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1. Introduction



3D Toroidal plasma equilibrium

! 

" #B = J,

Good model for toroidal fusion plasma steady state is force
balance for total pressure p combined with Ampère’s law
relating magnetic field B and current density J:

! 

"p = J #B,

! 

" #B = 0

and Tokamaks, (also 3D due
to coil ripple or instabilities):

EG Stellarators—intrinsically
3D, i.e. no continuous
symmetry:



Phys. Fluids 10, 137  (1967)

Holy Grail — find constructive
solution of 50-year-old problem



Project Aims

(1) design a convergent algorithm for constructing 3D equilibria,

Find a mathematically well-posed formulation of problem
and implement it numerically with aim to replace current
unsatisfactory tools (e.g. VMEC code)

quantify relationship between magnitude of departure from
axisymmetry and existence of 3D equilibria—both
fundamental and practical problem

provide a better computational tool for rapid design and
analysis

(2) explore relationship between ideal MHD stability of multiple
interface model and internal transport barrier formation



Magnetic field B in curvilinear
toroidal coordinates

Radial coordinate
Φ = const surface.
NB Φ is average
toroidal flux but
field lines do not
necessarily lie
within this torus.

Toroidal angle
ζ = const
curve on Φ =
const torus.

Poloidal angle
θ = const
curve on Φ =
const torus.

Also define a poloidal-
flux/stream function Ψ  s.t.
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Field-line flow as a 11/2 DoF
Hamiltonian system
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I.e. magnetic field-line flow is a non-autonomous
Hamiltonian system with Ψ( Φ,θ, ζ ) the
Hamiltonian, θ the generalized coordinate, Φ the
canonically conjugate momentum, and ζ the “time”.



2. Problems with 3D equilibria
Prob. I — they are generically non-integrable



 ι = irrational:  B ergodically passes through all
points in magnetic surface
 ι = rational (m/n) :  B lines close on each other.

 (In tokamaks, often define  q = 1/ι)

θ

ζ

• B field lines are
everywhere tangential to a
magnetic surface, winding
around in a helical fashion

• Define winding number or
rotational transform:

But design so there exist some
invariant tori (magnetic surfaces)
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But B.∇ is a very singular operator: for general 3D fields, σ
blows up at each rational magnetic surface unless! 
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where λ  is an arb. const. along field lines (e.g. over finite
volume in a chaotic region, filled ergodically by single B-line).

Formal solution is:! 

J "B =#p $ J% = B "#p /B
2

 Prob. II:  3D MHD equilibria have
current singularities if ∇p ≠ 0

 Current perp.to B is OK:
 Problem is parallel current:

! 

" # B $"p /B
2( ) = 0



Proposed solution:  Stepped-
pressure Beltrami equilibria

• Pros
– Beltrami eqn. is a linear elliptic PDE, solvable by variety of methods even if

B has chaotic regions
– Has already been partially investigated mathematically [e.g. Bruno &

Laurence, Comm. Pure Appl. Math. XLIX, 717 (1996)]
• Cons (?)

– Pressure profile not differentiable (but may approximate a smooth profile
arbitrarily closely, limited only by existence of invariant tori)

“In order to have a static (3D) equilibrium, p’(Φ) must be zero in the
neighborhood of every rational rotational transform, and flux surfaces must
be relinquished”

Cf. Grad, Toroidal Containment of plasma, Phys. Plas. 10 (1967)

To ensure a mathematically well-defined J, we set ∇p = 0
over finite regions ⇒ ∇×B = λB, λ = const (Beltrami field)
separated by assumed invariant tori.



Force balance on invariant tori

Pressure discontinuous: [[p]] ≠ 0 (where [[•]] is
jump across an invariant torus), but total
pressure, magnetic plus kinetic, is continuous:
[[p+B2/2]] = 0

⇒ δ-function ∇p
⇒ sheet current J⊥
⇒ discontinuity in B (both magnitude & direction)
⇒ winding number ι not necessarily same on

either side of invariant torus (not standard KAM
problem)



Equilibrium construction method I:
A: solution of 3D Beltrami eqn. by method of

lines/shooting method
    Coordinates:

Assuming Si and Si+1
are given, construct
curvilinear coord.
system, s, θ, ζ where
θ, ζ  are resp. gen.
poloidal & toroidal
angles and s
interpolates between
Si and Si+1 —



IA contd.:  radial integration of
poloidal & toroidal components of B

    Write B in covariant form:

    So just need to solve for θ & ζ components. Can be
done by integrating radially along curves θ, ζ = const :

 Can express Bs in terms of Bθ & Bζ:

Where (if λ ≠ 0):



Construction IA cont.: satisfying
tangentiality at Si  & Si+1

    Use Fourier representations:

    B must be tangential to s = 0 and s = 1 surfaces: n.B= 0

Achieve on s = 0 by using surface magnetic potential f
such that B = ∇sf (exists because n. ∇XB = 0), where
surface gradient is defined as

Continue B from Si by shooting method, satisying n.B= 0
at Si+1 , to required tolerance, by iteratively adjusting fmn



Construction IA conclusion:

• Published in S.R. Hudson, M.J. Hole and R.L. Dewar,
Phys. Plasmas 14, 052505 (2007)

• Have verified above construction of 3D Beltrami fields
works (though not elegant) for test problem: Beltrami
equation between two specified toroidal surfaces

• Have studied non-standard eigenvalue problem posed by
specifying ι on bounding surfaces

• Have used Greene’s method for finding KAM surfaces
within the region: nest irrational no. by sequence of
rationals, using Farey construction, giving rise to sequence
of islands. If O-points of islands exist in limit, then KAM
surface exists:



KAM invariant tori at irrational ι : fractal
dependence on winding no.

Most robust
surface at a
noble irrational
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connected
chaos

Rotational transform

Good surfaces



Construction method I contd:
B: Hamilton–Jacobi equation for f

Can relate surface magnetic potentials f+/– such that B+/– =
∇sf +/– on either side of a pressure barrier S by solving
force balance as a PDE for f+ given f– (& vice versa?)  :
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This is a Hamilton–Jacobi equation — characteristics are
Hamiltonian orbits, with a purely geometric Hamiltonian.
This is a completely different problem from the field-line
flow problem, yet it leads to the same conclusion: the
rotational transforms on either side of pressure barrier
must be irrational.



Euler–Lagrange eqns. for δF = 0:

! 

F =W " #K
0

! 

" #B = $B

! 

W =
B
2

2
+

p

" #1

$ 

% 
& 

' 

( 
) d*

P
+Minimize total energy: 

Under constraint of total helicity :
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Lagrange multiplier

Construction II: variational method
A: (Woltjer–)Taylor relaxation principle

naturally give Beltrami equation:

(To check whether F really is a minimum,  need second
variation — stability criterion similar to resistive stability,
since reconnection is allowed.)



subject to finite number of
ideal-MHD constraints (unlike
ideal MHD where flux and
entropy are “frozen in” to each
fluid element — infinite no. of
constraints).
Require constraints to be a
subset of the ideal-MHD
constraints, so generated
states are ideal equilibria:

Ideal MHD:
infinity of
constraints

Relaxed MHD:
finite no. of
constraints

Spaces of allowed variations: 
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+Idea:  Extremize total energy 

Kruskal–Kulsrud
equilibria — include
Taylor states

Generalized
Taylor
equilibria

Cf. A. Bhattacharjee and R.L. Dewar, Phys. Fluids 25, 887 (1982)
Energy principle with global invariants

Construction method IIA continued:
Generalization of Taylor principle — general idea
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potential energy functionals: 
helicity functionals:

mass/entropy functionals: 

New system comprises:
• N plasma regions Pi in relaxed states.

• Regions separated by ideal MHD barrier Si.

• Enclosed by a vacuum V,

• Encased in a perfectly conducting wall W

…
I1 In-1

Si

V Pn

P
1

W

Assume invariant tori Si  act as ideal MHD barriers to relaxation,
so that Taylor constraints are localized to subregions.

Construction method IIA continued:
Generalization of Taylor principle — specific idea:

Constraints:

toroidal and poloidal fluxes:  Φi and Ψi 



Construction method II
B Hamiltonian trial function

Use representation

with  Ψ,Φ, and θ as unknown fields (ζ
being assumed a prescribed coordinate,
say cylindrical polar angle φ).
Or, rather, use inverse representation,
φ = ζ

! 

B =" #A
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r = R(",#,$ )ˆ r (%) + Z(",#,$ ) ˆ z 



Construction method II
B Hamiltonian trial function contd.

• Unlike usual KAM problem, the Hamiltonian Ψ is
not prescribed — it is an unknown to be solved
for.

• Furthermore, Ψ,Φ, and θ are not unique because
arbitrary canonical transformations can be
performed in the regions between the invariant
tori, where action-angle coordinates do not in
general exist

• Suggests using an extra principle to fix the
representation, e.g. quadratic flux minimization



Quadratic flux minimization
• R.L. Dewar & J.D. Meiss Physica D 57,

476 (1992); R.L. Dewar & A.B. Khorev
Physica D 85, 66 (1995) — area-
preserving twist maps

• S.R. Hudson & R.L. Dewar Phys. Lett. A
226, 85 (1997) — for magnetic fields:
define field-line action

• Minimize square of “action gradient” δS/δθ



Action-angle coordinates for
nonintegrable field



Conclusion
• Hamilton-Jacobi equation for force balance across

interfaces relates directly to KAM ⇒ irrational ι, but
defines a direction of “information transfer” ⇒ method
of lines for Beltrami equation: inappropriate for an
elliptic problem

• Variational approach is a priori more appropriate, but,
to relate to KAM, need to find field-line Hamiltonian in
inverse representation: Beltrami equation becomes
nonlinear and need to fix nonuniqueness, either using
Meiss’ quadratic flux or minimizing

• Second variation of free energy, δ2F, is important both
for optimization approach above and for stability
calculations (Hole et al 2007 — cylindrical studies)! 
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