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ABSTRACT

• The variational principle for relaxed toroidal plasma-
vacuum systems with pressure is applied to axially pe-
riodic cylinders.

• Plasma comprises multiple Taylor-relaxed regions, with
each region separated by an ideal MHD barrier of zero
width.

• Extends the plasma-vacuum analysis of Kaiser and
Uecker, Quartly Jnl ofMech. Appl. Math. 57(1-17), 2004.

• First stage of an attempt to describe a stepped-pressure
profile in full 3D.

• May describe formation of internal transport barriers in
magnetic confinement fusion experiments.

1 Introduction

1.1 Transport Barriers in Tokamaks

• At sufficiently high heating power, fusion plasmas self-
organise to produce internal transport barriers.

Example: MAST discharges showing ITB formation. (a)-(c) show 7085, a

high performance D-D discharge [1], (d) shows TRANSP reconstructions

of a NBI heated discharge [2].

• While descriptive theories for these barriers exist : e.g.

– shear flow suppression of turbulence [3],

– chaotic magnetic field line dynamics [4],

they don’t explain why the plasma self-organises into
this state.

• Apossible explanation is that these are constrainedmin-
imum energy states.

1.2 Taylor Relaxation

• In a turbulent, resistive plasma, flux tubes do not have
independant existence [5]. Infinity of constraints re-
placed by single constraint

K0 =

∫

V

A · Bdτ (1)

• Minimum magnetic energy solutions, which are con-
strained by the total helcity are Beltrami fields

∇×B = µB (2)

2 Multiple Interface Plasma Vacuum Model

• Model built upon Kaiser and Uecker [6], Spies [7] and
Spies [8]. System comprises:

– N plasma regions Pi in relaxed states.

– Regions separated by ideal MHD barrier Ii.

– Enclosed by a vacuum V ,

– Encased in a perfectly conducting wallW .
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(a)

Magnetic geometry, showing
ideal MHD barriers Ii, the con-
ducting wallW , plasma regions
Pi and the vacuum V . In re-
gion Pi plasma has pressure Pi,
& equilibrium fieldB.

• Energy functional can be written:

W = U −
N∑

i=1

µiHi/2 −
N∑

i=1

νiMi (3)

with

Ui =

∫

Ri

dτ 3

(
Pi

γ − 1
+

B2
i

2

)
, Mi =

∫

Ri

dτ 3P
1/γ
i , (4)

Hi =

∫

Ri

dτ 3
A · ∇ ×A + (5)

∮

C<
pi

dl · A

∮

C<
ti

dl · A−

∮

C>
pi

dl · A

∮

C>
ti

dl · A.(6)

• First variation : Set δW = 0, yields partially Taylor re-
laxed equilibria:

Pi; ∇×B = µiB, Pi = const., (7)

Ii; n · B = 0, < Pi + 1/2B2 >= 0, (8)

V; ∇×B = 0, ∇ · B = 0 (9)

W; n · B = 0 (10)

– µi, νi are Lagrange multipliers,

– n, a unit vector normal to Ii,

– < x >= xi+1 − xi is the change in x across Ii.

– poloidal, toroidal flux constant during relaxation

• Second variation : Examine stability to interface dis-
placements ξi by minimize δ2W wrt constant NB ,

NB =
N∑

i=1

∫

Ii

dσ2|ξi|
2 (11)

To solve, vary functional L = δ2W − λNB. For Pi, Ii,V ,
solutions to δL = 0 are:

Pi ; ∇× b = µib, (12)

Ii ; ξ∗i 〈B · b〉 + ξ∗i ξi 〈B(n · ∇)B〉 − λξ∗i ξi = 0, (13)

n · bi,i+1 = Bi,i+1 · ∇ξi + ξin · ∇ × (n× Bi,i+1), (14)

V ; ∇× b = 0, ∇ · b = 0, (15)

W ; n · b = 0. (16)

where b = δB is the perturbed field. Solutions of δL = 0
with L = 0 are stable providing λ > 0.

3 Cylindrical Stepped Pressure Equilibria

• Assume plasma is cylindrically symmetric, with axial
periodicity L, vacuum boundary at r = 1, wall at r =
rw.

• Solutions of B in each region read Eq.

P1 : {0, k1J1(µ1r), k1J0(µ1r) },
Pi : {0, kiJ1(µir) + diY1(µir), kiJ1(µir) + diY1(µir) },
V : {0, BV

θ /r, BV
z },

(17)
where :

– ideal MHD barriers located at radii ri.

– BV
θ , BV

z , ki, di ∈ ℜ,

– J0, J1 and Y0, Y1 are Bessel functions.

• equilibrium prescribed: EITHER by B and ri

{k1, ..., kN , d2, ..., dN , µ1, ..., µN , r1, ...rN−1, rw, BV
θ , BV

z }
(18)

OR by safety factors and fluxes

{Ψt
1, ..., Ψ

t
N , Ψp

1, ..., Ψ
p
N , Ψt

V , Ψp
V , qi

1, ..., q
i
N , qo

1, ..., q
o
N} (19)

– qi
i and qo

i are safety factors on inside/outside of each
interface.

– 4N + 2 parameters in total.
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Example of a stepped-
pressure plasma profile,
with five ideal MHD barri-
ers, showing : (a) a contour
plot of the polodial flux, (b)
the pressure profile, and (c)
the safety factor, given by

qi =
2π

L

Bz(r)
Bθ(r)

NOTE: Only the core neces-
sarily has reverse shear.

6 Conclusions

• Developed multiple ideal barrier variational model.

• Shown existence of tokamak-like q profiles

• Generalized analysis for stability of multiple barriers

• Benchmarked analysis

• Begun ITB configurations scans
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4 Stability

• Fourier decompose variations b and ξ :

b = b̃ei(mθ+κz) ξi = Xie
i(mθ+κz) (20)

– b̃, Xi are complex Fourier amplitudes

– m ∈ Z, κ ∈ Z are poloidal, axial wave numbers

• In general, the plasma and vacuum regions, Eqs. (12)
(15) can be re-arranged as a second order differential

equation for b̃z . That is,

Pi; L±(m)[̃bz(̥r)] = 0, ̥ = |κ2 − µ2| > 0 (21)

V; L+(m)[̃bz(|κ|r)] = 0, κ 6= 0, (22)

where L+(m) is the modified Bessel ODE for κ2 > µ2 ,
and L−(m) the Bessel ODE for κ2 < µ2.

• Equation (13) reduced to the eigenvalue equation,

η · X = λX (23)

with η a N ×N tridiagnonal matrix. The i’th row of η is
the i’th interface calculation of

(〈B · b〉 + ξi 〈B(n · ∇)B〉) e−i(mθ+κz) (24)

• Eq. (23) solved for the set of N eigenvalues λ1, ..., λN ,
and eigenvectors X1, ...,XN .

– ηij coded into a case-selection algorithm.

– QR algorithm used to resolve λi [17]

– solutions stable providing all λi < 0

• BenchmarkA: ForN = 1, Eq. (23) reduces to eigenvalue
λ, and results compared to Kaiser and Uecker [12].

– Marginal stability parameter spans, sweeping κ
over range −K ≤ κ ≤ K,

– δ a measure of increase in pitch angle of B

Bθ,V = J1(µ1) cos δ + J0(µ1) sin δ (25)

Bz,V = J0(µ1) cos δ − J0(µ1) sin δ (26)

– Pressure described by β = 2||Pi||
B2|r=1+

• Benchmark B: For N = 2, introduce artificial ITB with
r1 = r2 − ǫ, and no change in equilibrium. As r1 → r2,
λ2 → 2λ(N = 1), and λ1 → ∞ at most unstable point.

Figure (a) shows marginal stability boundaries for m = 1 in µ1 − δ

space, and for different plasma β values. The plasma has rw = 1.1

and L = 1. The stable region is interior to each locus. The cross-
hairs denote the equilibrium configuration used for the dispersion
curves presented in Fig. (b), which is a dispersion curve for N = 2

andm = 1, and for different internal barrier positions r1
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