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Analysis of perturbed magnetic fields via construction of nearby
integrable fields
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For a given nonintegrable toroidal magnetic field, a nearby integrable magnetic field is constructed
from quadratic-flux minimizing surfaces. A new mathematical definition and derivation of
quadratic-flux minimizing surfaces, which directly exploits the analogy between toroidal magnetic

fields and 11
2 degree of freedom Hamiltonian systems, is given. The width and phase of magnetic

islands ~calculated from the shear of the integrable field and the magnitude and phase of the
perturbation harmonics! are in excellent agreement with detailed Poincare´ plots. © 1999 American
Institute of Physics.@S1070-664X~99!01305-1#
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I. INTRODUCTION

Many treatments of magnetic field configuration
plasma dynamics and general Hamiltonian systems, ut
the assumption of a nearby, integrable system to which
actual system is considered as a small perturbation.1 In
Hamiltonian systems, for example,2 often the analytic form
of the nearby integrable Hamiltonian is known. Standard p
turbation theory constructs action-angle coordinates for
integrable system and the Fourier harmonics of the pertu
tion can be used to determine resonance widths.

Since toroidal magnetic fields used for the containm

of plasmas are analogous to 11
2 dimensional Hamiltonian

systems,3 the same ideas are appropriate for understand
magnetic field structure. In fact, the assumption that the m
netic field is integrable, or at least that the magnetic field
nearby an integrable field, is widespread in theoretical
search in many areas of tokamaks and stellarator phy
This is partly because good flux surfaces improve plas
confinement, and thus the existence of flux surfaces is es
tial for any magnetic configuration relevant for the conta
ment of fusion plasmas; and partly because the coordi
systems that integrable fields allow, namely flux coordina
or straight field line coordinates, aid the researcher to
past the geometrical complexity of plasma confinement
vices and concentrate on the physical issues. The import
of flux coordinates for example, is evidenced by the wid
spread usage of Boozer coordinates4 in which the magnetic
field and the equations governing the plasma take a par
larly simple form. At the heart of plasma analysis based
flux coordinates is the assumption that an integrable m
netic field exists, or more generally that the actual magn

a!Present address: University of Wisconsin, 1500 Engineering D
ERB511, Madison, WI 53706; Electronic mail: hudso
@cptc.wisc.edu
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field may be considered to be a small perturbation to
integrable field.

However, for complicated magnetic confinement sy
tems the nearby integrable field is not known initially. Fu
thermore, to any given nearly integrable field, there is a
number of integrable fields which are nearby: the te
‘‘nearby’’ is not uniquely defined. Any set of toroidal sur
faces may be used to construct an integrable field. The q
tion then arises: which set of surfaces is most useful
constructing the preferred nearby integrable field?

Previous treatments of this problem have utilized t
flux surfaces surviving perturbation of the given nonin
grable magnetic field, which are called the KAM surface
and have assigned straight-field-line coordinates to these
faces. One approach locates good flux surfaces by follow
field lines.5 The field lines that lie on closed flux surfaces a
assigned to be straight-field-lines of a nearby integrable m
netic field. Important research in this field was presented
Boozer, who showed how to determine a convenient rep
sentation for integrable magnetic fields by field line tracin4

and gave a useful representation of a general magnetic fi6

Another technique7 utilizes a generating function and min
mizes the variation of an integrable Hamiltonian over a tr
torus with respect to the parameters defining the Ham
tonian.

Such methods are convenient for some applications,
cause they guarantee that the constructed integrable field
incides with the original field on the flux surfaces and th
allow straight-field-line coordinates for the original magne
field to be constructed in regions of good flux surfaces. Ho
ever, using KAM surfaces of the nonintegrable field to defi
a nearby integrable field has the unfortunate conseque
that the integrable field becomes singular at the separatr
Also, when a field line is chosen, it is not known wheth
that field line will lie on a good flux surface, or whether it
a chaotic field line or lies within an island chain.8 Problems

e

2 © 1999 American Institute of Physics
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with field line tracing methods may arise near low ord
rational surfaces.5

Recently, an approach has been developed which
surfaces that pass directly through the resonances of any
sen island chain to construct an integrable magnetic fi
The surfaces are defined as those surfaces which extrem
deviation from invariance, and are called quadratic-fl
minimizing surfaces. This article will revise and extend wo
presented in several earlier papers9,10 in a complete and
mathematically simple manner. In this paper, we presen
revised construction of quadratic-flux minimizing surfac
which utilizes the magnetic field line action. Though th
approach seems somewhat abstract, the subsequent an
is simpler than the original presentation and sheds more
sight into the analogy between Hamiltonian systems
magnetic field line flow. The quadratic-flux minimizing su
faces constructed are considered as replacement flux sur
for nonintegrable fields and are used to define a nearby i
grable magnetic field for which straight field line coordinat
may be constructed. In this article, the previous analysis
been extended to calculate the magnitude of resonant pe
bation harmonics. This information, along with the shear
the constructed integrable system, is used to accurately
culate island widths. Comparison of the calculated isla
widths with detailed Poincare´ plots show very good agree
ment.

In Sec. II, we review a convenient representation of
magnetic field in arbitrary toroidal coordinates and disc
some desirable features of a suitable nearby integrable
and a Hamiltonian perspective of flux surfaces. In Sec.
we derive quadratic-flux minimizing surfaces from an an
ogy with Hamiltonian concepts and outline their constru
tion. A radial coordinate is introduced with level surfac
that coincide with the quadratic-flux minimizing surfaces.
Sec. IV, an angle coordinate is used to complement the ra
coordinate and implicitly define a nearby integrable magn
field. The perturbation terms are used to derive estimates
the island widths which are compared to Poincare´ plots ob-
tained using the Princeton iterative equilibrium solver~PIES!
code in Sec. V.

II. REPRESENTATION OF THE MAGNETIC FIELD

Any coordinate system may be used to represent
magnetic field. For toroidal magnetic fields, Cartesian, cy
drical, or toroidal coordinate systems may be used. Each
have advantages or disadvantages depending on the pa
lar application. We assume here that the magnetic field
expressed in arbitrary toroidal coordinates (r,u,f), and we
assume stellarator symmetry which enables the magn
field to be expressed :

Br5(
n,m

Bn,m
r ~r!sin~nu2mf!, ~1!

Bu5(
n,m

Bn,m
u ~r!cos~nu2mf!, ~2!

Bf5(
n,m

Bn,m
f ~r!cos~nu2mf!. ~3!
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The transformation to cylindrical coordinates (R,f,z) is

R5Rmaj1(
n,m

xn,m~r!cos~nu2mf!,

~4!

z5(
n,m

yn,m~r!sin~nu2mf!.

The Jacobian of the (r,u,f) coordinates,Jruf , is given by
Jruf5(]uR]rz2]rR]uz)R. The toroidal anglef is chosen
to coincide with the usual cylindrical angle for later conv
nience.

An integrable field is defined implicitly by a set o
straight-field-line coordinates.11 The typical starting assump
tion required for the existence of straight-field-line coord
nates is the assumption that all field lines lie on nested
oidal flux surfaces. As the existence of such surfaces is
necessarily the case everywhere for a general magnetic fi
the first step is to construct a set of ‘‘replacement’’ surfac
which may be identified as flux surfaces of some integra
field. The second step is to introduce a suitable straight-fie
line angle coordinate to complement the surfaces and c
plete the coordinate system. We discuss these two steps s
rately.

First we construct a set of toroidal surfaces. There
some properties that we wish our construction of surface
satisfy. The typical perturbation analysis approach assu
an integrable field for which straight-field-line coordinat
are constructed, and then a small perturbation is added.
lowing this construction, we note that both theX and O
points of any particular island chain will lie on the same fl
surface of the integrable field—that particular flux surfa
with the rotational transform appropriate for the periodic
of theX andO orbits. Thus we require that the surface to
used as a flux surface of the integrable field pass thro
both theX and O points of chosen island chains. The rot
tional transform of this surface must also be exactly that
the island chain~a rational!, and theX andO trajectories of
the perturbed magnetic field should coincide with perio
trajectories of the constructed integrable field. Perturbat
theory generally requires the perturbation terms to be sm
Thus we prefer an integrable field that is ‘‘as close as p
sible’’ to the given field. Here, as close as possible is int
preted as requiring that the Fourier representation of the
turbation field is minimal. Also, in the trivial case where w
begin with an integrable field, the construction of the r
placement surfaces should reduce simply to the original
surfaces. We require a computationally efficient algorith
for constructing the surfaces in a way which is physica
insightful. To be useful in analyzing magnetic configuratio
the algorithm must be robust and flexible. Finally, we no
that even though the nonintegrable field may contain so
flux surfaces, those flux surfaces will generally not coinc
with the flux surfaces of the underlying integrable field. Th
is, the flux surfaces of the underlying integrable field a
deformed by perturbation. In the following analysis, we w
not impose the constraint that the flux surfaces of the nea
integrable field must coincide with the flux surfaces surv
ing perturbation of the given nonintegrable field; neverth
less, as shown in Sec. V, we may choose this to be the
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and construct an integrable field which with flux surfac
that coincide with the chosen flux surfaces of the given n
integrable field. This can be convenient for construct
straight-field-line coordinates for nonintegrable magne
fields in regions of good flux surfaces.

We approach the problem of defining and constructin
set of replacement surfaces by reviewing the concept of
surfaces. Using the terminology of plasma confinem
physics, flux surfaces may be defined as toroidal surface
which the magnetic field is everywhere tangential—that
Bn5B–n50 on the flux surface, wheren is the normal to the
surface. Equivalently, we may define flux surfaces as th
surfaces for which the following surface integral is zero:

w25
1

2E ~Bn!2ds50. ~5!

Rather than consider surfaces that set this integral to z
which is not always possible in all regions of space fo
general magnetic field, we consider the surfaces that extr
ize a similar functional. In this article, we depart from th
previous analysis9 to develop a clearer definition and co
struction of quadratic-flux minimizing surfaces.

The simplest definition and analysis uses the method
Hamiltonian dynamical systems, which we briefly revie
The analog of the Lagrangian in noncanonical coordina
(r,u,z) is the magnetic vector potential and the action alo
a closed trial curve is written3

S5 R A–dl5 R ~Arṙ1Auu̇1Az!dz, ~6!

where the dot represents derivative with respect toz, andz
is chosen to parameterize position along a field line. Here
usez to represent the arbitrary toroidal angle coordinate
reflect the fact that the theory is valid in general toroid
coordinates. For arbitrary variationsdr(z),du(z) the varia-
tion in the action may be written

dS5 R S dS

dr
dr1

dS

du
du Ddz, ~7!

with the Fréchet derivatives being

dS

dr
5J~Bzu̇2Bu!,

dS

du
5J~Br2Bzṙ !. ~8!

Hamilton’s principle2 states that the dynamics extremizes t
action integral and the Euler–Lagrange equations are
tained by setting each of the Fre´chet derivatives to zero:u̇
5Bu/Bz, ṙ5Br/Bz.

In the integrable limit, there exist irrational rotationa
transform surfaces and rational rotational-transform surfa
Each irrational rotational-transform surface is cover
densely by a single magnetic field line. Depending on
‘‘irrationality’’ of the rotational-transform and the magnitud
of the perturbation, the irrational flux surfaces may surv
perturbation, though they will generally be slightly d
formed. These surfaces are referred to as the KA
surfaces.12 Each rational rotational-transform surface is co
prised of a family of periodic magnetic field lines which a
degenerate in action and along which the action gradie
Downloaded 21 Mar 2002 to 198.35.4.102. Redistribution subject to AI
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dS/du anddS/dr are zero. Rational surfaces are destroy
by perturbation and islands form. Typically, two period
orbits survive perturbation and are referred to as theX andO
points.

III. QUADRATIC-FLUX MINIMIZING SURFACES

For typical nonintegrable systems, we cannot gener
expect that a surface may be found on whichdS/du and
dS/dr are both zero everywhere, so a more general va
tional principle is required. In this section, we introdu
quadratic-flux minimizing surfaces as surfaces that extrem
a natural extension of Eq.~5!, the quadratic-flux functional
which we define in analogy with Lagrangian dynamics a
derive the Euler-Lagrange equation for extremal surfaces

To obtain the quadratic-flux functional, the first of th
action gradients,dS/dr, is set equal to zero as a constrain
dS/dr50. This enables the use of the equationu̇5Bu/Bf.
The other term,dS/du, shall be minimized over a toroida
surface defined byr5P(u,z) by considering the quadratic
flux functional, or in this case the square of the action g
dient functional (dS/du)2

w25
1

2E E FdS

duG2

dudz. ~9!

The trial surfacer5P(u,z) is varied bydP, and the corre-
sponding variation inw is evaluated

dw5E
0

2pE
0

2p

@d~JBr!2dṙ~JBz!2 ṙd~JBz!#
dS

du
dudz.

~10!

The termdṙ is written

dṙ5
]rBudP]uP

Bz
2

Bu]rBzdP]uP

~Bz!2
1

Bu]udP

Bz
1]zdP.

~11!

Substituting this form into Eq.~10!, integrating the terms
involving ]udP and ]zdP by parts and noting that for an
arbitrary functionf

]u~JBu f !5]u~JBu! f 1]r~JBu!]uP f1~JBu!]u f ,
~12!

we obtain

dw25E
0

2pE
0

2p

dP~Bu]u1Bz]z!
dS

du
dudz. ~13!

On setting the first variationdw2 to zero we obtain the
Euler–Lagrange equation for extremizing surfaces which
call quadratic-flux minimizing surfaces:

~Bu]u1Bz]z!
dS

du
50. ~14!

The Euler–Lagrange equation indicates the action gradi
]S/]u, is constant along the tangential dynamics defined
the surface. We identify and define the pseudofield as
field associated with the tangential dynamics

Bn–¹5~Bu]u1Bz]z!. ~15!
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The above analysis was originally presented using the te
nology of magnetic field line flows. We restate the two ma
equations for completeness. The quadratic-flux functio
may be written

w25
1

2EG

Bn
2

Cn
ds, ~16!

with Bn5B–n andCn5¹u3¹z–n for n unit normal to the
surfaceG. The Euler–Lagrange equation resulting from E
~16! is9

Bn–¹n50, ~17!

where Bn[B2nC and n[Bn /Cn . We call Bn the pseud-
ofield and observe thatn is equal to the action gradient,n
[]S/]u.13

The Euler-Lagrange equation Eq.~14! indicates that a
rational rotational-transform quadratic-flux minimizing su
face is comprised of a family of periodic pseudo-orbits. W
define pseudo-orbit as an integral curve of the pseu
magnetic field. Along each periodic pseudo-orbit that lies
a quadratic-flux minimizing surface, the action gradient
mains constant. Each periodic pseudo-orbit closes upon i
after an appropriate number of toroidal and poloidal trans
and is located via a two-dimensional search in (r,u). The
details of a slight variant of this approach for the constr
tion of quadratic-flux minimizing surfaces and a discuss
of the action gradient parameter is presented in Ref. 10.

Dewar et al.9 showed that rational rotational-transfor
quadratic-flux minimizing surfaces pass directly through
resonances, and bothX and O points of any given island
chain lie on the same quadratic-flux minimizing surfac
Also, in regions where the magnetic field lines lie on fl
surfaces, the quadratic-flux minimizing surfaces will co
cide with the flux surfaces. This ensures that if we apply
construction of a nearby integrable field to an actual in
grable field, then we will simply obtain the original field.

Returning to the topic of construction of an integrab
magnetic field nearby a given nonintegrable magnetic fie
we may construct a set of rational quadratic-flux minimizi
surfaces. Any quadratic-flux minimizing surface may be ch
sen, provided the rotational-transform of the surface is wit
the range defined by the rotational-transform profile of
nonintegrable magnetic field. The selection of surfaces
somewhat arbitrary, but important since the choice of s
faces greatly effects the resultant integrable magnetic fiel
will be shown in Sec. V. The quadratic-flux minimizing su
faces are identified as flux surfaces of a nearby integra
field.

IV. STRAIGHT-FIELD-LINE ANGLE

It remains to introduce an appropriate angle coordin
to complete the set of coordinates which will define a nea
integrable field. As an intermediate step in the construct
we perform a vector transformation to coordinates using
quadratic-flux minimizing surfaces as the level surfaces
the radial coordinate at a discrete set of values. An inter
lation provides a smooth continuous radial coordinate, wh
Downloaded 21 Mar 2002 to 198.35.4.102. Redistribution subject to AI
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we label withs. After performing a coordinate transforma
tion to coordinates (s,u,z), we may write the magnetic field

B5Bses1Bueu1Bfef . ~18!

This form is useful as the components of the magne
field that destroy integrability are recognized as the funct
Bs(s,u,f). We construct the integrable field from the orig
nal nonintegrable field by subtracting the terms which d
stroy the integrability. These are directly related to the act
gradient terms, which are exactly the quantities minimiz
by the quadratic-flux minimization procedure. We thus co
clude that this approach gives a clear definition of the term
close as possible.

We obtain the preferred angle coordinate by construct
an integrable field. An integrable magnetic field,B̄, with
invariant surfaces coinciding with the toris5const, would
haveB̄s[0. We construct such a field fromB by seeking a
divergence-free correction field,dB, such thatJ sufdBs

52n, where we now usen to representJ sufBs. If we can
find such a field, then the total fieldB̄[B1dB will auto-
matically satisfy the integrability conditionJ sufB̄s[0. An
equation fordB is provided by the divergence-free conditio

]u~J sufdBu!1]f~J sufdBf!5]sn. ~19!

This may be solved using the Fourier components of
magnetic field:10

~~J sufdBu!nm ,~J sufdBf!nm!

55
~0,0!, n50,m50

~]snn,m /m,0, n50,mÞ0

~0,2]snn,m /n, nÞ0,m50

~]snn,m /m,0, nÞ0,mÞ0

. ~20!

By adding these correction terms to the original nonin
grable magnetic field we obtain an integrable magnetic fi
for which we may construct straight field line coordinat
@Ref. 11, pp. 116–120#, which we label (s,u0 ,f). The origi-
nal magnetic fieldB is written in the (s,u0 ,f) coordinates
by a standard vector transformation and the new Jaco
Jsu0f5Jsuf]u0

u is obtained.
Continuing on from the previous work, we note that t

coordinates thus constructed enable the original magn
field to be expressed in terms of a canonical nearly integra
field-line Hamiltonian,x, such that

B5¹c t~s!3¹u01¹f3¹x~s,u0 ,f!, ~21!

where x5x0(s)1(nmxnm(s)cos(nf2mu0). The Fourier
components of the magnetic field in (s,u0 ,f) coordinates
are simply related to the Fourier components of the field l
Hamiltonian through

~Jsu0fBs!nm52mxnm , ~Jsu0fBu0!nm5ẋnm . ~22!

It is convenient to use the field line Hamiltonian represen
tion, as this algebraic form guarantees the divergence-
property of the magnetic field. The field line Hamiltonia
provides all information regarding the magnetic field.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The perturbation components,xnm , of the original field
are easily identified as the difference between the integr
field and the original field. Thexnm can be used to determin
accurate estimations of the (n,m) island width as follows.
Consider for example the Hamiltonian with a single res
nancex5x0(s)2xnm(s)cos(nf2mu). Using the generating
function F25(nf2mu0) ŝ we transform to rotating coordi
nates and obtain the transformed Hamiltonianx̂5x0(s)
2xnm(s)cos(û0)2 ns/m. The periodic orbits are located a
û050,p. Which orbit is stable or unstable depends on b
the sign of the integrable sheari28, wherei25x08 , and the
sign ofxnm . For now, we assume the unstable periodic or
corresponds toû05p. To determine the island width, w
must find the solutionss6 to

x0~s6!2xnm~s6!2
ns6

m
5x0~snm!1xnm~snm!2

nsnm

m
.

~23!

There will be two solutions,s1 ands2 , corresponding to the
upper branch of the separatrix and the other to the lo
branch respectively, which may be found numerically. In
small–island approximation, the variation inxnm across the
island is assumed negligible, and an expansion is mad
obtain the usual formula.Ds562Axnm /i8.

V. RESULTS

For an example, we use a magnetic field consistent w
the tokamak JT60-U reversed shear parameters calcu
using the PIES14 code. A profile is used withqmin,2, so two
q52 rational surfaces are present. A Poincare´ plot Fig. 1
shows two largeq52 island chains, as well as higher ord
island chains and small regions of chaos. This configura
was chosen because it is currently an important rese
topic at Japan Atomic Energy Research Institu
~JAERI!.15,16

FIG. 1. Poincare´ plot in background coordinates (r,u,f).
Downloaded 21 Mar 2002 to 198.35.4.102. Redistribution subject to AI
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Using the same magnetic field, we will show two e
ample cases chosen to illustrate some features of the pr
dure. First we will construct a nearby integrable field th
may be understood as an underlying integrable field to wh
the given nonintegrable magnetic field may be considered
a small perturbation. Second, we construct an integrable fi
with flux surfaces that coincide with flux surfaces of th
given nonintegrable field. The different outcomes is det
mined by the initial choice of quadratic-flux minimizing su
faces.

To display the first construction, we choose a set
quadratic-flux minimizing surfaces that will form the fram
work of the new radial coordinate. We choose surfaces
pass through the lowest order island chains, namely the
q52 surfaces and theq53 surface. Two other surfaces a
required to define the boundary of the interpolation regi
The surfaces chosen and the constructed coordinate grid
shown in Fig. 2.

The Fourier components of the perturbation w
(n,m)5(2,1),(3,1), and theq profile are shown in Fig. 3~a!.
Shown in Fig. 3~b! is a Poincare´ plot of the same magnetic

FIG. 2. ~a! ~left! A cross section of the quadratic-flux minimizing surfac
chosen for radial framework, on the toroidal planef50. ~b! ~right! The
resulting coordinate grid.

FIG. 3. ~a! ~left! Resonant perturbations with (n,m)5(2,1),(3,1) shown
with solid lines, and theq profile shown with dashed line.~b! ~right! The
Poincare´ plot in new coordinates showing (n,m)5(2,1),(3,1) island chains
with the (2,1) and (3,1) rational surfaces and estimated island widths p
ted as solid horizontal lines. The coordinates correspond to those show
Fig. 2.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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field shown in the constructed coordinate grid, where
field line tracings have been chosen to show the major isl
chains. Estimates for the island widths as calculated us
Eq. ~23! are shown by the solid horizontal lines. We can s
from this graph that the (n,m)5(2,1),(3,1) island chains
form exactly whereq52 and 3 respectively for the con
structed integrable field. For theq52 islands, the half-
widths of the islands closer to the radial location ofqmin ,
smin , are actually larger than the half-widths of the islan
oppositesmin . This is because nears5smin the shear be-
comes small. In this case, it is a poor approximation to
sume the shear is constant across the island region. Fu
improvement of the island estimates could be made by
cluding the complete spectrum of perturbation terms in
~23!, rather than just the lowest order terms as done her

The second example is demonstrated using a diffe
selection of rational quadratic-flux minimizing surfaces.
different selection of rational quadratic-flux minimizing su
faces creates a different nearby integrable field. In fact,
integrable field that coincides with the actual nonintegra
field in regions of good flux surfaces is possible by choos
higher order rational surfaces. The drawback mentioned
the introduction, that such coordinates become singular a
separatrix, is demonstrated by the following. The quadra
flux minimizing surfaces which will serve as the framewo
of the new radial coordinate are chosen with ratio
rotational-transforms approachingq52 and 3. These sur
faces are shown in Fig. 4~a!. The orders of the surfaces cho
sen, in increasing radial location, are~11,26!, ~14,33!, ~3,7!,
~13,30!, ~10,23!, ~7,16!, ~11,25!, ~4,9!, ~13,29!, ~9,20!, ~5,11!,
~11,24!, ~6,13!, ~13,28!, ~7,15!, ~8,17!, ~9,19!, ~1,2!, ~12,23!,
~11,21!, ~11,21!, ~12,23!, ~1,2!, ~13,28!, ~6,13!, ~11,24!,
~5,11!, ~9,20!, ~4,9!, ~11,25!, ~7,16!, ~10,23!, ~13,30!, ~3,7!,
~11,26!, ~8,19!, ~5,12!, ~7,17!, ~9,22!, ~11,27!, ~2,5!, ~9,23!,
~7,18!, ~5,13!, ~8,21!, ~3,8!, ~10,27!, ~7,19!, ~4,11!, ~5,14!,
~6,17!, ~7,20!, ~8,23!, ~9,26!, ~10,29!, ~1,3!, ~8,25!, ~7,22!,
~6,19!, ~5,16!, ~4,13!, ~3,10!, ~2,7!, and ~1,4!. The surfaces
with large denominators typically coincide with flux surfac
of the given nonintegrable field. This is observed via t
action gradients of the surfaces becoming very small. T
associated coordinate grid is shown in Fig. 4~b!. The coordi-

FIG. 4. ~a! ~left! A cross section of quadratic-flux minimizing surface
chosen for radial framework, on the toroidal planef50. ~b! ~right! The
resulting coordinate grid.
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nates, though still smooth, are approaching singularity. T
singularity in the coordinates can be observed in the ra
dependence of the perturbation harmonicsx2,1 and x3,1,
which are shown in Fig. 5~a!. As the surfaces chosen for th
coordinate radial function approach the separatrix, the ra
region where the perturbation function is nonzero reduce
width. By using quadratic-flux minimizing surfaces that l
just outside the separatrices of the (2,1) and (3,1) islan
the (2,1) and (3,1) islands become square when plotte
the constructed coordinates as is shown in Fig. 5~b!. Note
that for this case, as the perturbation terms become m
peaked, the estimate for the island width becomes less a
rate.

VI. DISCUSSION

The choice of rational rotational-transform quadrat
flux minimizing surfaces has a great impact on the struct
of the constructed integrable field. Surfaces may be cho
to focus attention on specific features of the given nonin
grable field, or to avoid regions which are not relevant to
particular application. In addition to the features already d
played in the previous section, some additional applicati
may be mentioned.

We may approximate the separatrix of a low-order isla
chain by constructing quadratic-flux minimizing surfac
with rotational-transforms that approach the rationality of t
low-order island chain. For example, the surfaces with ra
nalities corresponding to (n,m)5(35,17),(37,18),(39,19),
(41,20), . . . will lie just outside the separatrix of the
(n,m)5(2,1) island chain to one side, and the surfaces w
(n,m)5(35,18),(37,19),(39,20),(41,21), . . . will lie just
outside the separatrix to the other. Surfaces may be cho
that automatically locate the regions outside major sep
trices, and thus the regions of the nonintegrable field
which, to a good approximation, straight-field-line coord
nates may be constructed.

KAM surfaces of the nonintegrable field may be a
proximated by constructing quadratic-flux minimizing su

FIG. 5. ~a! ~left! Resonant perturbations with (n,m)5(2,1),(3,1) shown
with solid lines, and theq profile shown with dashed line.~b! ~right! The
Poincare´ plot in new coordinates showing (n,m)5(2,1),(3,1) island chains
with the (2,1) and (3,1) rational surfaces and estimated island widths p
ted as solid lines on the right. Coordinates correspond to those show
Fig. 4.
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faces with rotational transforms that approach certain irra
nals, in particular the noble irrationals. By locating the KA
surfaces, we may construct coordinates that neatly comp
mentalize regions of chaos. Also, by constructing a seque
of quadratic-flux minimizing surfaces with rotationa
transforms approaching certain irrationals, we obtain
method by which the existence of KAM surfaces may
predicted. The action-gradient parameter determined du
the construction of each quadratic-flux minimizing surface
directly related to the resonant perturbation harmonic am
tude and thus the island width.10 By estimating the degree o
island overlap for high-order island chains adjacent to ir
tional surfaces, we may determine whether the associ
KAM surface exists, or whether overlapping island cha
have produced chaos in that region of space.17

The dominant computational expense of this constr
tion is in the magnetic field line tracing. This cost is dete
mined partly by the accuracy of the Fourier representati
required. In this calculation, about 200 to 300 toroidal tra
sits were required to locate a family of periodic pseud
orbits and thus describe each surface. By exploiting the
riodicity of the field lines, high-order rational rotationa
transform surfaces require approximately the same am
of magnetic field line tracing as low-order rational rotation
transform surfaces.18 This number of transits provides th
accuracy required for the purpose of demonstration, but
general applications, where less accuracy may suffice, fe
toroidal transits will be required.

VII. CONCLUSION

We have demonstrated a computationally efficient, th
retically insightful, and natural method of understandi
nearly integrable magnetic fields and constructing flux co
dinates. A nearby integrable field is constructed which m
mizes the quadratic-flux functional on rational surfaces a
the Fourier terms of the perturbation from integrability a
determined. The estimates for the island widths provided
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the shear and perturbation harmonic amplitudes agree
well with detailed Poincare´ plots. The flexibility of the ap-
proach has been demonstrated by constructing a nearby
grable magnetic field which closely coincides with the orig
nal magnetic field in regions where the island content is lo
The present algorithm may be combined with other alg
rithms to locate rational flux surfaces, to quickly estima
island widths, to reliably locate high-order flux surfaces a
jacent to low-order islands of significant width, and to loca
the periodicX andO points of island chains.
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