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Abstract. A reference equilibrium for the US National Compact Stellarator Experiment is predicted to be 
sufficiently close to quasi-symmetry to allow the plasma to flow in the toroidal direction with little viscous 
damping, yet to have sufficiently large deviations from quasi-symmetry that nonambipolarity significantly affects 
the physics of the shielding of resonant magnetic perturbations by plasma flow. The unperturbed velocity profile is 
modified by the presence of an ambipolar potential, which broadens the profile and improves the shielding near the 
plasma edge. In the presence of a resonant magnetic field perturbation, nonambipolar transport produces a radial 
current, and the resulting jxB force resists departures from the ambipolar velocity and enhances the shielding. 
 
1. Introduction 
 
Resonant magnetic perturbations pose a threat to flux surface integrity in toroidal magnetic 
confinement configurations. The width of the island produced by a resonant perturbation scales 
as the square root of the perturbation amplitude, so that even a relatively small resonant 
magnetic perturbation at a rational surface can produce a substantial magnetic island. Resonant 
perturbations can be shielded out at rational surfaces by plasma flow.[1,2]  This effect is 
believed to play a major role in reducing the vulnerability of present day tokamaks to resonant 
field errors, and an understanding of the effect will be important for setting field-error 
tolerances for ITER. The flow shielding effect has been studied systematically in tokamak 
experiments where externally imposed magnetic field perturbations have been varied and their 
penetration threshold determined.[3,4,5]   
 
This paper considers the flow-shielding effect in a quasi-axisymmetric stellarator. Quasi-
axisymmetric stellarator configurations have drift trajectories that look like those in an 
axisymmetric configuration, and they allow undamped toroidal flow.[6]   In the limit of perfect 
quasi-axisymmetry, the flow shielding effect is predicted to look like that in a tokamak having 
the same parameters. However, if we allow for the presence of non-quasi-symmetric ripple in 
the field, the radial transport is no longer intrinsically ambipolar, as it is in axisymmetric 
configurations. This brings in an additional radial current which modifies the physics of the 
flow shielding. The radial current produces a j x B torque that resists externally induced 
changes in the flow velocity and enhances the effectiveness of the shielding. It also modifies 
the unperturbed rotation velocity of the plasma in the absence of a resonant perturbation. 
 
The work described in this paper focuses on a particularly interesting regime of intermediate 
ripple amplitude, where the deviations from quasi-symmetry are sufficiently large to 
substantially modify the flow-shielding effect, but where the configuration is nonetheless 
sufficiently close to quasi-symmetry that the flow damping in the toroidal direction can be 
considered to be negligibly small compared to that in the poloidal direction. A reference 
equilibrium for the US National Compact Stellarator Experiment (NCSX) is calculated to be in 
this intermediate regime[7], and the numerical calculations presented in this paper focus on that 
NCSX reference equilibrium. The unperturbed ambipolar velocity profile is calculated to be 
broader than the velocity profiles seen in tokamaks, suggesting that it will provide greater 
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shielding for low order rational surfaces near the plasma edge, with potential consequences for 
possible startup scenarios.  
 
The three-dimensional NCSX device will have great flexibility for controlling resonant 
magnetic field components and investigating their interaction with plasma flow. Comparison of 
theoretical predictions with experimental observations on NCSX, and with tokamak 
experiments having comparable plasma parameters, will contribute towards the goal of being 
able to reliably predict field error penetration thresholds. 
 
The NCSX, under construction at Princeton, is a quasi-axisymmetric stellarator designed to 
combine favorable features of advanced tokamaks with those of drift-optimized stellarators. 
The NCSX configuration has been designed to have good flux surfaces, incorporating several 
layers of defense against excessive magnetic island formation, but flow shielding could 
nonetheless have an impact on flexibility and on vulnerability to field errors. For the design of 
the NCSX, an optimization code built around the PIES three-dimensional equilibrium code was 
used in the coil-design process to reduce the magnitude of resonant components of the 
magnetic field while preserving desired engineering and physics properties. A series of 
calculations with the PIES code showed that this coil design process, which targeted the 
resonant components of the magnetic field in the NCSX reference equilibrium, also greatly 
reduced the island widths for a range of equilibria with varying profiles, betas, and coil 
currents.[8,9]  The NCSX design also incorporates two sets of trim coils to provide further 
control over resonant magnetic fields. NCSX has also been designed to have a monotonically 
increasing ι (=1/q) profile to give neoclassical suppression of magnetic islands, and this is 
expected to further protect against magnetic island formation. Nevertheless, to the extent that 
the plasma flow shields out residual resonant magnetic field components at rational surfaces, it 
will further improve the flexibility of the NCSX device to generate a range of configurations 
with good flux surfaces, and it will further reduce the vulnerability of the NCSX device to field 
errors produced by finite tolerances in the construction and placement of the magnetic field 
coils. 
 
The calculations described in this paper have been done for a reference β = 4% NCSX 
equilibrium whose properties are extensively discussed in a special volume of the journal 
Fusion Science and Technology devoted to the NCSX physics design.[10] 
 
2. Shielding of Rational Surfaces by Plasma Flow in a Quasi-Axisymmetric Stellarator 
 
In an ideal plasma, reconnection is prohibited and the flux surfaces cannot be broken. A surface 
current is induced at the rational surface that shields out resonant magnetic perturbations. In the 
absence of plasma flow, the presence of even a small resistivity causes the surface current to 
decay, and allows the resonant field to penetrate the rational surface. If flow is present at the 
rational surface, a localized current continues to be induced which partially shields out the 
resonant component of the field. If the flow is sufficiently strong, or the perturbation 
sufficiently weak, only a very small fraction of the resonant field penetrates the rational 
surface.  
 
The induced current at the rational surface interacts with the remnant of the resonant field there 
to produce a j x B torque. This electromagnetic torque opposes the motion of the plasma at the 
rational surface, and acts to slow the flow. When the resonant perturbation amplitude exceeds a 
threshold value, the torque is large enough to locally suppress the plasma flow, allowing the 
resonant perturbation to fully penetrate the rational surface. 
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Consider the case where a small perturbation of the magnetic field is turned on in a stellarator 
plasma that initially has good flux surfaces. Express the unperturbed magnetic field in magnetic 
coordinates: B0 = ∇Ψ0 x ∇θ + ι∇Ψ0 x ∇ϕ, where B0 is the unperturbed field, and Ψ0 is an 
unperturbed flux function satisfying B0·∇Ψ0 = 0. Write B = B0 + δB, Ψ = Ψ0 + δΨ. To first 
order we get (n - ι m) δΨnm = -(δB·∇Ψ0 / B0·∇ϕ)nm. The nonresonant Fourier components just 
introduce small ripples in the flux surfaces. If a resonant Fourier component is present (one 
satisfying n = ι m), the flux surface is broken and a magnetic island is produced. 
 
The response of a rotating plasma at the rational surface to an externally imposed resonant 
perturbation has been calculated theoretically for a variety of regimes and under a variety of 
assumptions.[1,11,12] These calculations have been done for either slab or cylindrical 
geometry. Because the local induced current is determined by the layer physics, these 
calculations are relevant for shaped tokamaks and for stellarators. 
 
The electromagnetic torque exerted on the rational surface by the resonant perturbation is 
opposed by a viscous torque produced by the plasma flow external to the surface. The threshold 
for resonant field penetration is determined by the relative magnitude of the electromagnetic 
torque and the viscous torque. While the physics determining the magnitude of the 
electromagnetic torque is the same in tokamaks and stellarators, the physics determining the 
viscous torque is modified in a stellarator by the radial current produced by the nonambipolar 
transport. In the absence of a resonant perturbation, this radial current produces an ambipolar 
potential and a corresponding contribution to the plasma flow. When a resonant perturbation is 
imposed, the electromagnetic torque causes the flow velocity to deviate locally from its 
ambipolar value. The radial current arising from the resulting nonambipolar transport produces 
a j x B torque that opposes the electromagnetic torque and enhances the effectiveness of the 
shielding. 
 
3. Ambipolar Plasma Flow in NCSX. 
 
In this section we calculate the plasma flow velocity profile in the absence of an external 
resonant perturbation for our reference β = 4% NCSX equilibrium. 
 
Our transport model uses a set of one-dimensional transport equations to solve for the 
temperature and self-consistent radial electric field, Er, in cylindrical geometry (large aspect-
ratio, circular cross-section), with an assumed density profile. The model is described in Ref. 
[7]. In the absence of a radial electric field, the ions are lost more rapidly than the electrons, 
giving a net outward current. The radial electric field, Er, builds up until it is sufficiently large 
to equalize the radial flux of the ions and electrons, jr = 0. 
 
In steady-state, the ion momentum equation determines the component of the flow 
perpendicular to the magnetic field: 2v / (1/ )i

2/iB ne p B⊥ = × − ∇ ×E B B . There is in addition a 
component of the flow velocity aligned with the magnetic field, , and its magnitude is 
determined by the relative flow damping in the poloidal and toroidal directions. As in a 
tokamak, the damping in the poloidal direction is strong. The configuration is sufficiently close 
to quasi-axisymmetry that the flow damping in the toroidal direction is small. This implies that 
the flow velocity in the poloidal direction can be taken to be zero to a good approximation. 
(The relative viscosities have been estimated using the analytic estimates of Coronado and 

v
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Talmadge.[13].)  Imposing the constraint that the poloidal component of the velocity is zero, 
we get v ( / )vt pB B ⊥= . 
 
The calculation thus far has not taken into account momentum diffusion. We have taken the 
poloidal velocity to be zero because of the strong poloidal damping, and we only need to 
consider the toroidal component of the momentum diffusion equation. We consider the 
momentum diffusion equation in a cylinder, where it takes the form: 

 z zv 1 v( ) r
d d dr j
dt r dr dr

Bθρ µρ= + .  (1) 

Here ρ is the plasma density, µ is the (anomalous) momentum diffusivity ( µρ is the coefficient 
of perpendicular viscosity), and rj  is the current produced by nonambipolar radial transport. In 
tokamak experiments, the anomalous momentum diffusivity has been found to be 
approximately equal to the anomalous cross-field thermal diffusion coefficient, and we assume 
that that is also the case here. Stellarators often have experimentally determined thermal 
diffusivities that are approximately radially constant (unlike many tokamaks), and we will 
adopt the simple model of taking µ to be radially constant in the following. 
 
Equation (1) differs from the momentum diffusion equation in a tokamak by the presence of the 
last term, which is nonzero when the flow velocity on a flux surface is forced away from its 
ambipolar value.  
 
Eq. (1) must be supplemented by boundary conditions at the origin and at the edge. At the 
origin, regularity requires zv / 0d dr = . At the plasma edge, the boundary condition is 
determined by the interaction with neutrals and with the scrape-off layer, which produce a 
momentum flow through the plasma edge equal to , where a is the minor 
radius and R is the major radius. The momentum flow is equal to the total force exerted by the 
neutrals and scrape-off layer, which are taken to act on a small region at the plasma edge. (We 
will justify this approximation below.) 

2
z4 vaR d drπ µρ− /

 
Near the plasma edge, momentum is transferred to the neutrals primarily through charge 
exchange. Ionization reactions also must be taken into account, because they serve to impart 
some of the momentum picked up by the neutrals back to the ions. To estimate the rate of 
momentum transfer to the neutrals we use the Degas code to do a Monte Carlo calculation for a 
model axisymmetric geometry.[14]  We expect the recycling to be dominated by the inner 
midplane of the 60 deg. (bullet) cross section of NCSX, so we adopt this geometry. 
 
The momentum transfer to the neutrals is localized at the plasma edge, with the average 
momentum transfer rate in the zone .96 < r/a < 1 calculated to be about seven times as large as 
that in the zone .92 < r/a < .96. The rate of momentum transfer to the neutrals can be expected 
to scale roughly linearly with the plasma velocity. We write this momentum transfer rate as νn 
vz, where νn is a coefficient to be determined. For an edge velocity of 290 km/sec, the 
integrated momentum transfer rate is calculated to be about 1.2 Newtons, corresponding to νn = 
4 x 10-6 kg/sec. This gives the boundary condition a dvz(a) / d r = -κ vz(a), with κ ≈ 2. 
 
We next estimate the momentum transfer to the scrape-off layer. We consider the case where 
there is a toroidal rail limiter. Field lines outside the plasma edge intercept the limiter, with a  
connection length of L ≈ π R / ι, where ι ≈ .6 is the rotational transform at the plasma edge. The 
ion mean free path is comparable to the connection length. Particles outside the plasma edge 
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FIG. 1. Velocity profiles obtained by the numerical solution of the momentum diffusion equation,
(2). Figs. (1a) and (1b) correspond to two different levels of momentum dissipation at the plasma e
κ ≈ 2 and κ ≈ 18 respectively. These values of κ correspond to dissipation appropriate for neu
collisions only, and to dissipation produced by the scrape-off layer with ne(a) ≈ 1.5 x 1019 m-3. The t
curves in each figure correspond to different constraints at the rational surface. The top curve (soli
the unconstrained solution. The middle and bottom curves correspond, respectively, to vs = vs0/2 an
= 0. (See Section 4 for definitions of vs and vs0.) 

are lost to the limiter in a time τ ≈ L / vti, so that the momentum loss rate in the scrape-off l
is approximately ρ vz / τ. Combining this with momentum diffusion, and adopting a 
approximation (which is appropriate in the narrow scrape-off layer), we 

z z( / )[ ( v / )] v /d dr d drµρ ρ τ= . The velocity decays exponentially as a function of r in
scrape-off layer, vz(r) = vz(a) exp(-(r-a)/l). The density obeys a similar equation, and i
decays exponentially in the scrape-off layer. If the diffusion coefficients are equal, l ≈

µτ . Momentum is dissipated in the scrape-off layer at the 

z zv / .6 ( )v ( ) /
a

a aρ τ ρ µ
∞

≈∫ τ . The momentum transfer rate is again of the form νn vz, wit

scrape-off layer contribution to νn estimated to be roughly 0.6 ( ) /aρ µ τ . The momen
transfer to the scrape-off layer is sensitive to the value of ρ at the edge. For our assu
density profile ne(a) ≈ 1.5 x 1019 m-3, and we calculate κ ≈ 18. For smaller values of ne(a)
momentum transfer to the scrape-off layer is correspondingly smaller, with the total momen
transfer rate bounded below by the contribution of the neutrals. 
 
Having determined the boundary conditions, we return to the solution of Eq. (1). For
purpose, we must determine the dependence of jr on vz. The radial current vanishes when v
its ambipolar value, corresponding to the ambipolar value of the electrostatic potential.
adopt a simple linear approximation for jr, interpolating between the values for Er=0 and fo
ambipolar value of Er. The last term in eq. (1) can then be written in the 

z( )[v v0( )]rj B rθ rα≈ − − , where v0 is the ambipolar value of vz (i.e. the value that vz assu
when Er has its ambipolar value). Eq. (1) now assumes the linear form 

z z
z

v 1 v( ) ( )[v v0(d d dr r
dt r dr dr

ρ µρ α= − − )]r   (2) 

and can be solved numerically in a straightforward manner. 
 
The top (solid) curves in Fig. (1) show numerical solutions for the velocity profile for
different values of κ. Fig. (1a) corresponds to κ ≈ 2, the lower bound on momentum dissipa
due to collisions with neutrals. Fig. (1b) corresponds to κ ≈ 18, the estimate for momen
dissipation in the scrape-off layer with the assumed value of ne(a).   
r/a
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Because the ripple magnitude increases rapidly towards the plasma edge, the flow velocity 
profile is broad relative to that in a tokamak. As the q profile evolves during tokamak startup,  
low order rational surfaces entering from the plasma boundary are particularly vulnerable to 
resonant magnetic perturbations. The broader velocity profile in NCSX will provide stronger  
shielding for low order rational surfaces near the plasma edge, and this will potentially impact 
the options available for startup scenarios. 
 
4. Viscous Torque on Rational Surfaces 
 
When a resonant magnetic field perturbation is imposed on a rotating plasma, the resulting 
electromagnetic force slows the plasma rotation at the rational surface. The electromagnetic 
force is balanced by a viscous force exerted by the neighboring plasma on the rational surface, 
which opposes the slowing of the plasma at the rational surface. As the amplitude of the 
external perturbation is increased, the electromagnetic force increases, and the rotation velocity 
of the plasma at the rational surface decreases further. The magnitude of the viscous force on 
the rational surface is determined by the momentum diffusion equation. 
 
In addition to the viscous force on the rational surface, there is also a direct j x B torque exerted 
by the current that arises from the non-ambipolar transport. The total torque exerted directly by 
the radial current is obtained by integrating the torque density across the boundary layer at the 
rational surface. For the case considered here, the viscous torque is estimated to be much larger 
than the torque exerted directly by jr. 
 
We again consider the reference NCSX equilibrium whose unperturbed velocity profile we 
discussed in the previous section. The ι = 3/5 rational surface is of particular concern because 
of its low order and because of its proximity to external perturbations. (It is located at r/a ≈ 
0.8.)  The m=5, n=3 island proved to be the island that was the most difficult to suppress in the 
NCSX coil design process. We consider here the resonant mode penetration at the ι = 0.6 
rational surface in the presence of the ambipolar flow. Assuming that an externally generated 
m=5, n=3 perturbation slows the rotation of the the rational surface, we calculate the 
countervailing viscous force. We solve the momentum diffusion equation for this purpose. 
 
The solution of Eq. (2) is obtained under the assumption that the electromagnetic force has 
slowed the rotation to a fraction of its ambipolar value. Denote the velocity at the rational 
surface by vs, and the unperturbed velocity at the rational surface by vs0. We consider the case 
where vs = vs0/2, and the case where vs = 0. Figures (1a) and (1b) show, respectively, the 
corresponding solutions of Eq. (2) for κ ≈ 2 and κ ≈ 18. In each plot, the top curve corresponds 
to the solution in the absence of an electromagnetic force, the middle curve corresponds to the 
solution when the velocity at the ι = .6 rational surface is slowed to half its ambipolar value, 
and the bottom curve corresponds to the solution when the rotation at the rational surface is 
entirely suppressed. 
 
The viscous force exerted on the rational surface by the plasma flow is given by 

, where [  is the jump in the radial derivative of the fluid velocity 
across the associated boundary layer. For κ ≈ 2, we calculate a

[24 dv/rRπ ρµ +
−]dr ]

]
dv/dr +

−
[dv/dr +

− ≈ 274 km/sec and 540 
km/sec  respectively for vs = vs0/2 and vs = 0. For κ ≈ 18 we calculate a[  ≈ 238 km/sec 
and  478 km/sec respectively.  Relative to v0, the velocity on axis for the unconstrained 
velocity profile, we have a[ ≈ 3.4 v

]dv/dr +
−

]dv/dr +
− 0 and 6.8 v0 for κ ≈ 2, a[ ≈ 3.5 v]dv/dr +

− 0 and 7.0 v0 
for κ ≈ 18. 
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We compare these results with a simple tokamak model. Consider a rotating tokamak plasma 
driven by neutral beams with a uniform deposition profile, and take the viscosity µρ to be a 
constant. The unperturbed velocity profile is quadratic, v = v0 (1 – r2 / a2). Constraining vs = 
vs0/2 at rs/a = .8 gives a[  = -( v]dv/dr +

− 0/2) (1 - rs
2/a2) / (rs ln rs) ≈ v0. Constraining vs = 0  gives 

twice this value. 
 
In a tokamak, the scale length of the velocity gradient is comparable to the minor radius, so that 
the jump in dv / dr is of the order of v / a. In a stellarator, the velocity gradient is determined by 
the magnitude of the non-ambipolar j x B force, so that the gradient scale length can be shorter, 
imparting greater stiffness to the flow velocity, and enhancing the shielding effect. 
 
5. Resonant Mode Penetration Threshold 
 
In mode penetration experiments on tokamaks where the amplitude of the external perturbation 
is gradually ramped up, it is found that the rational surface first slows to some fraction of its 
initial rotation frequency, and then abruptly ceases to rotate when the perturbation amplitude 
exceeds a threshold value. The cessation of rotation is accompanied by a complete penetration 
of the resonant perturbation at the rational surface. This is consistent with the predictions of 
theoretical calculations. The magnitudes of the viscous and electromagnetic forces are 
functions of vs, and if vs > 0 it must satisfy Fvisc(vs) = Fem(vs). There is predicted to be a 
threshold in the perturbation amplitude above which Fem(vs) exceeds Fvisc(vs) for 0 ≤ vs ≤ vs0, so 
that vs = 0 when the perturbation amplitude exceeds this threshold. 
 
The magnitude of Fem scales as the square of the resonant perturbation amplitude, with the 
functional dependence of Fem(vs) (i.e. the shape of Fem(vs)) independent of the amplitude. Our 
numerical solution shows that Fvisc(vs) is well approximated by a linear function of vs, as it is in 
a tokamak, so that while its amplitude may be quite different, the functional dependence on vs 
has not changed. It follows that there is again a threshold value of the resonant perturbation 
amplitude above which Fem dominates Fvisc, and that at the threshold value vs is the same as in 
the tokamak. The resonant mode penetration threshold scales as Fvisc

1/2. 
 
To estimate the magnitude of the flow shielding effect for magnetic islands in NCSX, we 
compare with a resonant mode penetration experiment on DIII-D.[4]  The DIII-D reference 
case has been chosen to have similar parameters to those in our NCSX reference equilibrium. It 
has 〈β 〉 ≈ 3.7%, 〈ne〉 ≈ 5 x 1019 m-3, and an ellipticity κ ≈ 1.8. Our reference NCSX equilibrium 
has 〈β 〉 = 4%, 〈ne〉 = 6 x 1019 m-3, and an average axisymmetric component of ellipticity of 1.8. 
The magnetic field of both the DIII-D reference shot and the NCSX reference case is 1.2 T. The 
rotation frequency of the rational surface in the DIII-D reference shot is about 12 kHz. For the 
NCSX case, the rotation frequency ranges from about 9 kHz for κ ≈ 2 to about 7 kHz for κ ≈ 
18. DIII-D has R ≈ 1.67 m and R/〈a〉 ≈ 2.1, while NCSX has R ≈  1.42 m and R/〈a〉 ≈ 4.3. The 
experimentally observed penetration threshold in the DIII-D reference case is 

. 4
21 10x4/ −≈BBr

 
6. Discussion 
 
The physics determining the penetration of a resonant magnetic perturbation in a stellarator 
differs from that in a tokamak due to the presence of a radial current produced by nonambipolar 
transport. As the electromagnetic force produced by the perturbation slows the rotation at the 



8 IC/P6-46

rational surface, the radial current driven by the resulting nonambipolar transport exerts a j x B 
force that resists departures from the ambipolar velocity and enhances the shielding effect. The 
unperturbed velocity profile is also modified in a stellarator. We have focused here on a 
particularly interesting regime, corresponding to an NCSX reference equilibrium, in which the 
configuration is sufficiently close to quasi-symmetry that the viscous damping in the toroidal 
direction is small, but the deviations from quasi-symmetry are sufficiently large to produce a 
substantial ambipolar flow, and a substantial modification of the flow-shielding effect. Because 
the ripple magnitude increases rapidly towards the plasma edge, the flow velocity profile is 
broad relative to that in a tokamak. The stronger shielding for low order rational surfaces near 
the plasma edge will have potential implications for startup scenarios. 
 
A reference DIII-D shot with parameters similar to those of our reference NCSX equilibrium 
has been reported to have a penetration threshold of .[4]    Calculations with 
the PIES code found that the resonant m = 5, n = 3 field component associated with an NCSX 
coil design algorithm that did not explicitly target resonant field error reduction was 

. This is likely above the penetration threshold, even including the 
enhancement of the shielding due to nonambipolarity, and a further coil optimization using the 
PIES code to reduce the magnitude of the resonant field components was a prudent step in the 
coil design process. To the extent that the plasma flow shields out residual resonant magnetic 
field components at rational surfaces, it will further improve the flexibility of the NCSX device, 
and it will further reduce the vulnerability of the NCSX device to field errors. 

4
21 10x4/ −≈BBr

310x3.1/ −≈BBrnm
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