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A Vlasov-Maxwell equilibrium for a charged particle bunch is given in the beam frame by the
distribution function that is a function of the single-particle Hamiltonian f = f(H), where in an
axisymmetric cylinder H = p2/2m+κ⊥r2/2+κzz

2/2+qφ(r, z), the kinetic energy is p2/2m, κ⊥ and
κz are the external focusing coefficients in the transverse and longitudinal directions, and φ is the
electrostatic potential determined self-consistently from Poisson’s equation ∇2φ = −4πq

∫
d3pf(H).

The self-field potential φ introduces a coupling between the otherwise independent r and z motions.
Under quite general conditions, this leads to chaotic particle motion. Poisson’s equation is solved
using a spectral method in z and a finite-difference method in r, and a Picard iteration method is
used to determine φ self-consistently. For the thermal equilibrium distribution f = A exp(−H/T ),
the single-particle trajectories display chaotic behavior. The properties of the chaotic trajectories
are characterized.

I. INTRODUCTION

It has been observed that charged-particle beams, in
thermal equilibrium, will possess particles that follow
chaotic trajectories [1]. The existence of chaotic particles
may lead to a degradation of the beam quality. It is thus
important to study and understand the conditions that
lead to chaotic behavior. This article examines such tra-
jectories in finite-length charge bunches. The commonly
used Lyapunov exponent [2, 3] quantifies how sensitive
a trajectory is to initial conditions, a defining character-
istic of chaos. Particular attention is given to resonant
motion and the stability of periodic trajectories is ex-
amined. Periodic trajectories play an important role, as
chaotic trajectories arise near unstable periodic orbits.

We have not yet formulated a comprehensive descrip-
tion of the extent of chaos in phase space as a function
of the system parameters, although some general obser-
vations are interspersed throughout the text. The nu-
merical approach that is presented here may enable an
efficient and insightful description of the onset and extent
of chaotic motion in thermal equilibrium charge bunches.

II. THERMAL EQUILIBRIUM

We begin with the Hamiltonian for a single particle,
of charge q, confined by an external focusing potential of
the form Vext = κ⊥r2/2 + κzz

2/2, where κ⊥ and κz are
the external focusing coefficients in the transverse, r, and
longitudinal, z, directions. A charged particle will also
feel the effect of the electrostatic potential, φ(r, z), gen-
erated by the charge bunch itself. The full Hamiltonian
for a single particle in the beam frame is then

H =
p2

r

2m
+

p2
θ

2mr2
+

p2
z

2m
+

κ⊥r2

2
+

κzz
2

2
+ qφ, (1)

where pr , pθ and pz are the momenta canonical to r, θ and
z, respectively, and are given by pr = mṙ, pθ = mr2θ̇ and
pz = mż, where the ‘dot’ denotes the time derivative.

To describe the charge bunch it is convenient to spec-
ify a distribution function, f(x, p), a function of phase
space where x and p are the position and momenta co-
ordinates. The number density n(x) of particles is given
by n =

∫
fd3p. Any distribution function that is a func-

tion solely of the single particle Hamiltonian represents
a Vlasov-Maxwell equilibrium [4]. A particularly appro-
priate form of the distribution function is that which de-
scribes a charge bunch in thermal equilibrium

f(H) =
n0

(2πmT )3/2
exp(−H/T ). (2)

By expressing the self-generated electric field
E = −∇φ, and absorbing Eq.(1) and Eq.(2) into
Poisson’s equation, ∇ · E = 4πqn, we obtain

∇2φ = −4πqn, (3)

with number density n = n0 exp(κ⊥r2/2 + κzz
2/2 + qφ).

In general, φ must be determined numerically. By intro-
ducing the normalized lengths r̄ = r/rb and z̄ = z/rb,
where rb is defined rb =

√
T/κ⊥, the normalized poten-

tial, φ̄ = qφ/T , satisfies

∇2
φ̄ = −2sb exp

(−r̄2/2− ηz̄2/2− φ̄
)
, (4)

where the physical system is now described by two di-
mensionless parameters η and sb, these being the fre-
quency ratio between the longitudinal and perpendicu-
lar motions, η = κz/κ⊥, and the ratio of plasma fre-
quency to the perpendicular oscillation frequency, sb =
(4πq2 n0/m)/2ω2

⊥ where ω⊥ = κ⊥/m. The normalized
Hamiltonian, H̄ = H/T , is

H̄ =
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+ η

z̄2

2
+ φ̄, (5)

where p̄r = r̄′, p̄θ = r̄2θ′, p̄z = z̄′, and prime denotes
derivative with respect to the normalized time, t̄ = t ω⊥
Hereafter, we will use the normalized equations: the
‘bars’ will be dropped and the ‘dot’ will denote the deriva-
tive with respect to the normalized time.



2

A self-consistent solution to Eq.(3) is constructed nu-
merically. A finite difference method is used in the trans-
verse direction and the even symmetry in the z coordi-
nate allows an even spectral representation for the lon-
gitudinal direction φ(r, z) =

∑
φn(r) cos(nkz), where

φn(r) interpolates φn,i given on a radial grid. In cylin-
drical coordinates, the Laplacian operator takes the form
∇2 = ∂2

r + r−1∂r + ∂2
z . The radial derivatives are ap-

proximated by the first order expressions. The structure
of the∇2 operator becomes a tri-diagonal matrix for each
harmonic, which is easily inverted. This allows a Picard
iterative solution for the potential: given the spectral
representation of the number density, the potential φ is
solved; the number density is then determined given the
potential. The iterations are terminated when φ is no
longer changing.

For each selection of the dimensionless parame-
ters (η, sb), a point in phase space is described by
(r, θ, z, pr, pθ, pz). The azimuthal angle θ is ignorable,
thus the angular momentum pθ is a constant of the mo-
tion. Each particle’s trajectory will lie on a constant
energy surface. A phase space subset in then specified
by (pθ, H), and a point in this space is given by (r, z, pr).
Note that given (pθ, H) and (r, z, pr), pz is then con-
strained by Eq.(5). To visualize the structure of phase
space, a Poincaré section, z = 0 with pz > 0, is cho-
sen. From a given starting point (r, pr) on this plane, we
integrate the equations of motion and plot successive in-
tersections with the Poincaré section. In this manner, we
determine if the motion is regular or chaotic. If, in addi-
tion to pθ and H , there exists an invariant of the motion,
successive intersections will lie on a curve and the motion
is deemed regular. Conversely, if successive intersections
tend to fill an area, we may conclude that no additional
invariant exists and the motion is stochastic.

Regular and chaotic trajectories are interspersed in
phase space. Regular motion lies on invariant surfaces
where the frequency ratio is irrational. Resonance zones,
or islands, will emerge where the frequency ratio between
the r and z motions is rational. Associated with each
island chain, are the stable and unstable orbits, which
appear as O and X points on the Poincaré plot. Chaotic
trajectories arise near the unstable X point. If the islands
are so large that they overlap with nearby islands, then
regions of extended chaos will be produced.

III. LOW INTENSITY BEAMS

For the case that the self-field potential is zero, the
r and z motions are independent and the dynamics is
integrable. The ‘action’ coordinates are determined by
j =

∮
p dq/2π [5], which gives

jr = (α− pθ)/2, (6)

jz = (z2η
1
2 + p2

z/η
1
2 )/2, (7)

where α = p2
r/2 + p2

θ/2r2 + r2/2, with corresponding
‘angle’ coordinates

θr = cos−1[(r2 − α)/β], (8)

θz = tan−1(η
1
2 z/pz), (9)

where β =
√

α2 − p2
θ. For this case, the use of these

coordinates reduces the motion to trivial trajectories as
the Hamiltonian takes the form H = 2jr + pθ + η

1
2 jz .

The frequency ratio between the transverse and longitu-
dinal oscillations for this case is ωr/ωz = 2/η

1
2 , and a

resonance will exist when 2/η
1
2 = p/q, where p, q are in-

tegers. The existence of resonances plays a crucial role
in the formation of chaotic trajectories.

For the general case, with non-zero electrostatic poten-
tial φ, the Hamiltonian takes the form

H = 2jr + pθ + η
1
2 jz + ϕ, (10)

where ϕ(θr , θz, jr, jz) = φ(r(θr , jr), z(θz, jz)). When ϕ is
small, perturbative methods may be employed [6]. Writ-
ing H = h0 +εh1 where h0 = 2jr +pθ +η

1
2 jz and h1 = ϕ,

action-angle coordinates (equivalently, invariants of the
motion) for the perturbed motion through second order
in ε have been constructed and compared to the exact
trajectories, as determined by integration of Eq.(11-13),
in Fig.1. For sufficiently small self-field potential, the
agreement is generally good.

FIG. 1: Comparison of trajectories on Poincaré section with
invariant surfaces constructed from second-order perturbation
theory for system parameters (η, sb) = (0.3, 0.1) in the phase
space subset (pθ , H) = (1.0, H = 5.0).

For small perturbations from integrability, the KAM
[7–9] theorem (see also [3, 10]) allows expectation that
the majority of surfaces will remain intact. In partic-
ular, surfaces with sufficiently irrational frequency ratio
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will survive sufficiently small perturbations. In this case,
the perturbative construction of invariants is likely to be
fruitful.

However, the frequency ratio is modified by increasing
self-field potential, and resonances between the r and z
motion will be encountered. As the strength of self-field
intensity increases, chaotic regions associated with the
unstable periodic trajectories will increase and devour
regions of regular trajectories. Perturbation theory will
fail in this case, because the invariants no longer exist.

The remainder of this article will illustrate the struc-
ture of the phase space and present some theoretical and
numerical tools which may be employed to study the
chaotic trajectories in high-intensity charge bunches.

IV. HIGH INTENSITY BEAMS

For large values of sb, we resort to direct numerical in-
tegration of the differential equations of motion to deter-
mine the single-particle trajectories. With the selection
of the plane z = 0 as the Poincaré section, it is convenient
to consider the independent integration parameter to be
θz , rather than the time. The equations to be integrated
then become

θ′r = θ̇r/θ̇z, (11)

j′r = dtjr/θ̇z, (12)

j′z = dtjz/θ̇z . (13)

where the ′ denotes the derivative with respect to θz ,
θ̇r = 2 + ∂ϕ/∂jr , θ̇z = η

1
2 + ∂ϕ/∂jz , dtjr = −∂ϕ/∂θr ,

and dtjz = −∂ϕ/∂θz . The mapping from the Poincaré
section to itself, the Poincaré map, is now obtained by in-
tegrating these equations from θz = 0 to θz = 2π. Shown
in Fig.2 is a Poincaré plot showing the emergence of an
island chain and a small region of chaos for the system
parameters (η, sb) = (0.385, 1.17) and the phase space
subset (pθ, H) = (1.0, 1.0). Typically we find that the
region of chaotic trajectories is greater as H increases,
but we have taken the opportunity here to demonstrate
that chaotic trajectories can exist at H = 1.

A defining feature of chaos is that particle trajecto-
ries have an extreme sensitivity to the initial conditions.
To quantify this sensitivity, consider a particle trajec-
tory with initial conditions x(0) = (θr(0), jr(0), jz(0))
(where, given H , jz is constrained) and a nearby trajec-
tory x(0) + δx(0), where δjz is constrained to lie in the
constant-energy tangent space

δjz = −(∂θrϕδθr + (2 + ∂jrϕ)δjr)/(η
1
2 + ∂jzϕ). (14)

The trajectories will evolve under Eq.(11-13), and the
rate at which the separation δx(θz) evolves is character-
ized by the Lyapunov exponent σ

σ(x, δx) = lim
|δx(0)|→0

lim
θz→∞

1
θz

ln
|δx(θz)|
|δx(0)| . (15)

FIG. 2: Poincaré plot for system with (η, sb) = (0.385, 1.17)
in the phase space subset (pθ , H) = (1.0, 1.0).

The limit |δx(0)| → 0 is most conveniently treated by
linearizing Eqs.(11-13) to obtain dδx/dθz = Tδx, where
T is the tangent map given by

T =




∂θ′r
∂θr

,
∂θ′r
∂jr

,
∂θ′r
∂jz

∂j′r
∂θr

,
∂j′r
∂jr

,
∂j′r
∂jz

∂j′z
∂θr

,
∂j′z
∂jr

,
∂j′z
∂jz




. (16)

Formally, σ depends on the initial δx, but as the com-
ponent of δx along the most unstable direction will grow
most rapidly, this component will dominate the compu-
tation. In practice, for an arbitrary initial δx, the largest
Lyapunov exponent will be calculated. After linearizing
the equations, all that remains is to follow the trajectory,
while evolving the tangent vector, to determine the quan-
tity ln |δx|/θz as θz → ∞ where |δx(0)| = 1. Typically,
a trajectory must be followed hundreds of oscillations for
this limit to converge.

For the case of periodic orbits, a tremendous reduction
in the computation of the Lyapunov exponent is enabled.
A periodic orbit, of type (p, q), satisfies θr(2πq) = θr(0)+
2πp and jr(2πq) = jr(0). The full period tangent map,
M , at the periodic orbit is obtained by integrating

dM

dθz
= TM (17)

one full-period distance 2πq with initial condition M = I,
where I is the 3 × 3 identity matrix. By incorporating
the energy conserving constraint Eq.(14), the full period
tangent map reduces to a 2× 2 matrix.
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FIG. 3: Lyapunov exponents for chaotic trajectories for a
system with parameters (η, sb) = (0.15, 1.05), (pθ , H) =
(1.0, 4.0). The trajectories are initialized near the (4, 1) and
(6, 1) periodic orbits.

Important information is contained in this matrix. If
the eigenvalues of this matrix are real, the periodic or-
bit is unstable and the Lyapunov exponent σpq for the
periodic orbit is

σpq = lnλ/2πq, (18)

where λ is the eigenvalue. The exponent σpq may be
determined exactly by integrating over the much shorter
distance of 2πq. Note that periodic orbits, even unstable
periodic orbits, are quite simple to find. As a result of the
underlying symmetry of the system, which results in the
up-down symmetry of the Poincaré plots, periodic orbits
are guaranteed to lie on the symmetry lines θz = 0, π.
The search for periodic orbits becomes a one-dimensional
search in jr along this line.

The Lyapunov exponents for chaotic trajectories aris-
ing at the unstable periodic orbits, as calculated from
Eq.(15) and shown in color, are compared to the value ob-
tained from Eq.(18), shown as the dotted lines, in Fig.3.
Initially, the Lyapunov exponents from these two meth-
ods agree perfectly. To obtain perfect agreement it is
neccessary to initialize Eq.(15) with a tangent vector that
lies in the unstable direction, which is provided by the
maximum eigenvalue’s corresponding eigenvector. After
sufficiently many iterations of the Poincaré map (exactly
how many is determined by the accuracy of the integra-
tion), numerical errors accumulate and the trajectory de-
viates from the true periodic orbit. After this point, the
Lyapunov exponent deviates and eventually will converge
to a slightly lower value. For reference, the calculation of
Eq.(15) for a linearly diverging tangent vector is shown

FIG. 4: Poincaré plot for a system with parameters consistent
with Fig.3. The chaotic trajectories are colored as in Fig.3.

as the decreasing black line. The corresponding Poincaré
plot for this case is shown in Fig.4.

V. CONCLUSION

Analytical and numerical studies have been presented
which enable an efficient characterization of particle tra-
jectories in finite-length charge bunches. In particular a
method to quickly determine the Lyapunov exponent of
the unstable periodic orbit has been presented.

The eigenvalues of the full period tangent map are
related to a quantity called the residue introduced by
Greene [11]. The limiting residue of an appropriate se-
quence of periodic orbits may be used to determine the
existence, or non-existence, of an irrational (KAM) sur-
face. Also, the tangent map at the periodic orbits can
also be used to estimate island widths [12]. This suggests
that an numerically efficient method to quantify the de-
gree of chaos would be to locate several periodic orbits
(usually those with the lowest values of q are most impor-
tant, and conveniently these are of the shortest length),
estimate the widths of the islands associated with these
periodic orbits and apply a Chirikov style island overlap
criterion [13]. Finally, note that the parabolic potential
of the applied focusing potential is an approximation.
Additional resonances may also exist due to the periodic
nature of an applied quadrupole focusing field.
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of Energy.
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