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1 Perturbed equilibria
A numerical computation of an ideal MHD equilibrium may suffer from the following
short-comings. In the tokamak case, an axisymmetric Grad-Shafranov solver is not
suitable if error-fields turn the 2d into a 3d problem. In the stellarator case, equilib-
ria are usually calculated numerically using the assumption of integrability, or nested
magnetic surfaces, as it is done for example in the VMEC code [1]. In many applica-
tions, especially for plasma configurations optimized for good magnetic surfaces, this
is a sufficient approximation. If, however, the island structure of the magnetic field is
expected to be important [2], such as in a stellarator or in a tokamak with some error
field, then numerical tools that calculate the global equilibrium without the assump-
tion of nested magnetic surfaces, such as the PIES code [3], are employed. These
calculations are not only computationally intensive, the presence of rational surfaces
implies that 3D MHD equilibria with smooth pressure profiles do not in general ex-
ist [4]. To compute 3D ideal MHD equilibria, one needs to carefully account for the
singularities, and discontinuites, that arise at rational surfaces. A rigorous mathemat-
ical treatment of a perturbed equilibrium is provided by linear ideal stability theory [5]
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which determines the
plasma response to
small perturbations.
This approach has
been implemented
in the CAS3D stabil-
ity code [6], which
is used here.

2 Ideal MHD energy principle
The ideal MHD equilibrium equation is ∇p =~×~B, with the scalar pressure ∇p = p′∇s
a surface function. In Eq. (1), the first term describes the departure from an equilibrium
state, the second term, δ 2W , is given by the ideal MHD force operator F . The notation
used below may be found in Refs. [6]. In magnetic coordinates, the magnetic field may
be written as ~B = I∇φ + J∇θ + β̃∇s and

√
g~B =−F ′

T~r,φ −F ′
P~r,θ , with I and J the currents

and FP and FT the fluxes. The covariant component β̃ may be determined from the
metric coefficients as

√
gβ̃metric = F ′

Tgsφ +F ′
Pgsθ . The scalar analog of the MHD equilib-

rium equation in magnetic coordinates gives rise to the magnetic differential equation
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Figure 1: Top: Rotational
transform in an A = 10
zero-β cylinder configu-
ration. Rational ι-values
are indicated. Left: Normal
displacements versus nor-
malized toroidal flux: Com-
parison of results given
by a cylinder-code (black
dashed lines) and the
CAS3D code (coloured).
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Figure 2: Left: Normal displacement harmonics with jumps at resonances ι = 1/2 (red) and 1/3
(black); top: unperturbed case with perturbation prescribed on boundary; bottom: perturbed
case with fixed-boundary perturbation. Right: Quarter of cross-section with the surfaces includ-
ing the perturbation. Inside the innermost resonance (R−R00

<∼ 0.52) the surfaces are circles
due to the shielding; inside 0.52 <∼ R−R00

<∼ 0.8 they are ellipses.



√
g~B·∇β̃mde = p′(

√
g−V ′). In equilibrium β̃metric = β̃mde. The second term in Eq. (2) de-

scribes the departure of a given set of magnetic surfaces, determining β̃metric, from the
equilibrium, described by β̃mde. If the plasma-pressure is slightly changed, then the first
term in Eq. (2) also contributes. In Eqs. (1) to (3), ~ξ is the MHD displacement vector,
and ξ s = ~ξ ·∇s the normal displacement. In the CAS3D stability code, by means of a
Galerkin method, Eqs. (1) to (3) are recast as a system of linear equations, with the
matrix given by Eq. (3) and the right hand side by Eq. (2). In a perfect equilibrium,
the right hand side vanishes, and the homogeneous problem is solved. The solution is
non-trivial only if inhomogeneous boundary conditions are used. An inhomogeneous
boundary condition for the normal displacement corresponds to applying an error-field
on the boundary, ~B1 ·∇s = ~B0 ·∇ξ s; the plasma boundary will be perturbed. A homo-
geneous boundary condition means that a fixed-boundary perturbation is used; the
plasma boundary stays as prescribed. The normal displacement ξ s appears in the
computation of the perturbed surfaces,~r1 =~r0 +(~ξ ·~n)~n, with ~n the outer unit normal.
Resonant error-fields may produce magnetic islands if the corresponding rational sur-
face is inside the plasma. In ideal MHD magnetic islands may be characterized by a
surface current, which prevents an island from opening at the rational surface. The
strength of the surface current is related to a discontinuity allowed in the resonant nor-
mal displacement, ξ s. The strength of the surface current is related to the width of the
island [5].

3 Discontinuous normal displacement in a cylinder
As part of code validation, the influence of error fields has been studied in cylin-
drical geometry, for an equilibrium with aspect-ratio A=10, vanishing plasma-β , and
rotational-transform 0.66 > ι > 0.23 (compare Fig. 1). The CAS3D results have been
benchmarked with a code for the ideal cylindrical stability [7]. In this code the exte-
rior tearing equation, with singular points at the rationals and the origin, has been
implemented using a shooting and matching technique. The result of the benchmark is
shown in the left frame of Fig. 1. The nine normal displacement harmonics that have
been studied coincide to a very good approximation. From the plasma boundary the
error-field harmonics decay and are completely shielded off by the respective rational
surfaces. Since in a cylinder all perturbation harmonics decouple, they are not influ-
enced by the other rational surfaces.
Prescribing a finite normal displacement in the perfect equilibrium case (homogeneous
problem with inhomogeneous boundary conditions) is equivalent to using a vanishing
normal displacement in a correspondingly deformed plasma state. For a check of this
statement, two of the rational ι-values of the above benchmark have been studied,
1/2 (at s = 0.28) and 1/3 (at s = 0.65). If the perfect cylinder equilibrium is perturbed
with a small ~B1 on the plasma boundary, then the respective normal displacement har-
monics are discontinuous at the respective resonant surfaces. The top left frame of
Fig. 2 shows the corresponding CAS3D result, a subset of the above-described bench-
mark calculation. In a second calculation an equivalently helically distorted equilib-
rium was studied, being described by a VMEC equilibrium, which is approximate near
the resonances. In this calculation the second term in Eq. (2) is the driving term g in



the inhomogeneous problem with homogeneous boundary conditions. The bottom left
frame of Fig. 2 shows the resonant normal displacement harmonics vanishing on the
plasma boundary which represent the first order correction leading to a better equilib-
rium. For the m = 3(2), n = 1 harmonic, the magnitude of the jump, |ξ s

mn+ − ξ s
mn−|, is

0.038 (0.023) in the F~ξ = 0 calculation as compared to 0.036 (0.022) in the F~ξ = g
case. To see whether the two calculations lead to the same result, the shifted surfaces,
~r1 =~r0 +(~ξ ·~n)~n, have been determined (see the right frame in Fig. 2). Black dashed
lines are for the F~ξ = g calculation, red lines for the F~ξ = 0 calculation. The two sets
of lines coincide to a very good approximation. Outside the resonance closest to the
plasma boundary, here ι = 1/3, the surfaces are deformed according to the m = 2,3
n = 1 perturbation. Between the two resonances, the surfaces are ellipses: The ι = 1/3
resonance screens off the m = 3 perturbation, the m = 2 perturbation remains. Inside
the resonant surface closest to the magnetic axis, here ι = 1/2, the surfaces are circles,
which demonstrates the complete shielding of the two resonances.

4 Plasma-pressure change in a stellarator
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Figure 3: Left frame: Normal displacement harmonics de-
scribing the perturbation of a W7-X variant from 〈β 〉= 0.045
to 0.048. Only m = 1 harmonics have been studied. Right
frame: The enhanced Shafranov shift for the normal dis-
placement in the left frame, normalized to the respective
cross-section half-width, ≈ 0.2 m at the bean-shaped cross-
section, black symbols, ≈ 0.7 m at the triangle, red symbols.

As discussed in Secs. 1 and 2,
the perturbed equilibrium con-
cept can also be used to find
the response of the plasma
to a small plasma-pressure
change. The first term in Eq. 2
then describes how the devia-
tion in pressure gradient con-
tributes in the determination
of the corresponding normal
displacement. As an applica-
tion, the effect on the equi-
librium due to an increase
in volume-averaged plasma-β ,
from 〈β 〉 = 0.045 to 0.048, has
been studied for a high-mirror
W7-X variant, maintaining a
fixed rotational-transform profile. A first calculation has been restricted to normal dis-
placement harmonics with poloidal node number m = 1, and toroidal node numbers
n =−10,−5,0,5,10. The results of this calculation are shown in Fig. 3. The CAS3D (+ in
the right frame) and VMEC (×) results are compared on two outboard symmetry lines:
on the bean-shaped cross-section (cross-section half-width ≈ 0.2 m, black symbols)
and on the triangular cross-section (≈ 0.7 m, red symbols).
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