and Zm,n(0) = 0, and Xm,n(0) and Ym,n(0) are arbitrary;

ii. for m = 0: Xm,n(0) = 0 and Ym,n(0) = 0;

The summation over m and n includes only the {(m,n) : m = 0;n = 0, N} and {(m,n) : m = 1,M ;n = −N,N}
harmonics, which may be called the “VMEC convention”.

5. Eq. (51) is for “stellarator-symmetric” equilibria [Dewar & Hudson, Physica D 112 (1998) 275]. For arbitrary
geometry, additional sine and cosine harmonics are added.

6. Inverting the vector transformation yields





√
gBρ

√
gBθ

√
gBζ



 =





−Zθ, RζZθ − RθZζ , +Rθ

+Zρ, RρZζ − RζZρ, −Rρ

0, RθZρ − RρZθ, 0









RBR

RBφ

RBZ



 . (53)

7. The coordinates are “right-handed” if
√

g > 0, and “left-handed” if
√

g < 0. This can have important implications,
particularly for qf00aa below. If the coordinate transformation is R = R0,0 + ρ cos θ and Z = +ρ sin θ, then the
coordinates are left-handed; and if the coordinate transformation is R = R0,0 + ρ cos θ and Z = −ρ sin θ, then the
coordinates are right-handed. Usually, the sign of Jacobian is opposite to the sign of Z1,0.

http://dx.doi.org/10.1016/S0167-2789(97)00216-9

31

A. bc00aa : interpolation of toroidal surfaces; construction;

1. Given a discrete set of (closed) toroidal surfaces, which can be described by a set of Fourier harmonics for R and
Z in suitable angles, a continuous coordinate framework that is consistent with that described in Sec. VII can be
constructed by a suitable interpolation.

• Most of the description in Sec. VII applies. Some loose ends are:

– for m 6= 0, if Lrad= 1, then Xm,n(0) = Xm,n(ρ1), and similarly for Ym,n etc.;

– for m 6= 0, if Lrad> 1, then Xm,n(0) = (Xm,n(ρ1)ρ2 − Xm,n(ρ2)ρ1)/(ρ2 − ρ1), and similarly for Ym,n etc.;

– for the cubic-spline interpolations the end-point derivatives are required, and these are approximated using
one-sided, first-order differences, i.e. X ′

m,n(0) = (Xm,n(ρ1) − Xm,n(0))/(ρ1 − ρ0), etc.

• The radial coordinate is the volume, which is calculated for each toroidal surface by the integral

V =

∫

V

dv =
1

3

∫

V

∇ · x dv =
1

3

∫

S

x · ds =
1

3

∫ 2π

0

dθ

∫ 2π/N

0

dζ x · xθ × xζ |s (54)

where we have used ∇ · x = 3, and have assumed that the domain is periodic in the angles.

• Using x · eθ × eζ = R(ZRθ − RZθ),

V =
1

3

∫ 2π

0

dθ

∫ 2π/N

0

dζ R (ZRθ − RZθ)

=
1

3

∑

i

∑

j

∑

k

Re,i (Ze,jRo,k − Re,jZo,k) (+mk)

∫∫

dθdζ cos αi cos αj cos αk

+
1

3

∑

i

∑

j

∑

k

Re,i (Zo,jRe,k − Ro,jZe,k) (−mk)

∫∫

dθdζ cos αi sinαj sin αk

+
1

3

∑

i

∑

j

∑

k

Ro,i (Ze,jRe,k − Re,jZe,k) (−mk)

∫∫

dθdζ sin αi cos αj sin αk

+
1

3

∑

i

∑

j

∑

k

Ro,i (Zo,jRo,k − Ro,jZo,k) (+mk)

∫∫

dθdζ sinαi sinαj cos αk (55)

where αi ≡ miθ − niζ.

• Triple angle expansions are used to simplify the trigonometric terms as follows:

4 cos αi cos αj cos αk =+cos(αi + αj + αk)+cos(αi + αj − αk)+cos(αi − αj + αk)+cos(αi − αj − αk)
4 cos αi sin αj sin αk =−cos(αi + αj + αk)+cos(αi + αj − αk)+cos(αi − αj + αk)−cos(αi − αj − αk)
4 sinαi cos αj sin αk =−cos(αi + αj + αk)+cos(αi + αj − αk)−cos(αi − αj + αk)+cos(αi − αj − αk)
4 sinαi sin αj cos αk =−cos(αi + αj + αk)−cos(αi + αj − αk)+cos(αi − αj + αk)+cos(αi − αj − αk)

(56)

• The cubic-spline interpolations are performed using Oculus:nr00aa and Oculus:nr00ab, which will be described
elsewhere.

2. The user must include

use oculus, only : coordinates, bc00aa

type(coordinates) :: rzmn

in their source that calls bc00aa, where coordinates is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, rzmn, is arbitrary.

3. Required inputs

rzmn%mn : integer ;

i. Number of Fourier harmonics used to describe the toroidal surfaces;

rzmn%im(1:mn) : integer ;

i. Poloidal mode numbers: cannot be negative;

rzmn%in(1:mn) : integer ;

32

i. Toroidal mode numbers: for im(j)=0 must have in(j).ge.0 ;

rzmn%Lrad : integer ;

i. Number of surfaces to be interpolated; must have Lrad.ge.1 ;

rzmn%Rbc(0:Lrad,1:mn) : integer ;

rzmn%Rbs(0:Lrad,1:mn) : integer ;

rzmn%Zbc(0:Lrad,1:mn) : integer ;

rzmn%Zbs(0:Lrad,1:mn) : integer ;

i. Fourier harmonics of the toroidal surfaces; these arrays must be allocated and assigned before calling bc00aa.

ii. The surfaces must be provided in increasing volume, and they must be “nested”.

iii. The coordinate transformation is given by Eq. (50), with the j-th coordinate surface being

Rj(θ, ζ) ≡
mn∑

i=1

Rbc[j, i] cos(im[i]θ − in[i]ζ), (57)

Zj(θ, ζ) ≡
mn∑

i=1

Zbs[j, i] sin(im[i]θ − in[i]ζ), (58)

and similarly for the non-stellarator-symmetric terms.

iv. Note that the 0-th surface is the degenerate surface ≡ the coordinate axis, for which Rbc[0, i]= 0 and
Zbs[0, i]= 0 for im[i] 6= 0.

rzmn%mm : integer ;

i. Maximum regularization factor; e.g. mm=2;

ifail : integer ;

i. if ifail = 1, quiet mode;

i. if ifail = 0, screen output is terse;

i. if ifail = -1,

4. Execution

call bc00aa(rzmn, ifail)

5. Outputs

i. on output:

rzmn%ss(0:Lrad) : real ;

i. Volume of each surface; will be used as radial coordinate; this is under construction: perhaps a factor of
2π is missing.

rzmn%Xbc(0:Lrad,-1:2,1:mn) : real ;

rzmn%Xbs(0:Lrad,-1:2,1:mn) : real ;

rzmn%Ybc(0:Lrad,-1:2,1:mn) : real ;

rzmn%Ybs(0:Lrad,-1:2,1:mn) : real ;

i. interpolating cubic-splines consistent with Eq. (51);

ii. if these are allocated on input they will first be de-allocated, and then re-allocated.

iii. note that the spline extrapolation past the outermost surface is particularly unreliable if (i) there are more
than Lrad= 1 surface to be interpolated; or (ii) the extrapolation is approaching the separatrix, and recall
that a separatrix bounds all confined plasmas.

ifail : integer ;

ifail=0 : normal execution;

ifail=1 : input error;

ifail=2 : the m = 0 harmonics are not zero at the origin;

ifail=3 : volume is not an increasing function of the surface label;

6. Comments:

i. The subroutine bc00ab will, given the interpolation coefficients, calculate the coordinate transformation
and derivatives as required.

33

B. bc00ab : interpolation of toroidal surfaces; evaluation;

1. This routine evaluates the coordinate transformation defined by bc00aa and provides the metric elements, Jacobian
etc. It can be called after bc00aa.

2. The user must include

use oculus, only : coordinates, bc00ab

type(coordinates) :: rzmn

in their source that calls bc00ab, where coordinates is a derived type (i.e. structure) that contains both
the required input and output information. The variable name, rzmn, is arbitrary.

34

VIII. “TOROIDAL” SUBROUTINES

In this section are described subroutines that depend on the toroidal coordinates described in Sec. VII.

35

A. aa00aa : construct vector potential in toroidal coordinates;

1. The vector potential, B = ∇× A, may be constructed in toroidal coordinates, (ρ, θ, ζ), by radial integration.

2. The toroidal coordinates must be provided in a suitable format, and it is suggested that bc00aa be called prior to
calling aa00aa. The magnetic field, B = BReR + Bφeφ + BZeZ , is assumed to be given in cylindrical coordinates;
and the coordinate transformation, x(ρ, θ, ζ), as given in Eq. (49) will be assumed.

3. A general representation for the vector potential is A = Āρ∇ρ + Āθ∇θ + Āz∇ζ. A gauge function, g(ρ, θ, ζ), may
be chosen to simplify this: choosing ∂ρg = −Āρ, the Āρ component is cancelled leaving A = Aθ∇θ + Aζ∇ζ. The
equation B = ∇× A becomes

∂θAζ − ∂ζAθ =
√

gBρ,
− ∂ρAζ =

√
gBθ,

∂ρAθ =
√

gBζ .
(59)

4. The Fourier harmonics of the components of the vector potential can be determined by radial integration:

Aθ,m,n(ρ) = Aθ,m,n(0) +

∫ ρ

0

(
√

gBζ)m,n(ρ̄) dρ̄, (60)

Aζ,m,n(ρ) = Aζ,m,n(0) −
∫ ρ

0

(
√

gBθ)m,n(ρ̄) dρ̄. (61)

5. Solving these two equations automatically satifies the second and third equations in Eq. (59). The first equation in
Eq. (59) is satisfied if and only if (i) ∇ ·B = 0, and (ii) the ‘integration constants’ Aθ(0, θ, ζ) and Aζ(0, θ, ζ) satisfy
∂θAζ(0, θ, ζ) − ∂ζAθ(0, θ, ζ) = (

√
gBρ)(0, θ, ζ). Note that (

√
gBρ)(0, θ, ζ) = 0, and this allows the remaining gauge

freedom, namely g(0, θ, ζ), to be used to set Aθ(0, θ, ζ) = 0 and Aζ(0, θ, ζ) = 0.

6. The ‘background’ toroidal coordinates should usually be provided by bc00aa, and the domain of integration is
ρ ∈ [0, V], where V ≡ max(ρ).

7. The coordinate interpolation is evaluated using nr00ab, the spline construction to the Fourier harmonics of the
vector potential are constructed using nr00aa, and the required FFTs are evaluated using ft02aa.

8. After calling aa00aa, the routine aa00ab may be called to evaluate the vector potential at an arbitrary point within
the computational domain.

9. The user must include

use oculus, only : coordinates, vectorpotential, aa00aa

type(coordinates) :: rzmn
type(vectorpotential) :: Atzmn

in their source that calls aa00aa, where coordinates and vectorpotential are derived types (i.e. struc-
tures) that contains both the required input and output information. The variable names, rzmn and Atzmn, are
arbitrary.

10. Required inputs

rzmn : structure ;

i. the background toroidal coordinates, (ρ, θ, ζ), that will be used;

ii. it is assumed that before calling aa00aa, that the routine bc00aa has been called, and rzmn should be un-
changed;

Atzmn%Nfp : integer ;

i. the field periodicity, which must be the same as the field periodicity of the coordinates;

Atzmn%Lrad : integer ;

i. the required radial resolution;

Atzmn%Mpol : integer ;

Atzmn%Ntor : integer ;

36

i. the required Fourier resolution;

4. Execution

call aa00aa(rzmn, Atzmn, ifail)

11. Outputs

Atzmn%gBtc(0:Lrad,-1:2,1:amn) : real ;

Atzmn%gBts(0:Lrad,-1:2,1:amn) : real ;

Atzmn%gBzc(0:Lrad,-1:2,1:amn) : real ;

Atzmn%gBzs(0:Lrad,-1:2,1:amn) : real ;

i. the Fourier harmonics of the vector potential;

Atzmn%gBstz(1:Ntz,1:3,0:Lrad) : real ;

i. the vector potential on a regular grid in real space ;

37

B. aa00ba : evaluate vector potential (in toroidal coordinates);

1. Required inputs

Atzmn : structure ;

i. the vector potential returned by aa00aa;

stz(1:3) : real ;

i. the required position;

38

C. ir00aa : construct irrational flux-surface (incomplete);

1. Required inputs

Atzmn : structure ;

i. the vector potential returned by aa00aa;

39

D. qf00aa : construct quadratic-flux minimizing surface using pseudo fieldline following algorithm;

1. Quadratic-flux minimizing (QFM) surfaces are constructed using the pseudo-fieldline integration algo-
rithm. For a full description of QFM-surfaces please refer to the recent article by Hudson & Suzuki,
Phys. Plasmas, 21:102505, 2014 and references therein. Only a brief outline will be given here.

2. The “pseudo-field” is defined in toroidal coordinates (ρ, θ, ζ) as

Bν ≡ B − νBζeρ, (62)

where ν is constant along a pseudo fieldline but is otherwise a-priori unknown.

3. A (p, q)-QFM surface is a family of (p, q)-periodic fieldlines of Bν , along each of which the action-gradient is constant,
i.e. ν = ν(α) where α labels pseudo fieldlines.

4. The task of finding these periodic pseudo fieldlines is equivalent to finding fixed points of the q-th return pseudo-
map, P q, which is constructed by integrating along the pseudo-field from an initial point, (θ0, ρ0), on the Poincaré
section ζ = 0, around q toroidal periods to arrive at (θq, ρq):

(
θq

ρq

)

= P q

(
ν
ρ0

)

, (63)

where the dependence on θ0 is suppressed.

5. Given that ν is constant along the pseudo-field but that the particular numerical value of ν is not yet known, it is
required to find the particular pair (ν, ρ0) that gives a periodic, integral curve of Bν at the prescribed angle, α ≡ θ0.

6. The q-th return, pseudo tangent-map, ∇P q, is defined by
(

δθq

δρq

)

= ∇P q ·
(

δν
δρ0

)

, (64)

and can also be determined by pseudo fieldline integration over ζ ∈ [0, 2πq] by

d

dζ
∇P q =

(

∂θ θ̇ ∂ρθ̇
∂θρ̇ ∂ρρ̇

)

· ∇P q +

(
0 0

1/
√

gBζ 0

)

,

with the initial condition

∇P q =

(
0 0
0 1

)

. (65)

7. The pseudo tangent map allows an efficient Newton iterative algorithm for finding fixed points: a correction, (δν, δρ),
to an initial guess for (ν, ρ) is determined by requiring the pseudo fieldline be periodic,

(
θq

ρq

)

+ ∇P q ·
(

δν
δρ0

)

=

(
θ0 + 2πp
ρ0 + δρ

)

. (66)

8. For the integrable case, for which there is a true periodic orbit for every value of the poloidal angle, the iterative
solution will yield ν(α) = 0 for all α, and the pseudo field reduces to the true field; and similarly for the non-
integrable case: where true periodic fieldlines exist, e.g. at αX and α0, the solution yields ν(αX) = 0 and ν(αO) = 0.

9. The pseudo fieldline with θ0 = α serves as an initial guess for the pseudo fieldline with θ0 = α + dα, and we may
trace out the entire pseudo surface by varying θ0. Note that given that the (p, q) pseudo fieldlines have length equal
to 2πq, it is not required to construct the pseudo curves over the range α ∈ [0, 2π]: periodicity means that it is only
required to construct the curves over the range α ∈ [0, 2π/q].

10. At all angle locations where a periodic true fieldline does not exist, a periodic pseudo fieldline can still be constructed
by suitably choosing ν. Intuitively, we may think of ν/

√
g as the amount of radial field that must be subtracted

from the true field to ‘cancel’ the resonant effect of the perturbation, and by so doing create a rational ‘pseudo’
surface as a family of rational pseudo fieldlines. The function ν(α) is sinusoidal.

11. The user must include

use oculus, only : coordinates, qfminsurface, qf00aa

type(coordinates) :: rzmn
type(qfminsurface) :: qfms

in their source that calls qf00aa, where coordinates and qfminsurface are derived types (i.e. structures)
that contains both the required input and output information. The variable names, rzmn and qfms, are arbitrary.

http://dx.doi.org/10.1063/1.4897390

40

12. Required inputs

rzmn : structure ;

i. the background toroidal coordinates, (ρ, θ, ζ), that will be used;

ii. it is assumed that before calling qf00aa, that the routine bc00aa has been called, and rzmn should be un-
changed;

qfms%Nfp : integer ;

i. the field periodicity;

qfms%pp : integer ;

qfms%qq : integer ;

i. the rotational transform, ι- ≡ pp/qq;

ii. the “poloidal” periodicity, pp, must be a multiple of the field periodicity, Nfp;

iii. the integers pp and qq must be positive, and qq cannot be zero;

iv. note that the sign of the rotational transform depends on the background coordinates; and if the background
coordinates are such that the rotational transform is negative, then prior to calling bc00aa and qf00aa the
“handedness” of the background coordinates must be changed;

qfms%Np : integer ;

i. the required poloidal resolution, e.g. Np=32;

qfms%Ntor : integer ;

qfms%Mpol : integer ;

i. the required Fourier resolution, e.g. Ntor=12, Mpol=4;

qfms%odetol : integer ;

i. the o.d.e. integration tolerance, e.g. odetol= 10−8,

qfms%pqtol : integer ;

i. the required tolerance in locating periodic pseudo-fieldlines, e.g. odetol= 10−6,

qfms%rr : real ;

qfms%nu : real ;

i. initial guess for ρ and ν at θ0 = 0;

ii. only used if Lrestart= 0; (usually a suitable initial guess for ν is ν = 0).

qfms%Lrestart : integer ;

i. if Lrestart= 1, an initial guess for both ρi and νi at each θi for i = 0, Np is required on input;

qfms%t(0:qNd,0:qNp) : real ;

qfms%r(0:qNd,0:qNp) : real ;

qfms%n(0:qNd,0:qNp) : real ;

i. only required on input if Lrestart.eq.1;

ii. usually these will be provided by an earlier call to qf00aa;

ifail : integer ;

i. if ifail = 1, quiet mode;

i. if ifail = 0, screen output is terse;

i. if ifail = -1,

4. Execution

call qf00aa(rzmn, qfms, ifail)

41

5. Outputs

qfms%qNd : integer

qNd = qq * max(Ntor,1);

qfms%qNp : integer

qNp = qq * Np ;

qfms%t(0:qNd,0:qNp) : real ;

qfms%r(0:qNd,0:qNp) : real ;

qfms%n(0:qNd,0:qNp) : real ;

qfms%mn : integer

i. mn = Ntor + 1 + Mpol * (2 * Ntor + 1)

qfms%im(1:mn) : integer

qfms%in(1:mn) : integer

i. mode identification;

qfms%Rbc(1:mn) :

qfms%Rbs(1:mn) :

qfms%Zbc(1:mn) :

qfms%Zbs(1:mn) :

i. Fourier harmonics of QFM-surface in straight pseudo fieldline angle;

qfms%ok : integer

i. error flag;

i. on output:

ifail=0 : normal execution;

ifail=1 : input error;

6. Comments:

i. Presently, this routine uses the cylindrical field provided by bfield, and the coordinate transformation pro-
vided by bc00aa. Note that the coordinate transformation involves the (slow) Fourier summation of potentially
many harmonics in the coordinate transform, and consequently qf00aa can be slow.

ii. When aa00aa is complete, I will include an option to use the magnetic vector potential in toroidal coordinates,
as this will eliminate the need for the coordinate transformation, and an exactly divergence-free numerical
representation of the magnetic field will be enabled!

42

IX. MISCELLANEOUS/AUXILLIARY SUBROUTINES

oculus.h : last modified on 2016-11-15

43

	Contents
	user supplied magnetic field
	user supplied coil description
	macro expansion and compilation
	error flag
	Biot-Savart subroutines
	 bs00aa : compute the magnetic field produced by a filamentary current loop of arbitrary shape;

	``cylindrical'' subroutines
	 ga00aa : find the magnetic axis;
	 ho00aa : find the homoclinic points (of the stable/unstable manifold);
	 ec00aa : find action extremizing curves using global integration;
	 tr00aa : measure rotational-transform;
	 pp00aa : fieldline tracing for Poincar plot, calculate Lyapunov exponent;
	 gc00aa : follow guiding center;
	 rz00aa : construct cylindrical Fourier harmonics of flux surface using fieldline tracing;
	 ad00aa : anisotropic diffusion using locally-field-aligned coordinates;
	 bn00aa : compute (Bn)m,n on a given toroidal surface;

	toroidal-cylindrical coordinate-vector transformation
	 bc00aa : interpolation of toroidal surfaces; construction;
	 bc00ab : interpolation of toroidal surfaces; evaluation;

	``toroidal'' subroutines
	 aa00aa : construct vector potential in toroidal coordinates;
	 aa00ba : evaluate vector potential (in toroidal coordinates);
	 ir00aa : construct irrational flux-surface (incomplete);
	 qf00aa : construct quadratic-flux minimizing surface using pseudo fieldline following algorithm;

	miscellaneous/auxilliary subroutines

