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1 Perturbed equilibria
A numerical computation of an ideal MHD equilibrium may suffer from the following
short-comings. In the tokamak case, an axisymmetric Grad-Shafranov solver is not
suitable if error-fields turn the 2d into a 3d problem. In the stellarator case, equilib-
ria are usually calculated numerically using the assumption of integrability, or nested
magnetic surfaces, as it is done for example in the vMEC code [1]. In many applica-
tions, especially for plasma configurations optimized for good magnetic surfaces, this
is a sufficient approximation. If, however, the island structure of the magnetic field is
expected to be important [2], such as in a stellarator or in a tokamak with some error
field, then numerical tools that calculate the global equilibrium without the assump-
tion of nested magnetic surfaces, such as the piEs code [3], are employed. These
calculations are not only computationally intensive, the presence of rational surfaces
implies that 3D MHD equilibria with smooth pressure profiles do not in general ex-
ist [4]. To compute 3D ideal MHD equilibria, one needs to carefully account for the
singularities, and discontinuites, that arise at rational surfaces. A rigorous mathemat-
ical treatment of a perturbed equilibrium is provided by linear ideal stability theory [5]
which determines the
plasma response to
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2 Ideal MHD energy principle

The ideal MHD equilibrium equation is Vp = 7 x B, with the scalar pressure Vp = p'Vs
a surface function. In Eq. (1), the first term describes the departure from an equilibrium
state, the second term, §°W, is given by the ideal MHD force operator .%. The notation
used below may be found in Refs. [6]. In magnetic coordinates, the magnetic field may
be written as B = IV¢ +JV6 + Vs and ,/gB = —F{,s —Fy7,e, With I and J the currents
and Fp and Fr the fluxes. The covariant component E may be determined from the
metric coefficients as \/gﬁmetric = F|gs¢ + F{gs0. The scalar analog of the MHD equilib-
rium equation in magnetic coordinates gives rise to the magnetic differential equation
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Figure 1: Top: Rotational
transform in an A = 10
zero- cylinder configu-
ration. Rational 1-values
are indicated. Left: Normal
displacements versus nor-
malized toroidal flux: Com-
parison of results given
by a cylinder-code (black
dashed lines) and the
CAS3D code (coloured).
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Figure 2: Left: Normal displacement harmonics with jumps at resonances 1 =1/2 (red) and 1/3
(black); top: unperturbed case with perturbation prescribed on boundary; bottom: perturbed
case with fixed-boundary perturbation. Right: Quarter of cross-section with the surfaces includ-
ing the perturbation. Inside the innermost resonance (R — Ry < 0.52) the surfaces are circles
due to the shielding; inside 0.52 < R— Ry < 0.8 they are ellipses.



\/gﬁ-Vvade:p’(\/g—V/). In equilibrium Ememc = Emde. The second term in Eq. (2) de-
scribes the departure of a given set of magnetic surfaces, determining Emetric, from the
equilibrium, described by B.4.- If the plasma-pressure is slightly changed, then the first
term in Eq. (2) also contributes. In Egs. (1) to (3), 5 is the MHD displacement vector,
and &f = E - Vs the normal displacement. In the cAs3D stability code, by means of a
Galerkin method, Egs. (1) to (3) are recast as a system of linear equations, with the
matrix given by Eq. (3) and the right hand side by Eq. (2). In a perfect equilibrium,
the right hand side vanishes, and the homogeneous problem is solved. The solution is
non-trivial only if inhomogeneous boundary conditions are used. An inhomogeneous
boundary condition for the normal displacement corresponds to applying an error-field
on the boundary, B - Vs = By - VE*; the plasma boundary will be perturbed. A homo-
geneous boundary condition means that a fixed-boundary perturbation is used; the
plasma boundary stays as prescribed. The normal displacement & appears in the
computation of the perturbed surfaces, 7 =7+ (E -i)it, with 7 the outer unit normal.
Resonant error-fields may produce magnetic islands if the corresponding rational sur-
face is inside the plasma. In ideal MHD magnetic islands may be characterized by a
surface current, which prevents an island from opening at the rational surface. The
strength of the surface current is related to a discontinuity allowed in the resonant nor-
mal displacement, &£*. The strength of the surface current is related to the width of the
island [5].

3 Discontinuous normal displacement in a cylinder

As part of code validation, the influence of error fields has been studied in cylin-
drical geometry, for an equilibrium with aspect-ratio A=10, vanishing plasma-f, and
rotational-transform 0.66 > 1 > 0.23 (compare Fig. 1). The cas3D results have been
benchmarked with a code for the ideal cylindrical stability [7]. In this code the exte-
rior tearing equation, with singular points at the rationals and the origin, has been
implemented using a shooting and matching technique. The result of the benchmark is
shown in the left frame of Fig. 1. The nine normal displacement harmonics that have
been studied coincide to a very good approximation. From the plasma boundary the
error-field harmonics decay and are completely shielded off by the respective rational
surfaces. Since in a cylinder all perturbation harmonics decouple, they are not influ-
enced by the other rational surfaces.

Prescribing a finite normal displacement in the perfect equilibrium case (homogeneous
problem with inhomogeneous boundary conditions) is equivalent to using a vanishing
normal displacement in a correspondingly deformed plasma state. For a check of this
statement, two of the rational i1-values of the above benchmark have been studied,
1/2 (at s = 0.28) and 1/3 (at s = 0.65). If the perfect cylinder equilibrium is perturbed
with a small B; on the plasma boundary, then the respective normal displacement har-
monics are discontinuous at the respective resonant surfaces. The top left frame of
Fig. 2 shows the corresponding cAs3D result, a subset of the above-described bench-
mark calculation. In a second calculation an equivalently helically distorted equilib-
rium was studied, being described by a VMEC equilibrium, which is approximate near
the resonances. In this calculation the second term in Eq. (2) is the driving term g in



the inhomogeneous problem with homogeneous boundary conditions. The bottom left
frame of Fig. 2 shows the resonant normal displacement harmonics vanishing on the
plasma boundary which represent the first order correction leading to a better equilib—
rium. For the m = 3(2), n =1 harmonic, the magnitude of the jump, |, — n l, i
0.038 (0.023) in the ﬁ*& = 0 calculation as compared to 0.036 (0.022) in the 9*5 =g
case. To see whether the two calculations lead to the same result, the shifted surfaces,
Pl ="+ (5 i), have been determined (see the right frame in Fig. 2). Black dashed
I|nes are for the ﬁé = g calculation, red lines for the ﬂé 0 calculation. The two sets
of lines coincide to a very good approximation. Outside the resonance closest to the
plasma boundary, here 1 = 1/3, the surfaces are deformed according to the m = 2,3
n =1 perturbation. Between the two resonances, the surfaces are ellipses: The 1 =1/3
resonance screens off the m = 3 perturbation, the m = 2 perturbation remains. Inside
the resonant surface closest to the magnetic axis, here 1 = 1/2, the surfaces are circles,
which demonstrates the complete shielding of the two resonances.

4 Plasma-pressure change in a stellarator
As discussed in Secs. 1 and 2,
the perturbed equilibrium con-
cept can also be used to find
the response of the plasma
to a small plasma-pressure
change. The first term in Eq. 2
then describes how the devia-
tion in pressure gradient con- N L
tributes in the determination O omalizedooidal s 0 nomaized ioisal fuxs
of the corresponding normal
displacement. As an applica-
tion, the effect on the equi-
librium due to an increase
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Figure 3: Left frame: Normal displacement harmonics de-
scribing the perturbation of a W7-X variant from () = 0.045
to 0.048. Only m = 1 harmonics have been studied. Right
frame: The enhanced Shafranov shift for the normal dis-

in volume-averaged plasma-f3,
from (B) = 0.045 to 0.048, has
been studied for a high-mirror

placement in the left frame, normalized to the respective
cross-section half-width, ~ 0.2 m at the bean-shaped cross-
section, black symbols, ~ 0.7 m at the triangle, red symbols.

W7-X variant, maintaining a

fixed rotational-transform profile. A first calculation has been restricted to normal dis-
placement harmonics with poloidal node number m = 1, and toroidal node numbers
n=—10,-5,0,5,10. The results of this calculation are shown in Fig. 3. The cAsS3D (+ in
the right frame) and VMEC (x) results are compared on two outboard symmetry lines:
on the bean-shaped cross-section (cross-section half-width ~ 0.2 m, black symbols)
and on the triangular cross-section (=~ 0.7 m, red symbols).
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