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For a given nonintegrable toroidal magnetic field, a nearby integrable magnetic field is constructed
from quadratic-flux minimizing surfaces. A new mathematical definition and derivation of
quadratic-flux minimizing surfaces, which directly exploits the analogy between toroidal magnetic
fields and & degree of freedom Hamiltonian systems, is given. The width and phase of magnetic
islands (calculated from the shear of the integrable field and the magnitude and phase of the
perturbation harmonigsre in excellent agreement with detailed Poingadots. © 1999 American
Institute of Physicq.S1070-664X99)01305-1

I. INTRODUCTION field may be considered to be a small perturbation to an
integrable field.

Many treatments of magnetic field configurations,  However, for complicated magnetic confinement sys-
plasma dynamics and general Hamiltonian systems, utilizeems the nearby integrable field is not known initially. Fur-
the assumption of a nearby, integrable system to which thehermore, to any given nearly integrable field, there is any
actual system is considered as a small perturbdtitm. number of integrable fields which are nearby: the term
Hamiltonian systems, for exampleften the analytic form  “nearby” is not uniquely defined. Any set of toroidal sur-
of the nearby integrable Hamiltonian is known. Standard perfaces may be used to construct an integrable field. The ques-
turbation theory constructs action-angle coordinates for thgon then arises: which set of surfaces is most useful for
integrable system and the Fourier harmonics of the perturbaonstructing the preferred nearby integrable field?
tion can be used to determine resonance widths. Previous treatments of this problem have utilized the

Since toroidal magnetic fields used for the containmentlux surfaces surviving perturbation of the given noninte-

of plasmas are analogous tc Himensional Hamiltonian grable magnetic field, which are called the KAM surfaces,
systems the same ideas are appropriate for understandingnd have assigned straight-field-line coordinates to these sur-
magnetic field structure. In fact, the assumption that the magfaces. One approach locates good flux surfaces by following
netic field is integrable, or at least that the magnetic field igfield lines® The field lines that lie on closed flux surfaces are
nearby an integrable field, is widespread in theoretical reassigned to be straight-field-lines of a nearby integrable mag-
search in many areas of tokamaks and stellarator physicgetic field. Important research in this field was presented by
This is partly because good flux surfaces improve plasm&oozer, who showed how to determine a convenient repre-
confinement, and thus the existence of flux surfaces is essefentation for integrable magnetic fields by field line trafing
tial for any magnetic configuration relevant for the contain-and gave a useful representation of a general magneticfield.
ment of fusion plasmas; and partly because the coordinat&nother techniquéutilizes a generating function and mini-
systems that integrable fields allow, namely flux coordinategnizes the variation of an integrable Hamiltonian over a trial
or straight field line coordinates, aid the researcher to setorus with respect to the parameters defining the Hamil-
past the geometrical complexity of plasma confinement detonian.

vices and concentrate on the physical issues. The importance Such methods are convenient for some applications, be-
of flux coordinates for example, is evidenced by the wide-cause they guarantee that the constructed integrable field co-
spread usage of Boozer coordinétes which the magnetic incides with the original field on the flux surfaces and thus
field and the equations governing the plasma take a partici@llow straight-field-line coordinates for the original magnetic
larly simple form. At the heart of plasma analysis based orfield to be constructed in regions of good flux surfaces. How-
flux coordinates is the assumption that an integrable maggVver, using KAM surfaces of the nonintegrable field to define

netic field exists, or more generally that the actual magneti@ nearby integrable field has the unfortunate consequence

that the integrable field becomes singular at the separatrices.
) . . . — _Also, when a field line is chosen, it is not known whether
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with field line tracing methods may arise near low orderThe transformation to cylindrical coordinateR, ¢,z) is
rational surfaces.

Recently, an approach has been developed which uses R= Rmaj+2 Xn.m(p)cogNO—me),
surfaces that pass directly through the resonances of any cho- n,m
sen island chain to construct an integrable magnetic field. (4)
The surfaces are defined as those surfaces which extremize a z= E Ynm(p)Sin(nd—me).
deviation from invariance, and are called quadratic-flux nm
minimizing surfaces. This article will revise and extend work The Jacobian of thep( 6, ¢) coordinates,7, ,,, is given by
presented in several earlier papéfsin a complete and Jpop=(9gR3,z—d,RyZ)R. The toroidal anglep is chosen
mathematically simple manner. In this paper, we present & coincide with the usual cylindrical angle for later conve-
revised construction of quadratic-flux minimizing surfacesnience.
which utilizes the magnetic field line action. Though this An integrable field is defined implicity by a set of
approach seems somewhat abstract, the subsequent analysigight-field-line coordinate's. The typical starting assump-
is simpler than the original presentation and sheds more inton required for the existence of straight-field-line coordi-
sight into the analogy between Hamiltonian systems anchates is the assumption that all field lines lie on nested tor-
magnetic field line flow. The quadratic-flux minimizing sur- oidal flux surfaces. As the existence of such surfaces is not
faces constructed are considered as replacement flux surfaagscessarily the case everywhere for a general magnetic field,
for nonintegrable fields and are used to define a nearby intehe first step is to construct a set of “replacement” surfaces
grable magnetic field for which straight field line coordinateswhich may be identified as flux surfaces of some integrable
may be constructed. In this article, the previous analysis hafield. The second step is to introduce a suitable straight-field-
been extended to calculate the magnitude of resonant pertuine angle coordinate to complement the surfaces and com-
bation harmonics. This information, along with the shear ofplete the coordinate system. We discuss these two steps sepa-
the constructed integrable system, is used to accurately calately.
culate island widths. Comparison of the calculated island First we construct a set of toroidal surfaces. There are
widths with detailed Poincarplots show very good agree- some properties that we wish our construction of surfaces to
ment. satisfy. The typical perturbation analysis approach assumes

In Sec. Il, we review a convenient representation of thean integrable field for which straight-field-line coordinates
magnetic field in arbitrary toroidal coordinates and discussre constructed, and then a small perturbation is added. Fol-
some desirable features of a suitable nearby integrable fieldwing this construction, we note that both tbeand O
and a Hamiltonian perspective of flux surfaces. In Sec. lll,points of any particular island chain will lie on the same flux
we derive quadratic-flux minimizing surfaces from an anal-surface of the integrable field—that particular flux surface
ogy with Hamiltonian concepts and outline their construc-with the rotational transform appropriate for the periodicity
tion. A radial coordinate is introduced with level surfacesof the X andO orbits. Thus we require that the surface to be
that coincide with the quadratic-flux minimizing surfaces. Inused as a flux surface of the integrable field pass through
Sec. IV, an angle coordinate is used to complement the radidoth theX and O points of chosen island chains. The rota-
coordinate and implicitly define a nearby integrable magneticional transform of this surface must also be exactly that of
field. The perturbation terms are used to derive estimates fahe island chair(a rationa), and theX and O trajectories of
the island widths which are compared to Poincplas ob-  the perturbed magnetic field should coincide with periodic
tained using the Princeton iterative equilibrium sol#IES  trajectories of the constructed integrable field. Perturbation

code in Sec. V. theory generally requires the perturbation terms to be small.
Thus we prefer an integrable field that is “as close as pos-
Il. REPRESENTATION OF THE MAGNETIC FIELD sible” to the given field. Here, as close as possible is inter-

. reted as requiring that the Fourier representation of the per-
Any coordinate system may be used to represent th AP . L
urbation field is minimal. Also, in the trivial case where we

magnetic field. For toroidal magnetic fields, Cartesian, cylln-begin with an integrable field, the construction of the re-

drical, or toroidal coordinate systems may be used. Each ma . -
! ; . placement surfaces should reduce simply to the original flux
have advantages or disadvantages depending on the particu- . . - .
o L .Surfaces. We require a computationally efficient algorithm
lar application. We assume here that the magnetic field i
expressed in arbitrary toroidal coordinates 4, ¢), and we
assume stellarator symmetry which enables the magnet

field to be expressed :

Yor constructing the surfaces in a way which is physically
insightful. To be useful in analyzing magnetic configurations
the algorithm must be robust and flexible. Finally, we note
that even though the nonintegrable field may contain some
BP=E B (p)sin(no— 1 flux surfaces, those flux surfaces will generally not coincide
& onm p)sinng—me), 1) with the flux surfaces of the underlying integrable field. That
is, the flux surfaces of the underlying integrable field are
deformed by perturbation. In the following analysis, we will
not impose the constraint that the flux surfaces of the nearby
integrable field must coincide with the flux surfaces surviv-
B?=2 By (p)cognd—me). (3)  ing perturbation of the given nonintegrable field; neverthe-
nm less, as shown in Sec. V, we may choose this to be the case

B~ Bf u(p)cognf—mg), )
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and construct an integrable field which with flux surfaceséS/ 86 and S/ Sp are zero. Rational surfaces are destroyed
that coincide with the chosen flux surfaces of the given nonby perturbation and islands form. Typically, two periodic
integrable field. This can be convenient for constructingorbits survive perturbation and are referred to astiad O
straight-field-line coordinates for nonintegrable magneticpoints.
fields in regions of good flux surfaces.

We approach the problem of defining and constructing a
set of replacement surfaces by reviewing the concept of flukl. QUADRATIC-FLUX MINIMIZING SURFACES
surfaces. Using the terminology of plasma confinement

physics, flux surfaces may be defined as toroidal surfaces on Fotr t’?}/ptlca| noPmtegrablebsyfstem dS, we (;f.mi Eno; agengrally
which the magnetic field is everywhere tangential—that jseXpect that a surtace may be found on w and
6S/ 6p are both zero everywhere, so a more general varia-

B"=B-n=0 on the flux surface, whereis the normal to the . o ] . . : .
onal principle is required. In this section, we introduce

surface. Equivalently, we may define flux surfaces as thos . T :
surfaces for which the following surface integral is zero: quadratic-flux minimizing surfaces as surfaces that extremize

a natural extension of Ed5), the quadratic-flux functional,
_ M2 which we define in analogy with Lagrangian dynamics and
$275 (B")"do=0. 5 derive the Euler-Lagrange equation for extremal surfaces.

. L To obtain the quadratic-flux functional, the first of the
Rather than consider surfaces that set this integral to zerg, iy gradientssS/ 8p, is set equal to zero as a constraint:
which is not always possible in all regions of space for a58/6p=0. This enables the use of the equation B/B?.

general magnetic field, we consider the surfaces that extreml:he other term5S/ 56, shall be minimized over a toroidal

ize a similar functional. In this article, we _d_e_part from the surface defined by=P(8,) by considering the quadratic-
previous analysisto develop a clearer definition and con- : . !
flux functional, or in this case the square of the action gra-

struction of quadratic-flux minimizing surfaces. . .

The simglest definition and analg/sis uses the methods oq'em functional ¢/ 56)*
Hamiltonian dynamical systems, which we briefly review. 1 552
The analog of the Lagrangian in noncanonical coordinates %2~ EJ J [ﬁ} ded{.
(p,0,Q) is the magnetic vector potential and the action alon
a closed trial curve is writtén

©)

gThe trial surfacep="P(8,¢) is varied bySsP, and the corre-
sponding variation inp is evaluated

S= 3gA-dI= 3E(A p+A,0+A,)dL, (6) 2m (2w . . 5S

PP &o:fo fo [5(7B")— 8p(TBY) — p&(TBY)] 5, dbd{.

where the dot represents derivative with respedf,tand{ (10)
is chosen to parameterize position along a field line. Here we . .
use( to represent the arbitrary toroidal angle coordinate tolhe termép is written
reflect the fact that the theory is valid in general toroidal . apB"éPaﬁP B"épBgéPa{,P N B?9,5P

coordinates. For arbitrary variatiord@({),56(¢) the varia- Sp= +9.5P.
ian i - : ¢ )2 ¢ ¢
tion in the action may be written B (B) B a
11
S S . _ . . .
6S= j; 5—5p+ %50 d¢, (7) Substituting this form into Eq(10), integrating the terms
P involving d,6P and d,6P by parts and noting that for an
with the Frehet derivatives being arbitrary functionf
8 _ g g OS_ 99(TBF)=0y(TB) T +3,(TB”)3,PT+(TB")df,
5, ~J(BO-BY),  55=J(B"~B). ®) (12
Hamilton’s principlé states that the dynamics extremizes theWe obtain
action integral and the Euler—Lagrange equations are ob- s —fZﬂfzwéP(Bea +Bis )5—Sd0d 13
tained by setting each of the Teteet derivatives to zerod 2= ] Jo 0 o) 54908

=BYB! p= ¢ _ . _ .
B/B%, p=BP/B". On setting the first variatiorbe, to zero we obtain the

In the integrable limit, there exist irrational rotational- Euler—Lagrange equation for extremizing surfaces which we
transform surfaces and rational rotational-transform surface.(cSall quadratic-flux minimizing surfaces:

Each irrational rotational-transform surface is covered
densely by a single magnetic field line. Depending on the 6S

densely by a single mag pending (B9,+Bo,)— =0. (14)
irrationality” of the rotational-transform and the magnitude

60
of the perturbation, the irrational flux surfaces may survive L . .
perturbation, though they will generally be slightly de- The Euler—Lagrange equation indicates the action gradient,

S/96, is constant along the tangential dynamics defined on
formed. These surfaces are referred to as the KA . . ) )
2 . . . he surface. We identify and define the pseudofield as the
surfaces? Each rational rotational-transform surface is com-

prised of a family of periodic magnetic field lines which are field associated with the tangential dynamics
degenerate in action and along which the action gradients B,.-V=(B%,+ Bgag). (15
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The above analysis was originally presented using the termiwe label withs. After performing a coordinate transforma-
nology of magnetic field line flows. We restate the two maintion to coordinatesg, ,{), we may write the magnetic field
equations for completeness. The quadratic-flux functional

_ 0 ¢
may be written B=B%;+Bey+B%. (18
1 Bﬁ This form is useful as the components of the magnetic
"DZZEJ C—dU, (16)  field that destroy integrability are recognized as the function
r'‘>n

B3(s,0,¢). We construct the integrable field from the origi-

with B,=B-n andC,=V#XxV{-n for n unit normal to the nal nonintegrable field by subtracting the terms which de-
surfacel’. The Euler—Lagrange equation resulting from Eq.stroy the integrability. These are directly related to the action
(16) is® gradient terms, which are exactly the quantities minimized
by the quadratic-flux minimization procedure. We thus con-

B,-Vv=0, 17) clude that this approach gives a clear definition of the term as
whereB,=B—vC and v=B,/C,. We call B, the pseud- close as possible.
ofield and observe that is equal to the action gradient, We obtain the preferred angle coordinate by constructing
=45/96.13 an integrable field. An integrable magnetic fieB, with

The Euler-Lagrange equation E(L4) indicates that a invariant surfaces coinciding with the tasi=const would
rational rotational-transform quadratic-flux minimizing sur- haveBS=0. We construct such a field fro@ by seeking a
face is comprised of a family of periodic pseudo-orbits. Wedivergence-free correction fieldsB, such that7,B°
define pseudo-orbit as an integral curve of the pseudo= _ ,, \vhere we now use to represent/y,B°. If we can

magnetic field. Along each periodic pseudo-orbit that lies Oid such a field. then the total fiell=B+ B will auto-

a quadratic-flux minimizing surface, the action gradient re- I ) he i bil giti —
mains constant. Each periodic pseudo-orbit closes upon itse'lﬁf‘at'c‘fjl stat'SfY the ”,gegrz ! 'rt]y c(;qn '“017500;8 =0. gn
after an appropriate number of toroidal and poloidal transits€duation foréB is provided by the divergence-free condition
and Iis Iocateq via a jcvvo—dime.nsional search inf). The Io( T 59408 + 3 4( T 594 5B?) = dgv. (19
details of a slight variant of this approach for the construc- _ _
tion of quadratic-flux minimizing surfaces and a discussionThis may be %olved using the Fourier components of the
of the action gradient parameter is presented in Ref. 10. magnetic field:

Dewar et al® showed that rational rotational-transform P p
quadratic-flux minimizing surfaces pass directly through the (Ts649Bnm:(Ts00.0B%)nm)

resonances, and botk and O points of any given island (0,0), n=0m=0

cham_lle on the same quadratlc-fl_ux_mlnl_mlzmg surface. (9evnm/M,0, N=0m+0

Also, in regions where the magnetic field lines lie on flux = * _ (20)
surfaces, the quadratic-flux minimizing surfaces will coin- (0,—dsvnm/n, n#0OmM=0

cide with the flux surfaces. This ensures that if we apply our (ds¥n,m/M,0, n#0m+#0

construction of a nearby integrable field to an actual inte- ] . o _
grable field, then we will simply obtain the original field. ~ By adding these correction terms to the original noninte-
Returning to the topic of construction of an integrable 9rable magnetic field we obtain an integrable magnetic field
magnetic field nearby a given nonintegrable magnetic fieldfor which we may construct straight field line coordinates
we may construct a set of rational quadratic-flux minimizingLRef. 11, pp. 116-120which we label ¢, 6o, $). The origi-
surfaces. Any quadratic-flux minimizing surface may be cho-"@l magnetic fieldB is written in the §,6,,¢) coordinates
sen, provided the rotational-transform of the surface is withirPy @ standard vector transformation and the new Jacobian
the range defined by the rotational-transform profile of the7ss,s= Jso¢s,0 1S Obtained.
nonintegrable magnetic field. The selection of surfaces is Continuing on from the previous work, we note that the
somewhat arbitrary, but important since the choice of surcoordinates thus constructed enable the original magnetic
faces greatly effects the resultant integrable magnetic field &féeld to be expressed in terms of a canonical nearly integrable
will be shown in Sec. V. The quadratic-flux minimizing sur- field-line Hamiltonian,y, such that
I;clzg.s are identified as flux surfaces of a nearby integrable B=V () XV 0+ V b X Vx(S. 00, ). (21)
where x= xo(S) + Znmxnm(S)cosfip—mby). The Fourier
components of the magnetic field irs,0,,¢) coordinates
IV. STRAIGHT-FIELD-LINE ANGLE are simply related to the Fourier components of the field line

. . , ___Hamiltonian through
It remains to introduce an appropriate angle coordinate

Fo completg the set of c_oordinatgs which will define a negrby (£90¢55)nm: —MXnm: (‘7390¢500)nm:)'(nm_ (22)
integrable field. As an intermediate step in the construction,

we perform a vector transformation to coordinates using thét is convenient to use the field line Hamiltonian representa-
guadratic-flux minimizing surfaces as the level surfaces ofion, as this algebraic form guarantees the divergence-free
the radial coordinate at a discrete set of values. An interpoproperty of the magnetic field. The field line Hamiltonian
lation provides a smooth continuous radial coordinate, whiclprovides all information regarding the magnetic field.
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FIG. 2. (a) (left) A cross section of the quadratic-flux minimizing surfaces
chosen for radial framework, on the toroidal plage=0. (b) (right) The
resulting coordinate grid.

02 : Using the same magnetic field, we will show two ex-

0 ample cases chosen to illustrate some features of the proce-
dure. First we will construct a nearby integrable field that
may be understood as an underlying integrable field to which
the given nonintegrable magnetic field may be considered as

The perturbation componentg,,, of the original field a small perturbation. Second, we construct an integrable field
are easily identified as the difference between the integrabi@ith flux surfaces that coincide with flux surfaces of the
field and the original field. Thg,,, can be used to determine given nonintegrable field. The different outcomes is deter-
accurate estimations of thea,(m) island width as follows. mined by the initial choice of quadratic-flux minimizing sur-
Consider for example the Hamiltonian with a single reso-faces.
nancey = xo(S) — xnm(S) cosfip—mé). Using the generating To display the first construction, we choose a set of
function F2=(n¢—mao)§ we transform to rotating coordi- quadratic-flux minimizing surfaces that will form the frame-
nates and obtain the transformed Hamiltonifan: Xo(S) work of the new radial coordinate. We choose surfaces that

—Xnm(s)cos(bo)—ns/m. The periodic orbits are located at pass through the lowest order island chains, namely the two
9-—0 Which orbit is stabl table d d bot g=2 surfaces and the=3 surface. Two other surfaces are
r;)_ i ‘ hIC' orbl 'SIS ah € O,r unhs a e__ep,en sdor;] 0 hrequired to define the boundary of the interpolation region.
the sign of the integrable shear ', where.—=yx,, and the o g faces chosen and the constructed coordinate grid are
sign of x,m- FOr now, we assume the unstable periodic orb|tshOWn in Fig. 2
corresponds t090=_7r. To determine the island width, we The Fourier components of the perturbation with
must find the solutions.. to (n,m)=(2,1),(3,1), and the profile are shown in Fig.(®).

ns NSym Shown in Fig. 8b) is a Poincarelot of the same magnetic

Xo(S+) = Xnm(S=) — ?:XO(Snm)"'Xnm(snm)_ ?

FIG. 1. Poincarelot in background coordinatep (6, ¢).

(23

There will be two solutionss,. ands_, corresponding to the 1.0F : : 31,0
upper branch of the separatrix and the other to the lower : :
branch respectively, which may be found numerically. In the
small—island approximation, the variation y3,, across the 08
island is assumed negligible, and an expansion is made t

.910

obtain the usual formulaAs=*2/y,m/¢". o oo //’ """""""""""" o < FAN
06 | . /'//‘ \\;\' — \:' T0.6
V. RESULTS \ : 4
) ) . ) 0.528---------- N """"" .\ .528
For an example, we use a magnetic field consistent with : \\ D f‘/\\ g
the tokamak JT60-U reversed shear parameters calculate o4t i , E 1 ‘ J0.4
using the PIE&' code. A profile is used withy,,,;,< 2, SO two -0.002 *‘;001 0.0.0 : n

q=2 rational surfaces are present. A Poincplet Fig. 1
shows two largey=2 island chains, as well as higher order FIG. 3. (@ (left) Resonant perturbations witmm)=(2,1),(3,1) shown

P : oincareplot in new coordinates showingi(m)=(2,1),(3,1) island chains
was chosen because it is Currently an important res;earé\})v‘llth the (2,1) and (3,1) rational surfaces and estimated island widths plot-

topic alts 16Japan Atomic Energy Research Instituteeq as solid horizontal lines. The coordinates correspond to those shown in
(JAERI).™ Fig. 2.
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2 3
1.0F : 1.0
: —
H -
0912 // """" < X S > 912
-
-~ :
: Ve :
0.8 : s : 1 10.8
L/ c :
o/ 2.1 3.1 w a2
¢ 0.700f------ue-- S L () x 700
: : AN ﬁ\
0.6 - — ———————40.6
0.526 \!/ 526
0.4 : . : ] . 0.4
0 ™ 21,0 T 27 —0.002 —0.001 0.0,0 ™ 2%
] 8 Xnim 6

FIG. 4. (8 (left) A cross section of quadratic-flux minimizing surfaces FIG. 5. (a) (left) Resonant perturbations wittm)=(2,1),(3,1) shown

chosen for radial framework, on the toroidal plage=0. (b) (right) The  with solid lines, and they profile shown with dashed lingb) (right) The

resulting coordinate grid. Poincareplot in new coordinates showingi(m) =(2,1),(3,1) island chains
with the (2,1) and (3,1) rational surfaces and estimated island widths plot-
ted as solid lines on the right. Coordinates correspond to those shown in
Fig. 4.

field shown in the constructed coordinate grid, where the

field line tracings have been chosen to show the major island
chains. Estimates for the island widths as calculated usingates, though still smooth, are approaching singularity. The
Eq. (23) are shown by the solid horizontal lines. We can seesingularity in the coordinates can be observed in the radial
from this graph that then,m)=(2,1),(3,1) island chains dependence of the perturbation harmonjgs; and ys 1,
form exactly whereg=2 and 3 respectively for the con- which are shown in Fig.®). As the surfaces chosen for the
structed integrable field. For thg=2 islands, the half- coordinate radial function approach the separatrix, the radial
widths of the islands closer to the radial locationcpfi,,  region where the perturbation function is nonzero reduces in
Smin, are actually larger than the half-widths of the islandswidth. By using quadratic-flux minimizing surfaces that lie
oppositesmy. This is because nea=s,, the shear be- just outside the separatrices of the (2,1) and (3,1) islands,
comes small. In this case, it is a poor approximation to asthe (2,1) and (3,1) islands become square when plotted in
sume the shear is constant across the island region. Furthgfe constructed coordinates as is shown in Figp).5Note
improvement of the island estimates could be made by inthat for this case, as the perturbation terms become more
cluding the complete spectrum of perturbation terms in Eqpeaked, the estimate for the island width becomes less accu-
(23), rather than just the lowest order terms as done here. rate.

The second example is demonstrated using a different
sglectlon of ra_tlonal qugdranc-flux minimizing .su.rffaces. AVI. DISCUSSION
different selection of rational quadratic-flux minimizing sur-
faces creates a different nearby integrable field. In fact, an The choice of rational rotational-transform quadratic-
integrable field that coincides with the actual nonintegrabldlux minimizing surfaces has a great impact on the structure
field in regions of good flux surfaces is possible by choosingf the constructed integrable field. Surfaces may be chosen
higher order rational surfaces. The drawback mentioned imo focus attention on specific features of the given noninte-
the introduction, that such coordinates become singular at thgrable field, or to avoid regions which are not relevant to the
separatrix, is demonstrated by the following. The quadraticparticular application. In addition to the features already dis-
flux minimizing surfaces which will serve as the framework played in the previous section, some additional applications
of the new radial coordinate are chosen with rationalmay be mentioned.
rotational-transforms approachirg=2 and 3. These sur- We may approximate the separatrix of a low-order island
faces are shown in Fig.(d). The orders of the surfaces cho- chain by constructing quadratic-flux minimizing surfaces
sen, in increasing radial location, af¥lL,26, (14,33, (3,7),  with rotational-transforms that approach the rationality of the
(13,30, (10,23, (7,16), (11,25, (4,9, (13,29, (9,20, (5,12, low-order island chain. For example, the surfaces with ratio-
(11,24, (6,13, (13,28, (7,15, (8,17, (9,19, (1,2, (12,23, nalities corresponding ton(m)=(35,17%,(37,18,(39,19),
(11,21, (11,21, (12,23, (1,2, (13,28, (6,13, (11,29, (41,20), ... will lie just outside the separatrix of the
(5,11, (9,20, (4,9, (11,25, (7,16, (10,23, (13,30, (3,7, (n,m)=(2,1) island chain to one side, and the surfaces with
(11,28, (8,19, (5,12, (7,17, (9,22, (11,29, (2,9, (9,23, (n,m)=(35,18,(37,19,(39,20,(41,21) ... will lie just
(7,18, (5,13, (8,21, (3,9, (10,29, (7,19, (4,11, (5,19, outside the separatrix to the other. Surfaces may be chosen
(6,19, (7,20, (8,23, (9,26, (10,29, (1,3, (8,25, (7,22, that automatically locate the regions outside major separa-
(6,19, (5,16, (4,13, (3,10, (2,7, and(1,4. The surfaces trices, and thus the regions of the nonintegrable field for
with large denominators typically coincide with flux surfaceswhich, to a good approximation, straight-field-line coordi-
of the given nonintegrable field. This is observed via thenates may be constructed.
action gradients of the surfaces becoming very small. The KAM surfaces of the nonintegrable field may be ap-
associated coordinate grid is shown in Fig)4 The coordi- proximated by constructing quadratic-flux minimizing sur-
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faces with rotational transforms that approach certain irratiothe shear and perturbation harmonic amplitudes agree very
nals, in particular the noble irrationals. By locating the KAM well with detailed Poincarglots. The flexibility of the ap-
surfaces, we may construct coordinates that neatly comparproach has been demonstrated by constructing a nearby inte-
mentalize regions of chaos. Also, by constructing a sequenagrable magnetic field which closely coincides with the origi-
of quadratic-flux minimizing surfaces with rotational- nal magnetic field in regions where the island content is low.
transforms approaching certain irrationals, we obtain arhe present algorithm may be combined with other algo-
method by which the existence of KAM surfaces may berithms to locate rational flux surfaces, to quickly estimate
predicted. The action-gradient parameter determined duringland widths, to reliably locate high-order flux surfaces ad-
the construction of each quadratic-flux minimizing surface igacent to low-order islands of significant width, and to locate
directly related to the resonant perturbation harmonic amplithe periodicX and O points of island chains.
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