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The impact of three-dimensional geometry on ideal magnetohydrodynamic ballooning mode
stability is studied. By using a class of “local 3D equilibrigC. C. Hegna, Phys. Plasm@s3921
(2000], the effects of plasma shaping, profile variations and symmetry on local plasma physics
properties can be addressed. As an example, a local helical axis equilibrium case is constructed that
models the magnetic field spectrum of a quasihelically symmetric stellarator. In this case, the
magnetic harmonic structure of the local shéahich can be manipulated via changes in the
magnetic geometjyhas an important impact on the stability boundaries and eigenvalue properties
of three-dimensional equilibria. The presence of symmetry breaking components in the local shear
produces localized field-line-dependent ballooning instabilities in regions of small average shear.
These effects lower first ballooning stability thresholds and can eliminate the second stability
regime. A geometric interpretation of these results is given.2@2 American Institute of Physics.
[DOI: 10.1063/1.1446037

I. INTRODUCTION toroidal equilibria. Methods have been developed to study
the effect of axisymmetric shaping and profile variations on
Understanding the physical processes that limit thdocal mode stability for applications to tokamaks by generat-
plasma stored energy in three-dimensio(&D) configura- ing sequences of solutions to the Grad—Shafranov equation
tions is one of the principal tasks to be addressed in stellatocal to a magnetic surface of interést*® These studies
ator research. In theoretical studies of particular configurahave been extended to three-dimensional systems by explic-
tions, local criterion deduced from ideal magnetohydro-itly solving the three-dimensional MHD equilibria equations
dynamic (MHD) ballooning and Mercier mode theory are on a particular magnetic surfaté? By application of this
often used to predigs-limits of stellarators:™” In this paper, technique, one is able to construct stability boundaries for
we use local 3D equilibrfato study generic ideal MHD bal- modes localized to magnetic surfaces as functions of three-
looning stability properties of three-dimensional configura-dimensional shaping parameters and plasma profiles. An ex-
tions. Previous calculatioA®iave shown that the presence of ample of this analysis allows generation of generalized
three-dimensional effects can have dramatic effects on baturves to denote stability boundaries as functions of plasma
looning stability boundaries. In this work, we expand uponprofiles whered and « are respectively dimensionless mea-
this study through an examination of the field line depen-sures of the flux surface averaged magnetic shear and pres-
dence of the ballooning mode eigenvalue and show how thisure gradient:***?
impacts the ability to find second ideal MHD ballooning sta-  There are important differences in the theory of ideal
bility regimes. MHD ballooning modes in three-dimensional configurations
The difficult aspect of studying the role of three- with respect to axisymmetric devices. Using the conven-
dimensional shaping on local mode properties is the generaional WKB-ballooning formalism in the short wavelength
tion of three-dimensional equilibria. There is no rigorouslimit, the ballooning equation appears as an ordinary differ-
proof of the existence of three-dimensional equilibria withential equation to be solved on each field line for a given
nested topologically toroidal magnetic surfaé®fm general, radial wave number in the incompressible lifitThis re-
global solutions to the magnetostatic equilibrium equationssults in a local dispersion relation for the ballooning equation
require numerical calculations. Using a computational apeigenvalue as a function of magnetic surface, field line and
proach to perform profile and parameters scans of threayave vector. The characteristics of the associated eikonal
dimensional equilibria is time consuming if not impossible equation can be written in Hamiltonian form. If the configu-
since there is no general procedure for specifying 3D equiration under consideration has a continuous symmetry, the
libria. This is in contrast to studies of symmetric systemsballooning eigenvalue is independent of field line. In this
where Grad—Shafranov theory guarantees the existence eése, the corresponding Hamiltonian equations are integrable
and the WKB quantization condition can be used to predict

apaper BI1 4, Bull. Am. Phys. Sod6, 20 (200D). the bgllooning .modg spectrum. However, for three-
Pnvited speaker. Electronic mail: hegna@cptc.wisc.edu dimensional configurations, this is not the case and the use of
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a local dispersion relation to estimate the instability thresh- 9 X+ 19X
old is problematic?® b T3, X+ tadX]| (1)
The field line dependence of the local ballooning eigen- ¢ ¢
value is unique to three-dimensional systems. This deperg&nd unit normal vecton given by
dence appears when the geometrical coefficients of the bal-
: . ; . IXXIX V¢
looning equation are functions of at least two helical angle @ = 2
coordinates of incommensurate helicity. In this case, the bal- [96XX 3 X| |V

looning equation eigenmode becomes localized along thgre calculated from derivatives oX(6,{), where 9,X

field line even in the limit of zero average she&=0).>*°  _ 5x/5¢ and 3, X=0aXIa{. Knowledge ofX(6,¢) allows
This behavior, as pointed out by Dewar and co-wor .F§, one to calculate key geometric quantities associated with the
resembles the Anderson localization process of solid Statﬁnagnetic field, such as the normad,, and geodesici,,
physics where electron transport is inhibited by localizedeyrvatures which enter in pressure driven instability studies.
electron wave functions due to the presence of impurities 0fpese are given by

an otherwise periodic latticé. Anderson localized modes

have a remarkable effect on ballooning stability boundaries anﬁ-(B-V)B, 3
as measured by generaliz&d« curves of the ballooning R o
mode theory. In particular, the presence of a symmetry  kg=bXf-(b-V)b. (4)

breaking contribution to the local shear for a model quasihe- . . o
. . ' : " . “An additional magnetic geometry quantity is the normal tor-
lically symmetric configuration lowers the critical gradient in

the first stability regime and can eliminate the second stabil-smn( twist” of the field lines) given by

ity region. _ o 70=—0-(b-V)(bxf), (5)

In Sec. Il, the construction of local 3D equilibria is in-
troduced and a particular example of the model is paramwhich is also important in ballooning theory since it enters in
etrized. Ballooning stability calculations for this model arethe relation for determining the local shear. The local shear
carried out in Sec. lll. A discussion of the results is given ins=(bXA)-V X (bXA) is related to the normal torsion and

Sec. IV. parallel current by the identity
J-B
S=——27,, (6)
B
Il. LOCAL HELICAL AXIS EQUILIBRIA usingf- VX i=0 where the parallel current is the sum of the

L . S . net current and the Pfirsch—Sctducurrent,
The motivation for using local equilibria is to avoid the

necessity of constructing global solutions to the three- J-B dp

dimensional magnetostatic equilibrium equations. Calcula- ?:‘”L@)" @)
tions of global solutions to the 3D MHD equilibria problem

are nontrivial; however, for calculating the local eigenvaluesThe quantityc=(J-B)/(B?) is constant on the magnetic
of ballooning stability theory, only equilibrium information surface,dp/d¢ is the pressure gradient and the Pfirsch—

on the magnetic surface is required. Schiter coefficient,\, is calculated from the magnetic dif-
Local equilibria are prescribed by two sets of dath: ~ ferential equation,

two profile quantities, an(®) the shape of the magnetic field IV

line trajectories on the magnetic surfagg. In this work, the B-VA= ZKQT, (8)

two profile quantities are choosen to be the pressure gradient
dp/d¢ and rotational transform gradiedt/dy at the mag-  where all the terms on the right-hand side are determined
netic surface where is the toroidal flux function that labels from X(6,£).% A constraint on the parametrization is that
the magnetic surfaces. Alternatively, one could choose theolutions to magnetic differential equations, such as(By.
net parallel current as one of the free functions and determingyoid “small denominators” that appear at rational surfaces
di/d¢ from the current and pressure gradient by taking thepy either considering a magnetic surface with an irrational
appropriate flux surface average of an identity relating thesalue of ., or demand that the magnetic field geometry pa-
local shear to plasma current and shaping effgsé® Eq. rametrizationX(6,¢), not produce resonant Fourier compo-
©6)]. nents if, is rational. Global solutions to the MHD equilib-
The three-dimensional shaping is specified by the intium equations in three dimensions require that singular
verse magnetic coordinate mapping funct{¥,{) and the  solutions be avoided at every rational surface. This strong
rotational transform, on the magnetic surface labeled by constraint is the underlying reason why 3D MHD equilibria
Y=yo. Here, 6 and { are, respectively, any choice of solutions with finite pressure are difficult to obtathSince
straight-field-line poloidal and toroidal anglgthe magnetic  only a single surface is needed in this work, the singular
field is writtenB=V ¢yX V(60— ¢{) ]. We refer to these data as current problem is not as serious an issue here.
the magnetic geometry since it completely specifies the tra-  |n this work, we consider a specific case that models
jECtOI'y of a magnetic field line on the magnetic surface. Ing magnetic surface in a quasihe”ca”y Symmetric
particular, the unit tangent vectorgiven by configuratior?® where a single Fourier harmonic dominates
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the magnetic field spectrufii.in particular, the inverse map- posed on the normal torsion. Therefore, for general three-
ping quantityX(6,¢) is specified in cylindrical coordinates dimensional equilibria, the normal torsion is a three-

[R,¢,Z2]1=[R(6,0),—¢,Z2(6,0)] by dimensional function of space and does not share the same
2Ryp symmetry properties as the magnetic field.
oFO0 . . i .
R=Ry+ po cog 0) + A cogN{) + ——— sin(N{)sin( 6), Following the procedure of Ref. 8, the Jacobian
oo N°A (=1NV¢XV V), field strength andV |? can be calcu-
© lated. For this case, these are given by
. . 2Ropo 2
Z=posin(6) + A sin(N¢) — 7= sin(N¢)cog ), (10) Jg=v|1+ N:zpocos(Ng— 0)+O(R£”’ 149
0 0
where the length scales, Ry, andpg and the toroidal peri- ) -
odicity pgrameterN are input to the llocal equilibria geom- 2_ Ro 140 N°A (15
etry. While more general cases exist, we concentrate on a ( \/5)2 R(Z) '
particular limit that models a quasihelically symmetric equi-
libria. The orderingsN?A/Ry>1>NA/R, and po~A are pgRg N2A2
used. In this case, the magnetic surface is circular to lowest IVl,//|2=(\/§)2 1+0(?> : (16)
0

order with the center of the circle rotating with the helical

ptih N_g_a' The I_ast terms in Eqs{_9) and(lO)_ give small _whereV’ is an overall normalization constghtJsing Eqs.
mirror-like corrections that beat with the helical symmetric ®), (12), (14—(16), the Pfirsch—Schiter coefficient, is
angle to cancel out the toroidal curvature to leading Orderde;ived ’and given ’by "
This has the effect of producing a curvature vector, magnetic

field spectrum and Pfirsch—Schdu current spectrum that are 2poV'A  N? 2poRo
dominated by the helical angk/—6, as one would find in = A N CogN{—0)— [zpz COSNS)
a quasihelically symmetric configuratiéh. 0 0
From Egs.(1) to (4), the normal and geodesic curvatures Ry A
are given by +mCOS{ZN§— 0)+0O ﬁ”’ a7
K= — @COS(NQV_ 6)— icos(ZNg— 9) which is dominated by a sirAlgIe harmonic in the asymptotic
Ro Ro limit N?A>Ry: A\~ —[2poAVNZ/R3(N— ¢)2]cosNZ— ).
1 In the limit N?A/Ry,>1, the curvature vector, field
+(’)( m) (11)  strength, and Pfirsch—Schéu current are dominated by the
single helical harmonidN{—#. These quantities are related
NZ2A N2A2 0o in MHD equilibrium theory. However, note that the normal
Kg=— R—gsm(Ng— )| 1+ R—(Z) + R—OSIn(Ng) torsion contains a large Fourier component with incommen-

surate helicity to the harmonic that dominates the curvature.
1 1 Namely, the first term in Eq13) represents a mirroring term
- R—OSin(ZN{— 0>+O(W)’ (12 that enters at leading order. It is the presence of this term in
the expression for the local shear that produces a dramatic
and are dominated by a single harmonic in the asympeffect on the ballooning stability properties of this equilibria
totic limit N2A>R, [x,~—(N2A/R3)cosN;—6), kg  relative to a completely symmetric equilibrium.
~ —(NZA/RS)sin(Ng"— 0)]. From Eq.(5), the normal torsion

is given by
2 o NB3A? l1l. BALLOONING STABILITY
ThW=" mCOS{Né’)"' R—— —R3—COS?(N§— 9)
0 0 A standard ballooning WKB-like ansatz is used to
1 describe the ideal MHD plasma displacemeng
+0 N2A>' (13 —&iSMe'¢(x), wheree<1 andS(x) and&(x) vary as order

) unity quantities in space. The propemy VS=0 (which is
Unlike components of the curvature vector, the normal tor¢onsistent withk, /k, ~e<1) with B=V X V({—¢6), im-
sion is not_dominatgd by_ a single harmonic. We argue thagjies S can be writtenS=¢— .6+ () where. is constant
the properties described in the geometric expressions for the the magnetic surface whenand 6 are straight-field-line

local helical axis case are generic for all quasisymmetrigangles. To leading order in the small parametehe eigen-
configurations. A considerable amount of work in the stellar,nction satisfies

ator community has been spent on three-dimensional con-

figurations with quasisymmetry since neoclassical transpor‘g v AER B.ve|+ @ L A

is predicted to be superior to the equivalent conventional” BZ ¢ dy |V (rnt Kgh)

stellarato! While attention is paid to controlling the mag-

netic field spectrum and hence components of the curvature [Vs|? 2

vector in these studies, no particular requirements are im- T btz @ & (18
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for the local eigenvalue? wherep,, is the mass density on 1.0
the magnetic surface and incompressibility is assutathe
quantity [VS|? contains the effect of magnetic shear. This

quantity is written 0.8
B2
where
o 041
_|vy? B?
B f B |V¢|2S (20)
0.2r

Applying the orderingN?A/Ry>1>NA/R, for the lo-
cal helical axis case, the ballooning equation becomes

0.0 =

d 1+A2 d§+ +A i
3 (A7) >+ alcos 7)-+ A sin )]
, , -0.2 -
= -0 (1+A%)¢, (21) 00 02 04 06 08 1.0 1.2 1.4

where 7=N¢— 6 labels points along the field lineQ)?

- wszV’z/(N _ L)Z is the normalized eigenvaluex FI_G. 1. Ideal MHD stability bou_ndaries of the ballooning equation,(Ed;),_
_ ~, 2 o . with 7,=0, and k= 7?/8 for different values of the symmetry breaking
=—(dp/di)(2poAV'IRp)[N/(N—1¢)“] is the normalized tactor 5. The solid, dotted, dashed, and dashed—dotted curves correspond to
pressure gradient and 5=0, 0.15, 0.30, 0.45, respectively. For each valué,&f ande a search is

done over all possible values of the field line variagland », to find the

7 R most unstable eigenvalue. If at least one field line has an unstable local
A(n,x)=| dn[S5—acogn)+ rycog27) eigenvalue, the region of tte-a parameter space is considered to be un-
K stable.
+é6cogkntky)], (22

where éE(dL/dzp)[Ropg/V’(N— )], 7=N?A%/R3, & terms into the ballooning equation. The factois only rel-
=4Ry/N(N—)A, k=N/(N—1¢), andy=6—{ is the field evant whens# 0. If the rotational transformy is irrational,
line label. In the ordering scheme used here, the normal ankl=N/(N—¢y) is also irrational.
geodesic curvatures are dominated by a single harmonic de- The most important geometric modification to the three-
scribed by the first terms in Eq€ll) and(12). However, the  dimensional is embodied in the contribution to the local
last term inA(#, x) represents the three-dimensional prop-shear proportional t@. Solutions of the stability boundaries
erty of the helical axis equilibria. This term arises from theare plotted in Fig. 1 for a range of values f@rThe stability
first term of the expression for the normal torsion, ELB). curves for thes=0 case is equivalent to the standard sym-
Note that this term is explicitly field linéy) dependent and metric tokamak-like case where f&r-0 there are two mar-
has incommensurate helicity with the helical symmetryginal stability points at fixe® that demark the first and sec-
angle. ond stability regimes. AsS increases, generally the first
Ideal MHD ballooning stability boundaries are presentstability boundary degrades. More strikingly, &sncreases
when the local eigenvalue satisfi@¥=0. On the magnetic there is a significant deterioration of the second stability re-
surface, the eigenvalue is a function of the radial eigenvectogime, and for large enough there is only one ballooning
and field-line label)?=Q2( 7, x). In the ballooning equa- stability boundary for a give8. Additionally, ballooning in-
tion, five parameters describe the equilibria. Two of thesestability can occur a&=0; the symmetry breaking variations
parametersSs and « are, respectively, dimensionless mea-in the local shear generally determine the stability bound-
sures of the rotational transform gradient and pressure gradaries in the smal§ region.
ent, and correspond to the two profile quantities required for  The behavior of the ballooning mode properties are dif-
specification of the local equilibria. The quantities 6, and  ferent in the larg&s [5~O(1)] region from the smalé re-
k come from the magnetic geometry specification. In thegion of parameter space. At lar§e the mode has a strong
limit §=7,=0, the ballooning equation has precisely theballooning character; it is localized to a narrow region;n
same mathematical structure as the shifted circle equilibriazvhere the curvature is unfavorable. In this region, the aver-
used in axisymmetric tokamak studiésyther than a scaling age sheas, dominates other contributions to the local shear
factor .o/ (to— N) which accounts for the proper connection and is responsible for the localization along the field line.
length in normalizings and « for helically symmetric geom-  Since the symmetry breaking ter#,does not play much of
etry. In what follows, we set,=0 for simplicity. Non-zero a role at large§, the ballooning stability boundaries are
values of 7y alter the stability boundaries quantitatively, weakly dependent upoé
however, the same general features of tie=0 case are In the small§ region of symmetric tokamak-like con-
seen since this term does not introduce symmetry breakinfigurations, the mode extent alongs large compared to2
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1.0 is to produce localized ballooning eigenfunctions even in
small 5 regions!® What is demonstrated here is that these
localized eigenfunctions can significantly effect the opera-

0.8r tional ballooning stability boundariés.

0.6 IV. DISCUSSION

In this work, the role of symmetry in various magnetic
o 04k geometry quantities is addressed for the ideal MHD balloon-
ing stability properties of three-dimensional equilibria. The
general features indicate that the presence of incommensu-

0.2 rate helicities in the local shear and magnetic field line cur-
vature produce localized eigenfunctions that can reduce ideal
MHD ballooning mode instability thresholds and eliminate

0.0 second stability regimes. An example of this behavior is ex-
plicitly demonstrated through the construction of local 3D
equilibri? that model quasisymmetric configurations where

-0.2 the curvature is dominated by a single harmonic, while the
0.0 local shear contains harmonics of incommensurate helicity.

& While a particular example is used to illustrate the ideal bal-
FIG. 2. Ideal MHD ballooning stability boundaries for fixed valuesrgf ~ 100NiNg mode stability properties, we hypothesize that the
=0, k=728, 7,=0, and5=0.45 at various choices of magnetic field line Observed behavior is somewhat generic to three-dimensional
label. The solid line corresponds to th=0 case where no symmetry systems.
breaking contribution is present and the local eigenvalues are independent o i ; ; ;
field Iin?e. The dotted, I?jashed, dashed—dottegd, and dashed—tr?ple-dottefd A geometric mFerp.retatlo_n. Pf these results can be identi-
curves correspond to=0, 0.85, 1.70, 2.55, respectively with-0.45. The  11€d. Ideal ballooning instabilities tend to emerge when re-
presence of nonzeré introduces a field line dependent local eigenvalue. gions of small local shear coincide with regions of unfavor-
Each field line has a dramatically differeét« stability boundary indicat-  able curvature. In axisymmetric tokamak systems, these
ing the general property that ballooning eigenvalues are field line de‘pe”denfegions are functions of poloidal angle only and ideal bal-
looning instabilities occur when the local shear is small on
the low field side'? As the pressure gradient increases, the
For this case, a multiple scale analysis can be applied t@firsch—Schlter current modification of the local shear
solve for the ballooning equatidA.Using this technique, one causes the small shear region to migrate from the outboard
finds that the mode structure is described by an oscillatiorside towards a region away from the bad curvature. At large
along the field line, which describes the ballooning effect,enough pressure gradient, the ideal ballooning mode is sta-
modulating an extended envelope which has wit{1/s). bilized and the second stability regime arises. In a perfectly
An important aspect of this analysis is a description of thehelically symmetric equilibrium, a similar behavior would be
second stability region at large However, when symmetry expected However, in three-dimensional configurations the
breaking contributions to the local shear enter, the extendesituation is more complicated. As shown here, the presence
envelope feature of the mode shape is disruptecthe pres-  of an incommensurate helical component of the local shear
ence of non-zeraj, the mode tends to be more localized produces a configuration where the regions of small shear
along»in the bad curvature regions. This has the property ofind unfavorable curvature overlap at distinct points on the
lowering the first stability region and eliminating the secondmagnetic surface. Since only particular field lines intersect
stability region at large enough these regions, the ballooning eigenvalues are much more
Another aspect of three-dimensional equilibria is demonield line dependent. Unlike the axisymmetric case, the
strated in Fig. 2. In this figure, the solid curve represents th@firsch—Schlter current-induced modulation of the local
6=0 case corresponding to the symmetric case. The eigershear cannot remove these regions in general; thus a configu-
values for this case are independent of field line label. Theation without a second stability regime results. This is par-
remainder of the stability curves correspond to the commotticularly true in the smalb region where the helical content
value of §=0.45(the magnetic geometry is fixgfor differ-  of the local shear determines the stability boundaries.
ent magnetic field lines on the magnetic surface as labeled by The important practical question to be answered is: do
the value ofy. In particular, for the field line choicey  the local stability criteria derived from the ballooning equa-
=2.55, all equilibria with§<0.5 have stable ballooning ei- tion really determine the operational limits? Highly local-
genvalues. However, for the same magnetic geometry at theed, field line dependent ballooning eigenmodes typically
field line choicey=0, at sufficiently largeax nearly every are the most susceptible to instability. Due to their highly
equilibrium is unstable fo>—0.2. Generally speaking, in localized structure they may not have practical implications
small§ regions every magnetic surface contains a mixture ofor high-8 stellarator operation. As pointed out in Ref. 15,
field lines with both stable and unstable local eigenvalues. constructions of global modes from the local ballooning
Cuthbert and Dewar pointed out that the effect of incom-properties of three-dimensional equilibria is problematic.
mensurate helicities in general three-dimensional equilibriddence, the instability threshold of a true global mode of the
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