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Motivation
• Recent work on 2nd stability in stellarators has shown that 

– some stellarators do [WARE et al., PRL 2002],

– some stellarators do not [HEGNA & HUDSON, PRL 2001],

possess 2nd stable regions.

• What property of the configuration determines 2nd stability ?

Outline
• The method of profile variations [GREENE & CHANCE, NF 1983] is applied to 

stellarator configurations [HEGNA & NAKAJIMA, PoP 1996].
• The profile variations (and the self-consistent coordinate response) 

produce variations in the ballooning coefficients.
• Eigenvalue perturbation theory is used to obtain an analytic expression 

for the ballooning growth rate, γ , as a function of the pressure-
gradient and average-shear: γ= γ (ι' ,p ') (for constant geometry).

• The analytic expression determines if pressure-gradient is stabilizing 
or destabilizing, and suggests if a 2nd stable region will exist.
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Three approaches will be compared

• Equilibrium reconstruction 
– multiple equilibrium calculations

(vary p'(ψ) & ι'(ψ); VMEC)

– multiple ballooning calculations
• Profile-variations 

[GREENE&CHANCE,1983]
– single equilibrium calculation

(construct semi-analytic equilibria)

– multiple ballooning calculations
• Analytic expression

(extension of profile-variations)
– single equilibrium calculation
– single ballooning calculation
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The pressure-gradient and average-shear profiles are varied
(method of profile variations)

• We begin with a full solution to 
an MHD equilibrium (VMEC)

• An analytic variation in p & ι is 
imposed 

• µ is formally small parameter
• ψb is surface of interest

• variation in the gradients is 
zero-order in µ

• two free parameters (δι′, δp′ )
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The self-consistent coordinate response is determined

later will keep (δι')2, (δι' δp'), (δp')2 , .

• the coordinates are similarly adjusted to preserve ∇p=J×B :

• To zero order in µ, the local shear is changed

• This equation is : 
– exact at the surface of interest;
– valid for arbitrarily large (δι′, δp′ );
– the coefficients are determined by the original equilibrium: 

(simply solved using Fourier representation).
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The coefficients of the ballooning equation are changed
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Eigenvalue perturbation theory gives analytic 
expression for change in ballooning growth rate
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All variations are determined by a single eigenvalue-eigenvector calculation.
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8The theory determines . . .  
• if increased p' is stabilizing or destabilizing,

• if a 2nd stable region will exist.
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Marginal stability boundary : quasi-poloidal configuration

• quasi-poloidal configuration  [WARE et 

al. PRL, 2002] has 2nd stable region

• solid curve is stability boundary 
determined by exactly re-solving 
ballooning equation on grid 200x200

• dotted curve from analytic expression
• including 2nd order terms
• single eigenfunction calculation

• analytic expression accurately 
reproduces exact stability boundary
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Stability boundary is verified by 
global equilibrium reconstruction

• a sequence of increasing pressure 
equilibria is constructed with VMEC

• fixed boundary, fixed current profile

• For each s=0.3 surface, the ballooning 
stability is re-calculated

• indicated with − or +, stable or unstable

• The marginal stability diagram is 
constructed

• using original equilibrium O
• solid : exact solution to perturbed eqn.
• dotted : from 2nd order analytic expression

• The stability diagram gives good 
prediction of global stability boundary

unstable 2nd stable1st stable



11Stability boundary

• LHD-like configuration          • NCSX-like configuration

solid   : exact (numerical) solution to perturbed ballooning equation
dotted : from analytic expression (4th order)

core-region of LHD-like;
strong 2nd stable region;

arbitrary pressure gradient.

fixed-boundary li383;
weak 2nd stable region.
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Summary
• An analytic expression describing the dependence of the 

ballooning growth rate on pressure-gradient and shear 
variations is derived.

• The expression agrees well with the exact numerical 
solution to the perturbed ballooning equation, and agrees 
with stability boundaries computed with global equilibrium 
reconstructions.

• The expression determines :
– if pressure-gradient is stabilizing or destabilizing
– suggests if a 2nd stable region will exist.

• Theory may be of use in stellarator optimization routines 
and enable deeper insight into mechanism of 2nd stability.

• Future work will attempt to translate these results to global 
mode stability.


	Influence of pressure-gradient and average-shear on ballooning stabilitysemi-analytic expression for ballooning growth rate
	Motivation
	Three approaches will be compared
	The pressure-gradient and average-shear profiles are varied(method of profile variations)
	The self-consistent coordinate response is determined
	The coefficients of the ballooning equation are changed
	Eigenvalue perturbation theory gives analytic expression for change in ballooning growth rate
	The theory determines . . .  • if increased p' is stabilizing or destabilizing, •  if a 2nd stable region will exist.
	Marginal stability boundary : quasi-poloidal configuration
	Stability boundary is verified by global equilibrium reconstruction
	Stability boundary• LHD-like configuration          • NCSX-like configuration
	Summary

