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Ideal magnetohydrodynamic ballooning stability boundaries
in three-dimensional equilibria a…
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The impact of three-dimensional geometry on ideal magnetohydrodynamic ballooning mode
stability is studied. By using a class of ‘‘local 3D equilibria’’@C. C. Hegna, Phys. Plasmas7, 3921
~2000!#, the effects of plasma shaping, profile variations and symmetry on local plasma physics
properties can be addressed. As an example, a local helical axis equilibrium case is constructed that
models the magnetic field spectrum of a quasihelically symmetric stellarator. In this case, the
magnetic harmonic structure of the local shear~which can be manipulated via changes in the
magnetic geometry! has an important impact on the stability boundaries and eigenvalue properties
of three-dimensional equilibria. The presence of symmetry breaking components in the local shear
produces localized field-line-dependent ballooning instabilities in regions of small average shear.
These effects lower first ballooning stability thresholds and can eliminate the second stability
regime. A geometric interpretation of these results is given. ©2002 American Institute of Physics.
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I. INTRODUCTION

Understanding the physical processes that limit
plasma stored energy in three-dimensional~3D! configura-
tions is one of the principal tasks to be addressed in ste
ator research. In theoretical studies of particular configu
tions, local criterion deduced from ideal magnetohyd
dynamic ~MHD! ballooning and Mercier mode theory a
often used to predictb-limits of stellarators.1–7 In this paper,
we use local 3D equilibria8 to study generic ideal MHD bal
looning stability properties of three-dimensional configu
tions. Previous calculations9 have shown that the presence
three-dimensional effects can have dramatic effects on
looning stability boundaries. In this work, we expand up
this study through an examination of the field line depe
dence of the ballooning mode eigenvalue and show how
impacts the ability to find second ideal MHD ballooning s
bility regimes.

The difficult aspect of studying the role of thre
dimensional shaping on local mode properties is the gen
tion of three-dimensional equilibria. There is no rigoro
proof of the existence of three-dimensional equilibria w
nested topologically toroidal magnetic surfaces.10 In general,
global solutions to the magnetostatic equilibrium equatio
require numerical calculations. Using a computational
proach to perform profile and parameters scans of th
dimensional equilibria is time consuming if not impossib
since there is no general procedure for specifying 3D eq
libria. This is in contrast to studies of symmetric syste
where Grad–Shafranov theory guarantees the existenc

a!Paper BI1 4, Bull. Am. Phys. Soc.46, 20 ~2001!.
b!Invited speaker. Electronic mail: hegna@cptc.wisc.edu
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toroidal equilibria. Methods have been developed to stu
the effect of axisymmetric shaping and profile variations
local mode stability for applications to tokamaks by gener
ing sequences of solutions to the Grad–Shafranov equa
local to a magnetic surface of interest.11–13 These studies
have been extended to three-dimensional systems by ex
itly solving the three-dimensional MHD equilibria equation
on a particular magnetic surface.8,14 By application of this
technique, one is able to construct stability boundaries
modes localized to magnetic surfaces as functions of th
dimensional shaping parameters and plasma profiles. An
ample of this analysis allows generation of generalizedŝ–a
curves to denote stability boundaries as functions of plas
profiles whereŝ and a are respectively dimensionless me
sures of the flux surface averaged magnetic shear and p
sure gradient.9,11,12

There are important differences in the theory of ide
MHD ballooning modes in three-dimensional configuratio
with respect to axisymmetric devices. Using the conve
tional WKB-ballooning formalism in the short waveleng
limit, the ballooning equation appears as an ordinary diff
ential equation to be solved on each field line for a giv
radial wave number in the incompressible limit.15 This re-
sults in a local dispersion relation for the ballooning equat
eigenvalue as a function of magnetic surface, field line a
wave vector. The characteristics of the associated eiko
equation can be written in Hamiltonian form. If the config
ration under consideration has a continuous symmetry,
ballooning eigenvalue is independent of field line. In th
case, the corresponding Hamiltonian equations are integr
and the WKB quantization condition can be used to pred
the ballooning mode spectrum. However, for thre
dimensional configurations, this is not the case and the us
4 © 2002 American Institute of Physics

 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



sh

n
e
b
gl
ba
th

ta
e
o

s
rie

ry
he
in
b

-
m
re
in

e
ee
la

m
e

n

d

ie

s
th
in

th
th

in

y
f

s
tr
I

the

ies.

or-

in
ear
d

e

c
h–
-

ned
at

es
nal
a-

o-
-
lar
ng

ia

lar

els
ric
es

2015Phys. Plasmas, Vol. 9, No. 5, May 2002 Ideal magnetohydrodynamic ballooning stability . . .
a local dispersion relation to estimate the instability thre
old is problematic.15

The field line dependence of the local ballooning eige
value is unique to three-dimensional systems. This dep
dence appears when the geometrical coefficients of the
looning equation are functions of at least two helical an
coordinates of incommensurate helicity. In this case, the
looning equation eigenmode becomes localized along
field line even in the limit of zero average shear (ŝ50).9,16

This behavior, as pointed out by Dewar and co-workers,16,17

resembles the Anderson localization process of solid s
physics where electron transport is inhibited by localiz
electron wave functions due to the presence of impurities
an otherwise periodic lattice.18 Anderson localized mode
have a remarkable effect on ballooning stability bounda
as measured by generalizedŝ–a curves of the ballooning
mode theory.9 In particular, the presence of a symmet
breaking contribution to the local shear for a model quasi
lically symmetric configuration lowers the critical gradient
the first stability regime and can eliminate the second sta
ity region.

In Sec. II, the construction of local 3D equilibria is in
troduced and a particular example of the model is para
etrized. Ballooning stability calculations for this model a
carried out in Sec. III. A discussion of the results is given
Sec. IV.

II. LOCAL HELICAL AXIS EQUILIBRIA

The motivation for using local equilibria is to avoid th
necessity of constructing global solutions to the thr
dimensional magnetostatic equilibrium equations. Calcu
tions of global solutions to the 3D MHD equilibria proble
are nontrivial; however, for calculating the local eigenvalu
of ballooning stability theory, only equilibrium informatio
on the magnetic surface is required.

Local equilibria are prescribed by two sets of data:~1!
two profile quantities, and~2! the shape of the magnetic fiel
line trajectories on the magnetic surfacec0 . In this work, the
two profile quantities are choosen to be the pressure grad
dp/dc and rotational transform gradientdi/dc at the mag-
netic surface wherec is the toroidal flux function that label
the magnetic surfaces. Alternatively, one could choose
net parallel current as one of the free functions and determ
di/dc from the current and pressure gradient by taking
appropriate flux surface average of an identity relating
local shear to plasma current and shaping effects@see Eq.
~6!#.

The three-dimensional shaping is specified by the
verse magnetic coordinate mapping functionX(u,z) and the
rotational transformi0 on the magnetic surface labeled b
c5c0 . Here, u and z are, respectively, any choice o
straight-field-line poloidal and toroidal angles@the magnetic
field is writtenB5¹c3¹(u2iz)#. We refer to these data a
the magnetic geometry since it completely specifies the
jectory of a magnetic field line on the magnetic surface.
particular, the unit tangent vectorb̂ given by
Downloaded 24 Apr 2002 to 198.35.4.102. Redistribution subject to AIP
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b̂[
]zX1i0]uX

u]zX1i0]uXu
~1!

and unit normal vectorn̂ given by

n̂[
]uX3]zX

u]uX3]zXu
5

¹c

u¹cu
~2!

are calculated from derivatives ofX(u,z), where ]uX
[]X/]u and ]zX[]X/]z. Knowledge ofX(u,z) allows
one to calculate key geometric quantities associated with
magnetic field, such as the normal,kn , and geodesic,kg ,
curvatures which enter in pressure driven instability stud
These are given by

kn5n̂•~ b̂•¹!b̂, ~3!

kg5b̂3n̂•~ b̂•¹!b̂. ~4!

An additional magnetic geometry quantity is the normal t
sion ~‘‘twist’’ of the field lines! given by

tn52n̂•~ b̂•¹!~ b̂3n̂!, ~5!

which is also important in ballooning theory since it enters
the relation for determining the local shear. The local sh
s5(b̂3n̂)•¹3(b̂3n̂) is related to the normal torsion an
parallel current by the identity

s5
J"B

B2 22tn , ~6!

usingn̂•¹3n̂50 where the parallel current is the sum of th
net current and the Pfirsch–Schlu¨ter current,

J"B

B2 5s1
dp

dc
l. ~7!

The quantitys5^J•B&/^B2& is constant on the magneti
surface,dp/dc is the pressure gradient and the Pfirsc
Schlüter coefficient,l, is calculated from the magnetic dif
ferential equation,

B•¹l52kg

u¹cu
B

, ~8!

where all the terms on the right-hand side are determi
from X(u,z).8 A constraint on the parametrization is th
solutions to magnetic differential equations, such as Eq.~8!,
avoid ‘‘small denominators’’ that appear at rational surfac
by either considering a magnetic surface with an irratio
value of i0 or demand that the magnetic field geometry p
rametrization,X(u,z), not produce resonant Fourier comp
nents if i0 is rational. Global solutions to the MHD equilib
rium equations in three dimensions require that singu
solutions be avoided at every rational surface. This stro
constraint is the underlying reason why 3D MHD equilibr
solutions with finite pressure are difficult to obtain.19 Since
only a single surface is needed in this work, the singu
current problem is not as serious an issue here.

In this work, we consider a specific case that mod
a magnetic surface in a quasihelically symmet
configuration,20 where a single Fourier harmonic dominat
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2016 Phys. Plasmas, Vol. 9, No. 5, May 2002 C. C. Hegna and S. R. Hudson
the magnetic field spectrum.21 In particular, the inverse map
ping quantityX(u,z) is specified in cylindrical coordinate
@R,f,Z#5@R(u,z),2z,Z(u,z)# by

R5R01r0 cos~u!1D cos~Nz!1
2R0r0

N2D
sin~Nz!sin~u!,

~9!

Z5r0 sin~u!1D sin~Nz!2
2R0r0

N2D
sin~Nz!cos~u!, ~10!

where the length scalesD, R0 , andr0 and the toroidal peri-
odicity parameterN are input to the local equilibria geom
etry. While more general cases exist, we concentrate o
particular limit that models a quasihelically symmetric eq
libria. The orderingsN2D/R0@1.ND/R0 and r0;D are
used. In this case, the magnetic surface is circular to low
order with the center of the circle rotating with the helic
pitch Nz –u. The last terms in Eqs.~9! and ~10! give small
mirror-like corrections that beat with the helical symmet
angle to cancel out the toroidal curvature to leading ord
This has the effect of producing a curvature vector, magn
field spectrum and Pfirsch–Schlu¨ter current spectrum that ar
dominated by the helical angleNz –u, as one would find in
a quasihelically symmetric configuration.20

From Eqs.~1! to ~4!, the normal and geodesic curvatur
are given by

kn52
N2D

R0
2 cos~Nz2u!2

1

R0
cos~2Nz2u!

1OS 1

N2D D , ~11!

kg52
N2D

R0
2 sin~Nz2u!F11

N2D2

R0
2 G1

2r0

R0
sin~Nz!

2
1

R0
sin~2Nz2u!1OS 1

N2D D , ~12!

and are dominated by a single harmonic in the asym
totic limit N2D@R0 @kn'2(N2D/R0

2)cos(Nz2u), kg

'2(N2D/R0
2)sin(Nz2u)#. From Eq.~5!, the normal torsion

is given by

tn52
2

ND
cos~Nz!1

i0

R0
2

N3D2

R0
3 cos2~Nz2u!

1OS 1

N2D D . ~13!

Unlike components of the curvature vector, the normal t
sion is not dominated by a single harmonic. We argue t
the properties described in the geometric expressions for
local helical axis case are generic for all quasisymme
configurations. A considerable amount of work in the stell
ator community has been spent on three-dimensional c
figurations with quasisymmetry since neoclassical trans
is predicted to be superior to the equivalent conventio
stellarator.21 While attention is paid to controlling the mag
netic field spectrum and hence components of the curva
vector in these studies, no particular requirements are
Downloaded 24 Apr 2002 to 198.35.4.102. Redistribution subject to AIP
a
-

st
l

r.
ic

-

-
at
he
c
-
n-
rt
l

re
-

posed on the normal torsion. Therefore, for general thr
dimensional equilibria, the normal torsion is a thre
dimensional function of space and does not share the s
symmetry properties as the magnetic field.

Following the procedure of Ref. 8, the Jacobi
([1/¹c3¹u•¹z), field strength andu¹cu2 can be calcu-
lated. For this case, these are given by

Ag5V̂8F11
N2Dr0

R0
2 cos~Nz2u!1OS D

R0
D G , ~14!

B25
R0

2

~Ag!2 F11OS N2D2

R0
2 D G , ~15!

u¹cu25
r0

2R0
2

~Ag!2 F11OS N2D2

R0
2 D G , ~16!

whereV̂8 is an overall normalization constant.8 Using Eqs.
~8!, ~12!, ~14!–~16!, the Pfirsch–Schlu¨ter coefficient,l, is
derived and given by

l5
2r0V̂8D

R0
2

N2

N2i0
Fcos~Nz2u!2

2r0R0

N2D2 cos~Nz!

1
R0

2N2D
cos~2Nz2u!1OS D

RD G , ~17!

which is dominated by a single harmonic in the asympto
limit N2D@R0 : l'2@2r0DV̂N2/R0

2(N2i)2#cos(Nz2u).
In the limit N2D/R0@1, the curvature vector, field

strength, and Pfirsch–Schlu¨ter current are dominated by th
single helical harmonicNz –u. These quantities are relate
in MHD equilibrium theory. However, note that the norm
torsion contains a large Fourier component with incomm
surate helicity to the harmonic that dominates the curvatu
Namely, the first term in Eq.~13! represents a mirroring term
that enters at leading order. It is the presence of this term
the expression for the local shear that produces a dram
effect on the ballooning stability properties of this equilibr
relative to a completely symmetric equilibrium.

III. BALLOONING STABILITY

A standard ballooning WKB-like ansatz is used
describe the ideal MHD plasma displacement,J
;eiS(x)e21

j(x), wheree!1 andS(x) andj(x) vary as order
unity quantities in space. The propertyB•¹S50 ~which is
consistent withki /k';e!1! with B5¹c3¹(z2iu), im-
plies S can be writtenS5z2iu1 f (c) where i is constant
on the magnetic surface whenz andu are straight-field-line
angles. To leading order in the small parametere, the eigen-
function satisfies

B•¹S u¹Su2

B2 B•¹j D1
dp

dc

1

u¹cu ~kn1kgL!

52rM

u¹Su2

B2 v2j, ~18!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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for the local eigenvaluev2 whererM is the mass density on
the magnetic surface and incompressibility is assumed.15 The
quantity u¹Su2 contains the effect of magnetic shear. Th
quantity is written

u¹Su25
B2

u¹cu2 ~11L2!, ~19!

where

L5
u¹cu2

B E dl

B

B2

u¹cu2 s. ~20!

Applying the orderingN2D/R0@1.ND/R0 for the lo-
cal helical axis case, the ballooning equation becomes

d

dh
~11L2!

dj

dh
1a@cos~h!1L sin~h!#

52v2~11L2!j, ~21!

where h5Nz2u labels points along the field line,V2

5v2rMV̂82/(N2i)2 is the normalized eigenvalue,a
52(dp/dc)(2r0DV̂8/R0)@N2/(N2i)2# is the normalized
pressure gradient and

L~h,x!5E
hk

h
dh@ ŝ2a cos~h!1t0 cos~2h!

1d cos~kh1kx!#, ~22!

where ŝ[(di/dc)@R0r0
2/V̂8(N2i)#, t05N2D2/R0

2, d
54R0 /N(N2i)D, k5N/(N2i), andx[u2iz is the field
line label. In the ordering scheme used here, the normal
geodesic curvatures are dominated by a single harmonic
scribed by the first terms in Eqs.~11! and~12!. However, the
last term inL~h, x! represents the three-dimensional pro
erty of the helical axis equilibria. This term arises from t
first term of the expression for the normal torsion, Eq.~13!.
Note that this term is explicitly field line~x! dependent and
has incommensurate helicity with the helical symme
angle.

Ideal MHD ballooning stability boundaries are prese
when the local eigenvalue satisfiesV250. On the magnetic
surface, the eigenvalue is a function of the radial eigenve
and field-line label:V25V2(hk ,x). In the ballooning equa-
tion, five parameters describe the equilibria. Two of the
parameters,ŝ and a are, respectively, dimensionless me
sures of the rotational transform gradient and pressure gr
ent, and correspond to the two profile quantities required
specification of the local equilibria. The quantitiest0 , d, and
k come from the magnetic geometry specification. In
limit d5t050, the ballooning equation has precisely t
same mathematical structure as the shifted circle equili
used in axisymmetric tokamak studies,11 other than a scaling
factor i0 /(i02N) which accounts for the proper connectio
length in normalizingŝ anda for helically symmetric geom-
etry. In what follows, we sett050 for simplicity. Non-zero
values of t0 alter the stability boundaries quantitativel
however, the same general features of thet050 case are
seen since this term does not introduce symmetry brea
Downloaded 24 Apr 2002 to 198.35.4.102. Redistribution subject to AIP
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terms into the ballooning equation. The factork is only rel-
evant whendÞ0. If the rotational transformi0 is irrational,
k5N/(N2i0) is also irrational.

The most important geometric modification to the thre
dimensional is embodied in the contribution to the loc
shear proportional tod. Solutions of the stability boundarie
are plotted in Fig. 1 for a range of values ford. The stability
curves for thed50 case is equivalent to the standard sy
metric tokamak-like case where forŝ.0 there are two mar-
ginal stability points at fixedŝ that demark the first and sec
ond stability regimes. Asd increases, generally the firs
stability boundary degrades. More strikingly, asd increases
there is a significant deterioration of the second stability
gime, and for large enoughd there is only one ballooning
stability boundary for a givenŝ. Additionally, ballooning in-
stability can occur atŝ50; the symmetry breaking variation
in the local shear generally determine the stability bou
aries in the smallŝ region.

The behavior of the ballooning mode properties are d
ferent in the large-ŝ @ ŝ;O(1)# region from the small-ŝ re-
gion of parameter space. At largeŝ, the mode has a stron
ballooning character; it is localized to a narrow region inh
where the curvature is unfavorable. In this region, the av
age shear,ŝ, dominates other contributions to the local she
and is responsible for the localization along the field lin
Since the symmetry breaking term,d, does not play much of
a role at largeŝ, the ballooning stability boundaries ar
weakly dependent upond.

In the small ŝ region of symmetric tokamak-like con
figurations, the mode extent alongh is large compared to 2p.

FIG. 1. Ideal MHD stability boundaries of the ballooning equation, Eq.~21!,
with t050, and k5p2/8 for different values of the symmetry breakin
factord. The solid, dotted, dashed, and dashed–dotted curves correspo
d50, 0.15, 0.30, 0.45, respectively. For each value ofd, ŝ, anda a search is
done over all possible values of the field line variablex andhk to find the
most unstable eigenvalue. If at least one field line has an unstable
eigenvalue, the region of theŝ–a parameter space is considered to be u
stable.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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For this case, a multiple scale analysis can be applied
solve for the ballooning equation.22 Using this technique, one
finds that the mode structure is described by an oscilla
along the field line, which describes the ballooning effe
modulating an extended envelope which has widthO(1/ŝ).
An important aspect of this analysis is a description of
second stability region at largea. However, when symmetry
breaking contributions to the local shear enter, the exten
envelope feature of the mode shape is disrupted.9 In the pres-
ence of non-zerod, the mode tends to be more localize
alongh in the bad curvature regions. This has the property
lowering the first stability region and eliminating the seco
stability region at large enoughd.

Another aspect of three-dimensional equilibria is dem
strated in Fig. 2. In this figure, the solid curve represents
d50 case corresponding to the symmetric case. The eig
values for this case are independent of field line label. T
remainder of the stability curves correspond to the comm
value ofd50.45 ~the magnetic geometry is fixed! for differ-
ent magnetic field lines on the magnetic surface as labele
the value ofx. In particular, for the field line choicex
52.55, all equilibria withŝ,0.5 have stable ballooning e
genvalues. However, for the same magnetic geometry a
field line choicex50, at sufficiently largea nearly every
equilibrium is unstable forŝ.20.2. Generally speaking, in
small ŝ regions every magnetic surface contains a mixture
field lines with both stable and unstable local eigenvalue

Cuthbert and Dewar pointed out that the effect of inco
mensurate helicities in general three-dimensional equilib

FIG. 2. Ideal MHD ballooning stability boundaries for fixed values oft0

50, k5p2/8, hk50, andd50.45 at various choices of magnetic field lin
label. The solid line corresponds to thed50 case where no symmetr
breaking contribution is present and the local eigenvalues are independe
field line. The dotted, dashed, dashed–dotted, and dashed–triple-d
curves correspond tox50, 0.85, 1.70, 2.55, respectively withd50.45. The
presence of nonzerod introduces a field line dependent local eigenvalu
Each field line has a dramatically differentŝ–a stability boundary indicat-
ing the general property that ballooning eigenvalues are field line depen
Downloaded 24 Apr 2002 to 198.35.4.102. Redistribution subject to AIP
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is to produce localized ballooning eigenfunctions even
small ŝ regions.16 What is demonstrated here is that the
localized eigenfunctions can significantly effect the ope
tional ballooning stability boundaries.9

IV. DISCUSSION

In this work, the role of symmetry in various magnet
geometry quantities is addressed for the ideal MHD ballo
ing stability properties of three-dimensional equilibria. T
general features indicate that the presence of incomme
rate helicities in the local shear and magnetic field line c
vature produce localized eigenfunctions that can reduce i
MHD ballooning mode instability thresholds and elimina
second stability regimes. An example of this behavior is
plicitly demonstrated through the construction of local 3
equilibria8 that model quasisymmetric configurations whe
the curvature is dominated by a single harmonic, while
local shear contains harmonics of incommensurate helic
While a particular example is used to illustrate the ideal b
looning mode stability properties, we hypothesize that
observed behavior is somewhat generic to three-dimensi
systems.

A geometric interpretation of these results can be ide
fied. Ideal ballooning instabilities tend to emerge when
gions of small local shear coincide with regions of unfavo
able curvature. In axisymmetric tokamak systems, th
regions are functions of poloidal angle only and ideal b
looning instabilities occur when the local shear is small
the low field side.12 As the pressure gradient increases, t
Pfirsch–Schlu¨ter current modification of the local shea
causes the small shear region to migrate from the outbo
side towards a region away from the bad curvature. At la
enough pressure gradient, the ideal ballooning mode is
bilized and the second stability regime arises. In a perfe
helically symmetric equilibrium, a similar behavior would b
expected.14 However, in three-dimensional configurations t
situation is more complicated. As shown here, the prese
of an incommensurate helical component of the local sh
produces a configuration where the regions of small sh
and unfavorable curvature overlap at distinct points on
magnetic surface. Since only particular field lines inters
these regions, the ballooning eigenvalues are much m
field line dependent. Unlike the axisymmetric case,
Pfirsch–Schlu¨ter current-induced modulation of the loc
shear cannot remove these regions in general; thus a con
ration without a second stability regime results. This is p
ticularly true in the smallŝ region where the helical conten
of the local shear determines the stability boundaries.

The important practical question to be answered is:
the local stability criteria derived from the ballooning equ
tion really determine the operational limits? Highly loca
ized, field line dependent ballooning eigenmodes typica
are the most susceptible to instability. Due to their high
localized structure they may not have practical implicatio
for high-b stellarator operation. As pointed out in Ref. 1
constructions of global modes from the local ballooni
properties of three-dimensional equilibria is problemat
Hence, the instability threshold of a true global mode of t

t of
ted

.

nt.
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2019Phys. Plasmas, Vol. 9, No. 5, May 2002 Ideal magnetohydrodynamic ballooning stability . . .
three-dimensional system may not correspond to the
dicted instability threshold described by the local theory. A
ditionally, finite Larmor radius effects can also effect t
stability properties of highly localized structures. It may
the case that the use of local MHD stability criterion to d
termine operational limits in stellarators is too pessimis
We leave this speculation as a motivation for future work
this topic.
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