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Abstract

By perturbing the pressure and rotational-transform profiles at a selected sur-
face in a given equilibrium, and by inducing a coordinate variation such that the
perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local
to the surface and parameterized by the pressure gradient and shear is constructed
for arbitrary stellarator geometry. The geometry of the surface is not changed. The
perturbed equilibria are analyzed for infinite-n ballooning stability and marginal
stability diagrams are constructed that are analogous to the (s, α) diagrams con-
structed for axi-symmetric configurations.

The method describes how pressure and rotational-transform gradients influence
the local shear, which in turn influences the ballooning stability. Stability diagrams
for the quasi-axially-symmetric NCSX, a quasi-poloidally-symmetric configuration
and the quasi-helically-symmetric HSX are presented. Regions of second-stability
are observed in both NCSX and the quasi-poloidal configuration, whereas no second
stable region is observed for the quasi-helically symmetric device.

To explain the different regions of stability, the curvature and local shear of the
quasi-poloidal configuration are analyzed. The results are seemingly consistent with
the simple explanation: ballooning instability results when the local shear is small
in regions of bad curvature. Examples will be given that show that the structure,
and stability, of the ballooning mode is determined by the structure of the potential
function arising in the Schrödinger form of the ballooning equation.

1. Introduction

By employing the standard WKB-like formulation, the leading order stability of high-
k ideal modes in stellarator plasmas is governed by an ordinary differential equation,
the ballooning equation [1]. The ballooning equation shows that it is the interaction of
pressure gradients, curvatures and the local shear that determines ballooning stability.

The local pressure gradient at a given surface directly affects the ballooning stability. A
cursory investigation of ballooning stability suggests that, as the magnitude of pressure
gradient is increased, ballooning modes could only be destabilized. This however is not
the case. The local shear also influences ballooning stability, and the local shear is related
to the pressure gradient through the Pfirsh-Schlüter currents. As the pressure gradient is
increased at a given surface with fixed geometry, the local shear must change to preserve
the magnetohydrodynamic (MHD) equilibrium condition. Depending on the geometry
of the surface, it may be the case that the local shear will be altered in such a manner
to stabilize infinite-n ballooning modes. This effect has been studied in axisymmetric
equilibria [2] and may be called ‘second-stability’.

In addition to this effect, as the ratio of averaged plasma energy to averaged magnetic
energy, β, is increased the global equilibrium properties will be modified. For example,
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as β is increased, geometrical deformations associated with the Shafranov shift will alter
the curvature. This in turn will alter the ballooning stability properties.

The primary interest of this article is to examine the phenomena of second stability in
stellarator geometry. Hegna & Nakajima [3] extended the method of profile variations
introduced by Greene & Chance [2] to stellarator geometry. This method allows the
pressure gradient to change at a given surface, but keeps the surface geometry unchanged.
The MHD equilibrium condition is used to determine the self-consistent change in the local
shear. This technique allows the variations in ballooning stability caused by variations in
the local shear to be distinguished from the variations in ballooning stability caused by
the geometrical change associated with increasing β.

2. Profile Variations

This section will outline the method of profile variations in stellarator geometry. For full
details the reader is referred to Hegna & Nakajima [3]. Further discussion and details
of the numerical implementation is given by Hudson & Hegna [4]. The magnetic field is
given in Boozer coordinates [5]

B = ∇ψ ×∇θ+ ι-(ψ)∇ζ ×∇ψ = h(ψ, θ, ζ)∇ψ + I(ψ)∇θ +G(ψ)∇ζ. (1)

For the contravariant and covariant forms to be equivalent, there are several metric iden-
tities that must be satisfied. One such identity is obtained by taking the dot product of
the two forms for B: the coordinate Jacobian must satisfy

√
g = (G+ ι-I)/B2. Such met-

ric identities, and the equilibrium condition ∇p = J× B, are used to derive consistency
relations among varied quantities.

Given such a representation for the field, it is then the coordinate transformation x(ψ, θ, ζ)
itself that determines that MHD equilibrium. The method of profile variations will impose
a variation in the pressure and rotational-transform profiles, and calculate the coordinate
response required to preserve the MHD equilibrium condition.

The pressure and rotational-transform profiles are described in the vicinity of a selected
magnetic surface ψb by the expansion

p(ψ) = p(0)(ψ) + µp(1)(y) + . . . , ι-(ψ) = ι-(0)(ψ) + µ ι-(1)(y) + . . . , (2)

where p(0) and ι-(0) are the pressure and rotational-transform profiles of the undisturbed
equilibrium, p(1) and ι-(1) are the perturbation profiles, and µ � 1 is a small expansion
parameter. The auxiliary variable y = (ψ − ψb)/µ is used to ensure that the variations
in the gradients of the pressure and rotational-transform are of lower order than the
variations in the pressure and rotational-transform. The gradients of the pressure and
rotational-transform take the form

p′(ψ) = p(0)′(ψ) + p(1)′(y) + . . . , ι-′(ψ) = ι-(0)′(ψ) + ι-(1)′(y) + . . . , (3)

The coordinate transformation is similarly perturbed

x(ψ, θ, ζ) = x(0)(ψ, θ, ζ) + µx(1)(y, θ, ζ) + . . . (4)

The perturbed basis vectors are

eψ = e
(0)
ψ + ∂yx

(1) + . . . eθ = e
(0)
θ + µ∂θx

(1) + . . . eζ = e
(0)
ζ + µ∂ζx

(1) + . . . , (5)

For consistency, both G and I are perturbed similarly to p and ι-, but h requires order
unity variations. The lowest order quantity in the coordinate variation is ∂yx

(1). This
quantity can be expanded in the following basis set

∂x(1)

∂y
= CB +D

B ×∇ψ

B2
+M

∇ψ

gψψ
, (6)

2



where C,D and M are to be determined. An expression for C is obtained from the mo-
mentum balance equation. By requiring that the magnetic field strength is undisturbed to
lowest order gives the condition M = 0. An equation for the term D can be obtained, and
solved numerically for a given equilibrium, from the lowest order perturbed momentum
balance equation and Ampere’s law

∂ηD = ι-(1)′ 1∮
1/gψψ

(
1

gψψ
−
∮

1

gψψ

)
− p(1)′V

′(G+ ι-I)∮
1/gψψ

(
λ

gψψ

∮
1

gψψ
− 1

gψψ

∮
λ

gψψ

)
, (7)

where ∂η = ∂ζ + ι-∂θ, λ is related to the Pfirsh-Schlüter currents, and 4π2
∮
q ≡ ∮∮

q dθdζ
is the flux surface average. The function D depends on the original equilibrium: more
precisely, the terms multiplying ι-(1)′ and p(1)′ depend only the selected surface of the
original equilibrium. Once these terms have been computed, a simple task given the
Fourier representation of the equilibrium, no further equilibrium calculations are required.

As far as the infinite-n ballooning equation is concerned, the only quantity which is
affected by the profile variations, in addition to p′ and ι-′, is the local shear, s ≡ (b ×
n) · ∇ × (b × n) where b and n are respectively the unit vectors along the magnetic
field and normal to the magnetic surface. We can separate the contributions to s into a
flux surface averaged quantity, the global shear ι-′, and the variation of the local shear,
s̃. The quantity D describes the variation in local shear due to changes in the two profile
quantities. The perturbed part of the local shear takes the simple form(
G∂yx

(1) · eθ − I∂yx
(1) · eζ

)
/
(√

ggψψ
)

= D. (8)

The term D thus represents how the profile variations affect the local shear.

The ballooning mode equation in the perturbed equilibrium is written by transforming
the angle variables α = θ− ι-ζ, η = ζ so that α labels the field line, η labels position along
the field line and the B · ∇ operator becomes B · ∇ =

√
g−1∂η. The ballooning equation

is given in a form that highlights the role of the (integrated) local shear

∂

∂η
Λ
∂

∂η
ξ + 2(p(0)′ + p(1)′)

√
g(G+ ι-I)(κn + κgL)ξ = ω2(ψ, α, ηk)Λξ, (9)

where Λ =
(
B2/gψψ + gψψL2

)
, L is the integrated local shear L =

∫ η
ηk
dη′s(η′), ηk is the

ballooning angle and ω2 is the ballooning eigenvalue which in general depends on the
surface, field line and ballooning angle ηk (this article will only consider the case α =
ηk = 0). This is an ordinary differential equation with boundary condition ξ(±∞) = 0.
For numerical work, the boundary condition is that ξ(±η∞) = 0 where η∞ is chosen
to sufficiently large to contain the mode. The ballooning equation may be written in
Schrödinger form [d2/dϑ2 + E − V ]Λ1/2ξ = 0 where the ‘potential’ V (ϑ) depends on the
coefficients of the ballooning equation [6]. The structure of the Schrödinger potential
influences the structure of the eigenvector.

The profile variations describe the separate effects that the variation in p′ and ι-′ have on
the local shear, and thus on ballooning stability. Taking p′ and ι-′ as independent vari-
ables, a two-dimensional family of equilibrium surfaces may be constructed from a single
numerically computed (VMEC) equilibrium. The ballooning stability may be determined
for each of the perturbed equilibria and marginal stability curves constructed. Note that
if the analysis of the perturbed equilibrium is local to the original surface ψb, as infinite-n
ballooning analysis indeed is, then the equations describing how the variations affect the
local shear are exact. Variations of any magnitude are allowed and the stability properties
of the perturbed equilibria are characteristic of the geometry of the original surface.
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Fig. 1: Marginal stability diagrams for : (left) li383 VMEC surface s = 0.6: β = 4.2% (solid), β = 9.5%
(dotted) and β = 14.0% (dashed); (center) m3b15 VMEC surface s = 0.3: β = 1.2% (solid), β = 2.4%
(dotted) and β = 3.7% (dashed); (right) hsxstd VMEC surface s = 0.6: β = 0.7% (solid), β = 2.2%
(dotted) and β = 3.6% (dashed). Each stability diagrams is centered on the original surface, the location of

which is shown with ‘+’ if the surface is unstable and ‘2’ if that surface is stable.

3. Stability diagrams, local shear and curvature

In Fig.(1) are shown the stability diagrams for the NCSX [7] configuration li383, the
quasi-poloidal configuration m3b15 [8] and the HSX standard configuration [9] hsxstd.
This selection reflects the current US interest in quasi-symmetric devices.

As predicted by Hegna & Hudson [10], the quasi-helically-symmetric configuration hsxstd
does not display a second stable region. The quasi-axisymmetric configuration li383 does
display a second stable region, but it is quite weak in the sense that very high β ≈ 16% is
required to access this region. The quasi-poloidal-symmetric configuration m3b15 shows
a strong second stable region as observed by Ware et al. [8].

For all of the configurations, as β is increased, there is some change in the stability dia-
grams. This assumedly is the result of geometric distortions of the surfaces. Nonetheless,
it has been confirmed that the stability diagrams give a reasonable quantitative prediction
of the marginal β limit and the qualitative agreement is very good.

To analyze the physical cause of ballooning instability, and the mechanism leading to
second stability, the m3b15 β = 2.4% configuration is analyzed in some detail. Evidence
is presented that is consistent with the suggestion that ballooning instability results when
regions of small shear coincide with regions of bad curvature. Variations in the pressure
gradient at the s = 0.3 VMEC surface of the m3b15 equilibrium at β = 2.4% have been
imposed and the resulting configurations have been analyzed. The normal curvature for
this case is shown in Fig.(2). The shear for three cases, with ( ι-(1)′, p(1)′)=(0.0, 1.502),
(0.0, 0.404) and (0.0,−0.694) are shown in Fig.(3). These variations in the pressure gra-
dient place the perturbed equilibria in the first stable, unstable and second stable regions
respectively for the choice α = ηk = 0. Clearly the local shear is affected by the profile
variations. For the second stable case, it appears that the small local shear region no
longer coincides with the unfavorable curvature region.

To examine more closely the correlation between the local shear, the curvature and the
structure of the eigenvector, these quantities are shown as functions along the field line
for the three cases in Fig.(4). The variations in the local shear alter the correlation
between regions of small local shear and bad curvature: increased pressure gradient can
be stabilizing!
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Fig. 2: (color) Normal curvature for m3b15 β = 2.4% on VMEC surface s = 0.3.

100-100 100-100 100-100

Fig. 3: (color) Local shear for m3b15 β = 2.4% on VMEC surface s = 0.3 with the following varia-

tions in shear and pressure gradient : (a) ( ι-(1)′, p(1)′)=(0.0, 1.502) (left); (b) (0.0, 0.404) (center); (c)

(0.0,−0.694) (right). Regions of small local shear are indicated with red.

Fig. 4: Eigenvectors, local shear and normal curvature along a field line for m3b15 β = 2.4% on

VMEC surface s = 0.3. The upper figures show the eigenvector structure over the range [−2π, 2π] for

( ι-(1)′, p(1)′)=(0.0, 1.502) (left), (0.0, 0.404) (center), (0.0,−0.694) (right). The lower figures show the

local shear (dotted) and curvature (dashed) for each case near where the eigenvector peaks. The eigenvector

seems to localize when small local shear coincides with negative curvature.

To further illustrate the effect of the pressure gradient variation, the structure of the
Schrödinger potential for the three cases is shown in Fig.(5). The pressure gradient
variations affect the magnitude of the peaks in the potential function. The higher the
peaks, the greater the chance the mode will localize.

What is called the first stable region here for the m3b15 β = 2.4% s = 0.3 case may only
be the first stable region for the choice α = ηk = 0. From inspection of Fig.(3)a, other
field lines may exist for which regions of small local shear and bad curvature coincide.

The li383 and hsxstd configurations have been similarly analyzed. li383 displayed be-
havior similar to the m3b15 results presented here, including a second stable region [4].
The hsxstd configuration in contrast does not display second stability. As the pressure
gradient is increased, the peaks in the Schrödinger potential for hsxstd seem to increase.

4. Conclusion

The method of profile variations is a efficient means to determine the stability of a family
equilibria nearby a numerically computed equilibrium. It provides a good qualitative
understanding and prediction of the stability properties that are characteristic of the
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Fig. 5: Schrödinger potential (dashed) and eigenvector (solid) for m3b15 β = 2.4% on VMEC surface s = 0.3
configuration for ( ι-(1)′, p(1)′)=(0.0, 1.502) (upper), (0.0, 0.404) (middle) and (0.0,−0.694) (lower).

geometry of the equilibrium. The quantitative agreement between predicted stability
boundaries is good, but as pressure is increased global equilibrium effects can alter the
geometry of the configuration: an effect not incorporated into the profile variation method.

The observations are consistent with the suggestion that ballooning modes will localize
in regions of small local shear and bad curvature. Variations in the pressure gradient will
alter the local shear, and thus change the where the local shear is small. In some cases,
this can lead to stabilization of ballooning modes as pressure is increased.
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